Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. A rat tibial osteotomy was created and fixed with compression
plating similar to that used in patients. The procedure was evaluated
in 15 cadaver rats and then Objectives
Methods
The reduction of Böhler’s angle was greater in the plate group. There were no statistically significant differences between the two groups with regard to return to work. However the final AOFAS score was 82.7 in the plate and 69.8 in the pin group.
There were fewer complications in the plate group, except for skin problems.
Abstract. Objectives. Over 1% of the global population suffers with ankle osteoarthritis (OA), yet there is limited knowledge on the changes to subchondral bone with OA. In other joints, it has been shown that bone becomes osteosclerotic, with fewer, thicker trabeculae that become hypomineralised, causing an increased apparent bone volume fraction (BV/TV). Microstructural alterations reduce overall joint strength, which may impact the success of late-stage surgical interventions, such as total ankle arthroplasty (TAA). Previous ankle studies have evaluated changes to cartilage,
Purpose: To assess the use of cortical allografts (bone plates?) in hip replacement surgery. Materials and methods: This is a retrospective study of 43
Introduction. Bulk bone grafting is commonly used in total hip arthroplasty (THA) for developmental dysplasia. However, it is a technically demanding surgery with several critical issues, including graft resorption, graft collapse, and cup loosening. The purpose of this study is to describe our new bone grafting technique and review the radiographic and clinical results. Patients and Methods. We retrospectively reviewed 105 hips in 89 patients who had undergone covered bone grafting (CBG) in total hip arthroplasty for developmental dysplasia. We excluded patients who had any previous surgeries or underwent THA with a femoral shortening osteotomy. According to the Crowe classification, 6 hips were classified as group I, 39 as group II, 40 as group III, and 20 as group IV. Follow-up was at a mean of 4.1 (1 ∼ 6.9) years. The surgery was performed using the direct anterior approach. The acetabulum was reamed as close to the original acetabulum as possible. The pressfit cementless cup was impacted into the original acetabulum. After pressfit fixation of the cup was achieved, several screws were used to reinforce the fixation. Indicating factor for using CBG was a large defect where the acetabular roof angle was more than 45 degrees and the uncovered cup was more than 2 cm (Fig.1). The superior defect of the acetabulum was packed with a sufficient amount of morselized bone using bone dust from the acetabular reamers. Then, the grafted morselized bone was covered with a
The evolution of
Acetabular reconstruction of extensive bone defect is troublesome in revision total hip arthroplasty (rTHA). Kerboull or Kerboull type reinforcement acetabular device with allobone grafting has been applied since 1996. Clinical results of the procedure were evaluated. Patients. One hundred and ninety-two consecutive revision total hip arthroplasties were performed with allograft bone supported by the Kerboull or Kerboull type reinforcement acetabular device from 1996 to 2009. There were 23 men and 169 women. Kerboull plates were applied to 18 patients, and Kerboull type plates to 174. The mean follow up of the whole series was 8 years (4–18years). Surgical Technique. The superior bone defect was reconstructed principally by a large bulky allo block with plate system. Medial bone defect was reconstructed by adequate bone chips and/or sliced
Introduction: The authors introduce a modified technique of iliac splitting and expanding shelf (ISES) arthroplasty for severe LCPD, and report on the intermediate outcomes. Materials and Methods: This new procedure is a modification of the previously reported tectoplasty of Saito (1986) and the shelf arthroplasty of Catterall (1992). Only the sartorius muscle and the indirect head of the rectus femoris muscle are detached, leaving the abductors intact. A superiorly hinged bony flap was raised from the lateral iliac wall just above the hip joint capsule. A corticocancellous
To determine whether half-threaded screw holes in a new titanium locking plate design can substantially decrease the notch effects of the threads and increase the plate fatigue life. Three types (I to III) of titanium locking plates were fabricated to simulate plates used in the femur, tibia, and forearm. Two copies of each were fabricated using full- and half-threaded screw holes (called A and B, respectively). The mechanical strengths of the plates were evaluated according to the American Society for Testing and Materials (ASTM) F382-14, and the screw stability was assessed by measuring the screw removal torque and bending strength.Aims
Methods
Introduction. Periprosthetic femur fractures are a serious complication after hip replacement surgery. In an aging population these fractures are becoming more and more common. Open reduction and plate osteosynthesis is one of the available treatment options. Objective. To investigate hip stem stability and cement mantle integrity under cyclic loading conditions after plate fixation with screws perforating the cement in the proximal fragment. Methods. Polished tapered hip stems were implanted in 16 biomechanical testing femora with Palacos cement (3rd generation technique) according to the manufacturer's recommendations. 8 testing bones were osteotomised distal to the stem representing the fracture group (Vancouver Type C). The osteotomy was fixed with a polyaxial locking plate, the other 8 specimens served as a control group. The specimens were tested in a biaxial material testing machine under axial compression (including adduction and torsion moments) for 100.000 cycles at physiological loads. Stem subsidence was measured in 3 planes with a stereoscopic image correlation system during the tests. Subsequently the sliced and crack dyed specimens were investigated microscopically for cement cracks. Results. In the control group no specimen failed during testing. There were no statistically significant differences in stem subsidence along the longitudinal axis (control group mean ± SD −15.4 ± 12.2 μm, fracture group −14.1 ± 13.1 μm). In the fracture group two specimens fractured through the most proximal screw hole after 74.000 and 80.000 cycles. Overall 15 out of 36 screws in the proximal fragment had direct stem contact. No cement cracks were detected in the sliced specimens in both groups. Conclusion. Drilling the cement mantle and placing screws in the cement did not increase stem subsidence under cyclic loading. No cracks or cement mantle failure were observed. Large screw diameters proximally weaken the lateral cortex resulting in tension failure of the
The aim of this study is to report the results of a case series of olecranon fractures and olecranon osteotomies treated with two bicortical screws. Data was collected retrospectively for all olecranon fractures and osteotomies fixed with two bicortical screws between January 2008 and December 2019 at our institution. The following outcome measures were assessed; re-operation, complications, radiological loss of reduction, and elbow range of flexion-extension.Aims
Methods
Introduction: Increasing number of osteoporotic fractures of the femur, especially upper part of the femur creates everyday problem of health services. Treatment of these fractures has been improving markedly during the past 25 years. DHS, gamma nail and some other implants are very useful in everyday surgery. However some of complications still can not be resolved like cut out. Osteoporotic fractures in subtrochanteric area represent even bigger challenging. Diaphyseal fractures are also difficult to be treated. The main problem is quality of osteoporotic
Fixation of osteoporotic proximal humerus fractures remains challenging even with state-of-the-art locking plates. Despite the demonstrated biomechanical benefit of screw tip augmentation with bone cement, the clinical findings have remained unclear, potentially as the optimal augmentation combinations are unknown. The aim of this study was to systematically evaluate the biomechanical benefits of the augmentation options in a humeral locking plate using finite element analysis (FEA). A total of 64 cement augmentation configurations were analyzed using six screws of a locking plate to virtually fix unstable three-part fractures in 24 low-density proximal humerus models under three physiological loading cases (4,608 simulations). The biomechanical benefit of augmentation was evaluated through an established FEA methodology using the average peri-screw bone strain as a validated predictor of cyclic cut-out failure.Aims
Methods
Sutures from intraosseous anchors are used to secure soft tissue down onto bone during healing. Increasingly anchors are made from absorbable materials. Poly lactide carbonate (PLC - poly lactide with calcium carbonate) is an absorbable formulation with osteoconductive properties that should enhance both tissue healing and its own replacement by bone over time. An animal model of soft-tissue-to-bone healing was used to assess the efficacy of PLC Bioraptor™ anchors in comparison to anchors of non-osteoconductive poly lactide (PLLA). Forty-seven ewes were used in two groups of PLC or PLLA anchors, surviving to either four or 12 weeks. The patellar tendon was pared off the tibia, the footprint decorticated then the tendon re-attached. An external fixator protected the tendon from load bearing for three weeks. At post mortem the patella/patellar tendon/tibia complex was either prepared for histological examination or stored deep frozen for later measurement of peak load at failure. Non-operated specimens failed within the tendon mid substance; the failure site of healing specimens was dependent on their strength, with the weakest through interpositional granulation tissue, stronger specimens through fibres at various distances from the bone and the strongest, by partial bone avulsion. Active healing of the enthesis consisted of merging regions of. a) re-established cortical
Wire cerclage is one of the oldest forms of internal fixation. Cerclage has numerous applications in orthopaedics as a primary method of fracture fixation and as a supplement to other forms of fixation. Traditional wire cerclage, however, has several disadvantages. Monofilament wire is prone to breakage. Multifilament braided cables tend to undergo fatigue failure and fray, releasing metallic particulate debris into the body. Both have a limited ability to maintain compression. This paper presents performance data on a novel flexible, high strength, high fatigue life cable that addresses the inherent problems associated with traditional metal wire cerclage. The iso-elastic cerclage cable consists of a nylon core encased in a jacket of UHMWPE braided fibers. A tensioning instrument tightens the assembly with a metal clasp. Cable assemblies were tested under in vitro static and dynamic loading conditions. Viscoelastic response and wear behavior under in vitro loading conditions were characterized. The iso-elastic cerclage cable displayed an ultimate tensile strength of pproximately 650 MPa and withstood over one million cycles of simulated physiologic load without failure. After 8 weeks of static loading, initial cable tension decreased by approximately 40%. After one million loading cycles against a
Aims: The goal of this study to compare the clinical outcome of patients with calcaneus fractures differential strategy and non-differential conservative strategy treated. Methods: The study based on the results of treatment of 122 patients with 140 heel bone fractures. Results of only conservative treated 52 patients (54 fractures) in period 1992–1999 were retrospectively evaluated. Results of 70 patients (86 fractures) differential strategy treated in period 1999–2001 were prospectively evaluated. The plain radiographs – that is lateral, antero-posterior, oblique radiographs of the foot, axial and Broden view – and computerized tomography were used for examine patients. In period 1999–2001 the patients were differential strategy treated. All patients were divided in 5 groups: non-displacement fractures (early range of motion), beak type fractures (close reduction internal fixation by cannulated screw), tongue-type fractures (axial reposition axial fixation by Schantz screw), jointdepression and comminuted fractures (ORIF calcaneus
In the last years custom-fit cutting guides using magnetic resonance imaging (MRI) were introduced by orthopedic surgeons for total knee arthroplasty (TKA). One of the advantages of these shape-fitting jigs is the possibility to transfer the preoperative planning of the TKA directly to the individual patient's bone. However, one has to be aware, that the jigs are designed for single-use and have to be custom made by an external manufacturer. This increases the cost of implantation and unlinks the surgeon from this process. In addition a potentially necessary adjustment of the preoperatively planned implant size and position in a surgical situation is not possible. The purpose of our development was to combine the advantages of custom-fit cutting guides as a 3-D-computer-assisted planning tool with the option to adjust and improve the preoperative planning and the jig in the actual surgical situation. In addition no outside jig manufacturing would occur in this concept. This leaves the surgeon in control of the entire process. The purpose of this study was to examine the reliability of this screw-based shape – fitting system. In order to do this we assessed the inter- and intra-observer reliability of the recurrent placement of the plate on a set of bone samples with preset screws. We developed a plate with the dimension of 66 × 76 × 10 mm, containing 443 threaded holes. A connector for further instrumentation is mounted on the proximal part of the plate,. As the plate and the screws are made of aluminum and steel, sterilization is possible. After computer tomography (CT) scans were taken from three human femoral bones, eight to nine variably positioned screws (50.45 mm length, 2.75 mm diameter), reversibly fixed by locknuts, formed an imprint of a bone's surface. For calculating precise screw positions, a computer-based planning software was developed resulting in a three-dimensional reconstruction of the bony surfaces. The plate was integrated in the 3-D reconstruction software. With a defined distance to the distal part of the femurs, allowed the proper length and position of the screws to be calculated. These calculations were transferred to the screws on the real plate. In the next step the plate was positioned on the bony surface and after reaching the planned position the plate's connector was rigidly fixed to the
Purpose: The Less Invasive Stabilization System (LISS), Dynamic Condylar Screw (DCS) and Condylar Buttress Plate (CBP) are three common fixation methods for supracondylar femur fractures. The DCS and CBP are compression plates while the LISS uses locking screws to transfer load from
Two stainless steel ‘TriMed’ distal radial fracture reduction techniques were tested to compare the relative stability of the two in vitro for a pre-determined fracture pattern. The movement of the bony segments were plotted over time using an ARAMIS 3 dimensional non-contacting displacement mapping system (GOM mbH, Braunschweig, Germany) to give quantitative data. The data was used to calculate the relative motion of the bony segments with the aim of investigating regions of compression across the fracture line, which is thought to accelerate fracture healing, and shear between bony segments, which is detrimental to fracture healing. Ten third generation adult radius biomechanical model Sawbones (Sawbones, Malmö, Sweden) were cut to simulate AO type C2 fractures with dorsal comminution. Five