Advertisement for orthosearch.org.uk
Results 1 - 20 of 43
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 76 - 76
1 Dec 2013
Hoenecke H Flores-Hernandez C Hermida J Kersten A D'Lima D
Full Access

Introduction:. Total shoulder arthroplasty (TSA) is the current standard treatment for severe osteoarthritis of the glenohumeral joint [1]. Often, severe arthritis is associated with abnormal glenoid version or excessive posterior wear [2]. Reaming to correct more than 15° of retroversion back to neutral is not ideal as it may remove an excessive amount of the outer cortical support and medialize the glenoid component [3]. Two recent glenoid components with posterior augments—wedged and stepped—have been designed to address excessive posterior wear and to allow glenoid component neutralization. Hypothetically, these augmented glenoid designs lessen the complications associated with using a standard glenoid component in cases of shoulder osteoarthritis with excessive posterior wear. We set out to determine which implant type (standard, stepped, or wedged) corrects retroversion while removing the least amount of bone in glenoids with posterior erosion. Methods:. Serial shoulder CT scans were obtained from 121 patients before total shoulder arthroplasty. These were then classified using the Walch Classification. We produced 3D models of the scapula from CT scans for 10 subjects that were classified as B2 using the software MIMICS (Materialise, Belgium). Each of these 10 glenoid subjects were then virtually implanted with standard, stepped, and wedged glenoid components (Fig 1). The volume of surgical bone removed and maximum reaming depth were calculated for each design and for each subject. In addition, the area of the backside of the glenoid in contact with cancellous versus cortical bone was calculated for each glenoid design and for each subject (Fig 2). ANOVA testing was performed. Results:. Arthritic bone loss in shoulder specimens was always posteroinferior, and the worn portion or neoglenoid made up an average of 68 ± 11% in the shoulder specimens. Mean surgical bone volume removed (2857 ± 1618 mm. 3. ) was least for the wedged component when compared to stepped (4307 ± 1485 mm. 3. , p=.0003) and conventional (5385 ± 2348 mm. 3. , p=.0003) designs. Maximum bone depth removed for the wedge (4.5 ± 2.3 mm) was less than the stepped (7.6 ± 1.4 mm, p=.00003) and conventional (9.7 ± 2.7 mm, p=.00001). The mean percentage of the implant's back surface supported by cancellous bone was 17.0% for the conventional, 6.1% for the stepped (p=.009), and 3.1% for the wedged (p=.0001). Discussion:. Both wedged and stepped components were able to correct glenoid version to neutral and required less bone removal, required less reaming depth, and were supported by more cortical bone than the standard implant. The wedged component was significantly better in these three categories than the stepped implant. There may be a mismatch between the usual patterns of wear that occurs in B2 glenoids where neoglenoid comprises (68 ± 11%) vs. the stepped implant's 50%. A stepped implant that matches the usual B2 glenoid may correct version while removing less bone than the current design


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 295 - 295
1 May 2010
Brennan S Harty J O’Rourke S
Full Access

Aim: To prospectively compare the quantity of bone removed from the acetabulum in hip resurfacing arthroplasty and uncemented total hip replacements.

Methods: Sixty four patients were prospectively enrolled in the study. We compared 32 birmingham hip resurfacing acetabular components with 32 trident uncemented acetabular cups. To assess the pre-reaming size of the acetabulum, and to allow comparison between acetabular sizes, the size of the femoral head was assessed to the nearest millimetre intraoperatively with the use of a measuring calliper. The reamings from the acetabulum were collected. This bone was then dehydrated and defatted with five washes of acetone followed by five washes of diethyl ether. The bone was then placed in a furnace at 200 degrees Celsius until a consistent dry weight was achieved. The size of acetabular component used was recorded in all cases.

Results: The mean weight of bone removed from the acetubulum of the resurfacing group was 13.79 g. The corresponding mean weight of bone removed from the acetabulum of the total hip replacement group was 11.71g. Using a non-parametric analysis of covariance (ANCOVA) to account for the covariate of acetabular size, regression analysis indicated no evidence of a difference between the mean bone weight removed in the two groups (p-value of 0.57).

Conclusions: Close attention to surgical technique in preparing the femoral head during resurfacing will allow the use of an appropriately small femoral component. If performed accurately this will avoid oversizing the acetabular component and removal of excess bone stock.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the spinous process and the posterior ligamentous complex. Spinal robotic surgery has previously been limited to the insertion of screws and, more recently, cages; however, recent innovations have expanded robotic capabilities to decompression of neurological structures. Cite this article: Bone Jt Open 2024;5(9):809–817


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 79 - 79
1 Dec 2022
Langohr GD Mahaffy M Athwal G Johnson JA
Full Access

Patients receiving reverse total shoulder arthroplasty (RTSA) often have osseous erosions because of glenohumeral arthritis, leading to increased surgical complexity. Glenoid implant fixation is a primary predictor of the success of RTSA and affects micromotion at the bone-implant interface. Augmented implants which incorporate specific geometry to address superior erosion are currently available, but the clinical outcomes of these implants are still considered short-term. The objective of this study was to investigate micromotion at the glenoid-baseplate interface for a standard, 3 mm and 6 mm lateralized baseplates, half-wedge, and full-wedge baseplates. It was hypothesized that the mechanism of load distribution from the baseplate to the glenoid will differ between implants, and these varying mechanisms will affect overall baseplate micromotion. Clinical CT scans of seven shoulders (mean age 69 years, 10°-19° glenoid inclinations) that were classified as having E2-type glenoid erosions were used to generate 3D scapula models using MIMICS image processing software (Materialise, Belgium) with a 0.75 mm mesh size. Each scapula was then repeatedly virtually reconstructed with the five implant types (standard,3mm,6mm lateralized, and half/full wedge; Fig.1) positioned in neutral version and inclination with full backside contact. The reconstructed scapulae were then imported into ABAQUS (SIMULIA, U.S.) finite element software and loads were applied simulating 15°,30°,45°,60°,75°, and 90° of abduction based on published instrumented in-vivo implant data. The micromotion normal and tangential to the bone surface, and effective load transfer area were recorded for each implant and abduction angle. A repeated measures ANOVA was used to perform statistical analysis. Maximum normal micromotion was found to be significantly less when using the standard baseplate (5±4 μm), as opposed to the full-wedge (16±7 μm, p=0.004), 3 mm lateralized (10±6 μm, p=0.017), and 6 mm lateralized (16±8 μm, p=0.007) baseplates (Fig.2). The half-wedge baseplate (11±7 μm) also produced significantly less micromotion than the full-wedge (p=0.003), and the 3 mm lateralized produced less micromotion than the full wedge (p=0.026) and 6 mm lateralized (p=0.003). Similarly, maximum tangential micromotion was found to be significantly less when using the standard baseplate (7±4 μm), as opposed to the half-wedge (12±5 μm, p=0.014), 3 mm lateralized (10±5 μm, p=0.003), and 6 mm lateralized (13±6 μm, p=0.003) baseplates (Fig.2). The full wedge (11±3 μm), half-wedge, and 3 mm lateralized baseplate also produced significantly less micromotion than the 6 mm lateralized (p=0.027, p=012, p=0.02, respectively). Both normal and tangential micromotion were highest at the 30° and 45° abduction angles (Fig.2). The effective load transfer area (ELTA) was lowest for the full wedge, followed by the half wedge, 6mm, 3mm, and standard baseplates (Fig.3) and increased with abduction angle. Glenoid baseplates with reduced lateralization and flat backside geometries resulted in the best outcomes with regards to normal and tangential micromotion. However, these types of implants are not always feasible due to the required amount of bone removal, and medialization of the bone-implant interface. Future work should study the acceptable levels of bone removal for patients with E-type glenoid erosion and the corresponding best implant selections for such cases. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 10 - 10
1 Apr 2022
Fontalis A Hansjee S Vanhegan I Ahmad SA Ogilvie A Giebaly D Kayani B Haddad FS
Full Access

Cementless stem designs in total hip arthroplasty differ in relation to geometry and area of fixation. We utilised radiostereometric analysis (RSA) to evaluate the 2-year migration of a novel, short, proximally coated femoral stem. 30 participants undergoing primary total hip replacement for any cause (rheumatoid or inflammatory arthritis, osteoarthritis) were prospectively recruited in this study. Osteoporotic patients and cases of suspected infection were excluded. All patients received a short blade stem, proximally coated with a reduced lateral shoulder and narrow triple taper geometry to minimise bone removal. RSA radiographs were performed post-operatively and at 6 weeks, 6 months, 1- and 2 years. The Harris Hip Score (HHS), Oxford Hip Score (OHS) and EQ-5D were collected at baseline and at 2 years post-operatively. The stability of implants and complications were captured during each follow-up visit. A total of 14 female and 16 male patients were recruited with a mean age of 64.8 (range 47 to 75). At two years the mean subsidence of the stem was 0.34 mm (SD 0.62) and the total migration 0.74 mm (SD 0.60). The mean medial translation at two years was 0.059 (0.24) and the mean anterior translation 0.12 (0.59) respectively. Baseline PROM scores improved significantly at 2-years from pre-operatively (median and interquartile range): HHS from 33 (18.25) to 92 (19), EQ5D from 0.5 (0.35) to 0.94 (0.17), OHS from 21 (18.25) to 42 (4.25). P-value for all comparisons was <0.001. 2-year follow up data revealed no complications. There were no stem revisions in study participants and no heterotopic ossifications were identified on radiographs. 2-year migration results of a cementless, short blade, proximally coated tapered femoral stem using RSA, showed the stem exhibits a predictable migration pattern and achieves initial stability. This is highly likely to translate to mid and long-term stability, which needs to be corroborated by long-term outcome studies. Furthermore, participants demonstrated excellent clinical, patient reported and radiological outcomes after 2 years of follow up to support expansion in the use of this prosthesis


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 27 - 27
1 Jul 2020
Smith C Athwal G Ferreira L Matache B
Full Access

Glenoid replacement is a manual bone removal procedure that can be difficult for surgeons to perform. Surgical robotics have been utilized successfully in hip and knee orthopaedic procedures but there are no systems currently available in the shoulder. These robots tend to have low adoption rates by surgeons due to high costs, disruption of surgical workflow and added complexity. As well, these systems typically use optical tracking which needs a constant line-of-sight which is not conducive to a crowded operating room. The purpose of this work was developing and testing a surgical robotic system for glenoid replacement. The new surgical system utilizes flexible components that tether a Stewart Platform robot to the patient through a patient specific 3D printed mount. As the robot moves relative to the bone, reaction loads from the flexible components bending are measured by a load cell allowing the robot to “feel” its way around. As well, a small bone burring tool was attached to the robot to facilitate the necessary bone removal. The surgical system was tested against a fellowship-trained surgeon performing standard surgical techniques. Both the robot and the surgeon performed glenoid replacement on two different scapula analogs: standard anatomy and posterior glenoid edge wear referred to as a Walch B2. Six of each scapula model was tested by the robot and the surgeon. The surgeon created a pre-operative plan for both scapula analogs as a target for both methodologies. CT scans of the post-operative cemented implants were compared to the pre-operative target and implant position and orientation errors were measured. For the standard shoulder analogs the net implant position and orientation errors were 1.47 ± 0.48 mm and 2.57 ± 2.30° for the robot and 1.61 ± 0.29 mm and 5.04 ± 1.92° for the surgeon respectively. For the B2 shoulders, the net implant position and orientation errors were 2.16 ± 0.36 mm and 2.89 ± 0.88° for the robot and 3.01 ± 0.42 mm and 4.54 ± 1.49° for the surgeon respectively. The new tracking system was shown to be able to match or outperform the surgeon in most metrics. The surgeon tended to have difficulty gauging the depth needed as well as the face rotation of the implant. This was not surprising as the reaming tool used by the surgeon obscures the view of the anatomy and the spherical cutter hinders the ability to index the tool. The robot utilized only one surgical tool, the bone burr, precluding the need for multiple instruments used by the surgeon to prepare the glenoid bone bed. The force-space navigation method can be generalized to other joints, however, further work is needed to validate the system using cadaveric specimens


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 43 - 43
1 Nov 2022
Nebhani N Kumar G
Full Access

Abstract. Extended Trochanteric Osteotomy (ETO) improves surgical exposure and aids femoral stem and bone cement removal in Revision Total Hip Replacement (RTHR) surgery. The aim of this study was to identify healing rates and complications of ETO in RTHR. Methods. From 2012 to 2019 we identified patients who underwent ETO for RTHR. Data collected demographics, BMI, diabetes, anticoagulants, indication for ETO, surgical approach, length of ETO and complications. Descriptive analysis of patient demographics, multiple linear regression analysis was performed to assess ETO complications. Results. There were 63 patients with an average age of 69 years. Indications for ETO were aseptic loosening (30), infection (15), periprosthetic fracture (9), recurrent dislocation (5), broken implant (4). There were 44 cemented and 19 uncemented femoral stem that underwent ETO. Average time from index surgery was 12 years (less than a year to 38 years). All procedures were through posterolateral approach and all ETO were stabilised with cables. Average length of ETO was 12.5cm. BMI varied from 18 to 37. There were 5 diabetics and 16 on anticoagulants. All but one ETO went on to unite. Other complications included infection, dislocations, lateral thigh pain and significant limp. Discussion. Fixation of ETO can be with either wires or cables or plate with cables/screws. Advantages of cables are no irritation over greater trochanter, no disruption of gluteus medius/vastus lateralis continuity, reproducible tension in cables and use of torque limiter minimises loss of tension in cables


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 99 - 99
1 Mar 2021
Procter P Hulsart-Billstrom G Insley G Pujari-Palmer M Wenner D Engqvist H Larsson S
Full Access

An ex vivo biomechanical test model for evaluating a novel bone adhesive has been developed. However, at day 1 in the in vivo pilot, high blood flow forced the study to halt until the solution presented here was developed. The profuse bleeding after bone core removal affected the bond strength and was reflected in the lower mean peak value 1.53N. After considering several options, we were successful in sealing the source of blood flow by pressing adhesive into place after bone core removal. After the initial adhesive had cured additional adhesive was used to secure the bone core in place. The animals were sacrificed after 24 h and a tensile test was undertaken on the bone core to failure. The ex vivo study produced mean peak tensile loads of 7.63N SD 2.39N (n=8, 4 rats 8 femurs). Whilst the mean peak tensile loads in the day 1 in vivo pilot were significantly lower 1.53N SD1.57 (n=8, 6 rats 8 femurs − 4 used for other tests). The subsequent layered adhesive bone cores showed a mean peak tensile force of 6.79N SD =3.13 (n=8, 4 rats 8 femurs). 7/8 failed at the bone to glue interface. This is the first successful demonstration of bonding bone in vivo for this class of adhesives. The development of a double adhesive method of fixing a bone core in the distal femur enabled mean peak tensile forces to be achieved in vivo at 24 hours that were comparable with the ex vivo results previously demonstrated. This method supports application in further animal series and over longer time scales. Biomaterials researchers that intend to use gel or paste like preparations in distal femur defects in the rat should be aware of the risks of biomaterial displacement by local blood flow


Bone & Joint Open
Vol. 5, Issue 9 | Pages 806 - 808
27 Sep 2024
Altorfer FCS Lebl DR


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 52 - 52
1 Jul 2020
Abdic S Knowles N Johnson J Walch G Athwal G
Full Access

Superiorly eroded glenoids in cuff tear arthropathy represent a surgical challenge for reconstruction. The bone loss orientation and severity may influence glenoid component fixation. This computed-tomography study quantifies both the degree of erosion and orientation in superiorly eroded Favard E2 glenoids. We hypothesized that the erosion in E2 glenoids does not occur purely superiorly, rather, it is oriented in a predictable posterosuperior orientation with a largely semicircular line of erosion. Three-dimensional reconstructions of 40 shoulders with E2 glenoids (28 female, 12 male patients) at a mean age of 74 years (range, 56–88 years) were created from computed-tomography images. Point coordinates were extracted from each construct to analyze the morphologic structure. The anatomical location of the supra- and infraglenoid tubercle guided the creation of a superoinferior axis, against which the orientation angle of the erosion was measured. The direction and, thus, orientation of erosion was calculated as a vector. By placing ten point coordinates along the line of erosion and creating a circle of best fit, the radius of the circle was placed orthogonally against a chord that resulted by connecting the two outermost points along the line of erosion. To quantify the extent of curvature of the line of erosion between the paleo- and neoglenoid, the length of the radius of the circle of best fit was calculated. Individual values were compared against the mean of circle radii. The area of bony erosion (neoglenoid), was calculated as a percentage of the total glenoid area (neoglenoid + paleoglenoid). The severity of the erosion was categorized as mild (0% to 33%), moderate (34% to 66%), and severe erosion (>66%). The mean orientation angle between the vector of bony erosion and the superoinferior axis of the glenoid was 47° ± 17° (range, 14° – 74°) located in the posterosuperior quadrant of the glenoid, resulting in the average erosion being directed between the 10 and 11 o'clock position (right shoulder). In 63% of E2 cases, the line of erosion separating the paleo- and neoglenoids was more curved than the average of all bony erosions in the cohort. The mean surface area of the neoglenoid was 636 ± 247 mm2(range, 233 – 1,333 mm2) and of the paleoglenoid 311 ± 165 mm2(range, 123 – 820 mm2), revealing that, on average, the neoglenoids consume 67% of the total glenoid surface. The extent of erosion of the total cohort was subdivided into one mild (2%), 14 moderate (35%) and 25 severe (62%) cases. Using a clock-face for orientation, the average orientation of type E2 glenoid defects was directed between the 10 and 11 o'clock position in a right shoulder, corresponding to the posterosuperior glenoid quadrant. Surgeons managing patients with E2 type glenoids should be aware that a superiorly described glenoid erosion is oriented in the posterosuperior quadrant on the glenoid clock-face when viewed intra-operatively. Additionally, the line of erosion in 63% of E2 glenoids is substantially curved, having a significant effect on bone removal techniques when using commercially available augments for defect reconstruction


Bone & Joint Open
Vol. 4, Issue 1 | Pages 19 - 26
13 Jan 2023
Nishida K Nasu Y Hashizume K Okita S Nakahara R Saito T Ozaki T Inoue H

Aims

There are concerns regarding complications and longevity of total elbow arthroplasty (TEA) in young patients, and the few previous publications are mainly limited to reports on linked elbow devices. We investigated the clinical outcome of unlinked TEA for patients aged less than 50 years with rheumatoid arthritis (RA).

Methods

We retrospectively reviewed the records of 26 elbows of 21 patients with RA who were aged less than 50 years who underwent primary TEA with an unlinked elbow prosthesis. The mean patient age was 46 years (35 to 49), and the mean follow-up period was 13.6 years (6 to 27). Outcome measures included pain, range of motion, Mayo Elbow Performance Score (MEPS), radiological evaluation for radiolucent line and loosening, complications, and revision surgery with or without implant removal.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 64 - 64
1 Apr 2019
Greene A Cheung E Polakovic S Hamilton M Jones R Youderian A Wright T Saadi P Zuckerman J Flurin PH Parsons I
Full Access

INTRODUCTION. Preoperative planning software for reverse total shoulder arthroplasty (RTSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. While anatomical studies have defined the range of normal values for glenoid version and inclination, there is no clear consensus on glenoid component selection and position for RTSA. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of glenoid wear severity, and to evaluate the inter-surgeon variability of optimal glenoid component placement in RTSA. METHODS. CT scans from 45 patients with glenohumeral arthritis were planned by 8 fellowship trained shoulder arthroplasty specialists using a 3D preoperative planning software, planning each case for optimal implant selection and placement. The software provided four glenoid baseplate implant types: a standard non-augmented component, an 8° posterior augment wedged component, a 10° superior augment wedged component, and a combined 8° posterior and 10° superior wedged augment component. The software interface allowed the surgeons to control version, inclination, rotation, depth, anterior-posterior and superior-inferior position of the glenoid components in 1mm and 1° increments, which were recorded and compared for final implant position in each case. RESULTS. Two cases were excluded due to extreme deformity and consensus that a feasible RTSA may not be possible. For resultant implant version, a bimodal distribution was observed with a local maxima occurring at 0°, and a bell-shaped distribution at −5° of version. Upon individual surgeon analysis, it was revealed that certain surgeons had a preference to correct to 0 degrees, whereas others were more accepting of residual version. As well, the surgeons accepting residual retroversion removed less bone on average per implant type than the surgeons who aimed to correct to 0°. For resultant implant inclination, surgeons consistently tried to plan for 0 degrees of inclination. CONCLUSION. This study indicates that while there was limited consensus on the optimal reconstruction in any one case, there appear to be thresholds of retroversion and inclination that favor the use of augmented glenoid components based on frequency of selection. Our results indicate a wide variability in terms of what experienced shoulder surgeons consider to be an optimal reconstruction despite the common goal of attempting to restore anatomy, maximize implant fixation in bone and minimize bone removal. High frequency of augmented glenoid component use raises questions about how much retroversion and inclination is optimal and whether this technology allows surgeons to potentially focus more on a quantitative reconstruction relative to the Friedman axis versus a qualitative implant placement relative to what may be normal anatomy for a patient


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 30 - 30
1 Apr 2019
Perticarini L Medetti M Benazzo FM
Full Access

BACKGROUND. Total hip revision surgery in cases with previous multiple reconstructive procedures is a challenging treatment due to difficulties in treatment huge bone defects with standard revision prosthetic combinations. A new specially made production system in Electron-Beam Melting (EBM) technology based on a precise analysis of patients' preoperative CT scans has been developed. METHODS. Objectives of design customization in difficult cases are to correctly evaluate patient's anatomy, to plan a surgical procedure and to obtain an optimal fixation to a poor bone stock. The 3D Printing (EBM) technology permits to create an extremely flexible patient matching implant and instrument, with material performances not viable with standard manufacturing process. Dedicated visual 3D tools and instrumentations improve implants congruency according to preoperative plan. Primary stability is enhanced and tailored on patient's anatomy by means of press-fit, iliac stems and the high friction performances of Trabecular Titanium matrix. The use of bone screws and their position is designed to enhance primary stability, even in critical bone conditions, avoiding implant stress shielding and allowing bone integration. 4 cases (2 men and 2 women) of acetabular customized implants were performed. Mean age at surgery was 51.5 years (range 25–72). Patients were reviewed clinically and radiographically at follow-up. RESULTS. No signs of miss-match between intraoperative bone conditions and pre-operative planning were observed. No additional bone grafts or further native bone removal were needed. Biomechanical parameters were restored by using internal modularity (i.e. face-changers / angled spacers). Face-changers allow to correct coverage and anteversion of the acetabular system. Incompatibility or impingement between the stems and new acetabular component was not observed and stem revision was performed in one case. On-table stability proved excellent and no intraoperative complications were observed. All patients underwent an immediate mobilization with full weight-bearing. Mean Harris Hip Score increased significantly from 13.9 (range 6.9–20.6) preoperatively to 75.8 (range 53.9–94) at last follow-up (mean 17.5, range: 10–33), showing an improvement in terms of both pain relief, function and joint mobility. Radiographically neither signs of instability, migration nor tilting were observed. No case of dislocation nor infection were recorded. CONCLUSION. A detailed anatomical reconstruction, in-depth preoperative planning, custom-implant design, high performance of the 3D-printing technology, system modularity and patient-specific surgical tools permitted an effective restoration of the biomechanical joint parameters in these complex revision cases. The optimal primary stability of the implants promoted an early osseointegration with the remaining bone stock. Further studies shall be necessary to assess the performance of these Implants at long-term follow-up


Bone & Joint Research
Vol. 11, Issue 8 | Pages 575 - 584
17 Aug 2022
Stoddart JC Garner A Tuncer M Cobb JP van Arkel RJ

Aims

The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA).

Methods

Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95th percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 173 - 173
1 Mar 2010
Banks S Abovitz R Quaid A Otto J Conditt M
Full Access

Total knee arthroplasty (TKA) has evolved over the past 40 years to a point where it now is a routine treatment with fairly predictable outcomes. However, TKA is an end-stage treatment which frequently is used when only one or two compartments in the knee are damaged. Ideally, treatments for earlier stage and isolated disease would be available to provide the same high level of outcome predictability, but provide for isolated treatment of the affected compartments, greater levels of postoperative physical activity and the shorter convalescence demanded by younger, more active, and often employed patients. One approach to a compartment-by-compartment treatment regime is the utilization of discrete condylar unicompartmental prostheses and a patellofemoral prosthesis in any combination. This approach has been practiced in some European clinics for decades with good reported outcomes. However, it remains a major surgical challenge to optimally place multiple discrete arthroplasty components using conventional tools and small incisions. This lecture will present a detailed overview of a unified approach to minimally invasive, modular knee arthroplasty using haptic robotic instrumentation and implants designed specifically for robotic installation in a customized modular treatment regime. Haptic robotics provide a ‘virtual cutting guide’ capability permitting precise sculpturing of bone surfaces using near-zero-visibility minimally invasive incisions. The use of a single-multifunctional tool eliminates many of the instrument trays commonly needed for these procedures. The surgeon has complete control in manipulating the bone cutting tool within the desired bone-removal area, but the haptic robotics prohibit the cutting tool from removing bone outside the planned bone removal volume. Precise bone sculpturing has the potential to minimize bone removal and optimize the alignment and fixation of the prosthetic components. Haptic robotic cutting tools obviously can be used with off-the-shelf prosthetic components, but this approach would fail to fully take advantage of the precision surfaces that can be achieved using robot assisted bone sculpting. Instead, a purpose built system of modular knee components can be defined that work in any combination (medial or lateral unicompartmental, bi-unicondylar, medial or lateral plus patellofemoral, or tricompartmental), require minimum bone removal, can be placed through very small incisions, give great flexibility to customize implant placement to fit the patient’s anatomy, and take advantage of the types of fixation features which easily are created with a robotically controlled bone cutting device. The current treatment implementation and implant design will be presented. Clinical results for unicompartmental procedures and in vitro results for multiple-compartment procedures will be presented and discussed


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 69 - 69
1 Apr 2019
Shallenberg A
Full Access

Aims. The aim of this study was to optimize screw hole placement in an acetabulum cup implant to improve secondary initial fixation by identifying the region of thickest acetabulum bone. The “scratch fit” of modern acetabular cup implants with highly porous coatings is often adequate for initial fixation in primary total hip arthroplasty. Initial fixation must limit micromotion to acceptable levels to facilitate osseointegration and long term cup stability. Secondary initial fixation can be required in cases with poor bone quality or bone loss and is commonly achieved with bone screws and a cup implant with multiple screw holes. To provide maximum secondary initial fixation, the cup screw holes should be positioned to allow access to the limited region of thick pelvic bone. Patients and Methods. Through a partnership with Materialise, a statistical shape model of the pelvis was created utilizing 80 CT scans (36 female, 44 male). To limit the effect of variation outside the area of cup implant fixation, the shape model includes only the inferior pelvis (cut off at the greater sciatic notch and above the anterior inferior iliac spine). A virtual implantation protocol was developed which creates instances of the pelvis shape model that accurately simulate the intraoperative reaming of the acetabulum to accept the cup implant. First a sphere is best fit to the native acetabulum and the diameter is rounded to the nearest whole millimeter. The diameter of the best fit sphere is increased by 1mm to simulate bone removal during the spherical reaming procedure. The sphere is translated medially and superiorly such that it is tangent to the teardrop and removes 2mm of superior acetabulum. The sphere is used to perform a Boolean subtraction from the shape model to create a virtually reamed pelvis shape model. The Materialise 3-Matic software was used to perform a thickness analysis of the prepared shape models. The output of the thickness analysis is displayed as a color “heat map” where green represents thin bone and red is thick bone. The region of thickest bone was identified and used to drive ideal screw hole placement in the cup implant to access this region. Results. The analysis finds there is a limited arc of thick bone in the acetabulum that begins superiorly and extends posterior-inferior that accounts for only about 15% of total reamed surface area. Maximum screw purchase is provided when screw holes in the cup implant are placed over this limited region of thick bone. The thickest bone, located superiorly, facilitates the placement of a long bone screw up the iliac column and the posterior-inferior region of thick bone facilitates the placement of additional posterior screws. Conclusion. The shape model development, virtual implantation protocol, and heat map thickness analysis allowed the placement of bone screw holes directly over the limited region of thick pelvic bone. This allows maximum screw purchase which is important in achieving adequate secondary initial fixation with bone screws. Disclaimer. Author is an engineer employed by DJO Surgical who funded this study


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 575 - 580
2 May 2022
Hamad C Chowdhry M Sindeldecker D Bernthal NM Stoodley P McPherson EJ

Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI.

Cite this article: Bone Joint J 2022;104-B(5):575–580.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_II | Pages 176 - 176
1 Jul 2002
Williams G
Full Access

Introduction. The most difficult part of shoulder replacement. Important steps. Anaesthesia and patient position. Soft-tissue releases. Humeral bone removal. Retractor placement. Anaesthesia and Patient Position. Need full paralysis. Patient must be positioned laterally enough so that the scapula is unsupported. Arm is draped free so that it can be manoeuvred to find the position of optimal glenoid visualisation – usually this is slight extension, external rotation, and GH elevation to 45 – 60°. Soft-tissue Releases. Humeral side – make sure that the rotator interval is incised all the way to the glenoid margin and that the inferior capsule is released past the six o’clock position. Glenoid. Circumferential labral excision. Circumferential capsular release. Check for biceps glide. Humeral Bone Removal. Remove all osteophytes – inferior, anterior, and posterior. Make sure humeral osteotomy is through anatomic neck so that there is minimal bone protruding beyond the humeral cuff reflection. Retractor Placement. Retractors needed. Ring retractor (e.g., Fukuda) – both small and large. Other types of humeral head retractors (e.g., Carter Rowe). Reverse Homan x2. Single prong Bankart retractor. Large flat retractor (e.g., Darrach). Placement. Fukuda or Carter Rowe retractor – within the joint, levering on the posterior glenoid to displace humeral head posteriorly. Large Darrach – on anterior neck of scapula retracting subscapularis. Single prong Bankart or reverse Homan – superior glenoid under biceps anchor. Reverse Homan – inferior glenoid. Not always necessary


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 27 - 27
1 Aug 2013
Niesche A Korff A Müller M Mirz M Brendle C Leonhardt S Radermacher K
Full Access

Total hip replacement is one of the standard procedures in orthopedic surgery. Due to various reasons revision surgery (RTHR) has to be performed. In case of the revision of a cemented prosthesis stem, the bone cement has to be removed from the femoral cavity. Conventionally the cement removal is done manually using a hammer, chisel or burr under X-ray control, causing a considerable radiation exposure for patient and the surgeon. Furthermore the risk of undesirable bone damage is high due to bad sight and access conditions, leading to complications and prolongation of the intervention. Different approaches addressing the mentioned problems were proposed, but did not achieve acceptance in clinical practice due to disadvantages concerning process controllability. Another possibility is to use a robot guided milling tool. However, to be able to control it typically a 3D reconstruction of the cement volume to be removed is necessary. Existing approaches use computed tomography based measurements combined with previously implanted markers, fluoroscopy or ultrasound based measurements, all requiring additional process steps prior to the surgery or to the actual cement removal. The ICOS project (Impedance Controlled Surgical Instrumentation, Chair of Medical Engineering, RWTH Aachen University) investigates the approach of electrical impedance controlled, robot assisted bone cement removal, based on real time cement detection during the removal process without radiation exposure or the necessity of prior imaging or marker implanting steps. Therefore the electrical impedance is measured between the milling head mounted on the surgical mini-robot MINARO and one or more electrodes attached to the skin of the patient's thigh. An impedance variation mainly results from decreasing thickness of bone cement near the milling head contact point due to material removal. Hence the proposed method does not generate a 3D volume allowing for a milling path generation prior to the process. It requires a strategy for real time path generation using only the limited local information. Up to now, only the differentiation between bone cement and bone, and thus the cement-bone interface breakthrough, is reliably detectable. To efficiently use this information for the tool path generation, generic a-priori knowledge of the bone cement shape after removal of the prosthesis stem is used. The concept for impedance controlled milling has been verified in first lab trials. For impedance measurements during the cement removal process the robots milling tool has been modified to achieve electrical insulation of the milling head. A strategy for online adaptive robot path planning has been implemented and tested in a Matlab/Simulink based process simulation. For all data sets a cement removal rate of about 90% with a bone removal of approximately 3% was achieved. These results confirm that it is generally possible to use only the limited local information for automated cement removal. Future work aims for a practical evaluation of the algorithm using real impedance measurement values. This work has been funded by the German Ministry for Education and Research (BMBF) in the framework of the ICOS project under grant No. BMBF 13EZ1005


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 75 - 75
1 Mar 2017
Walker P Borukhov I Bosco J Reynolds R
Full Access

INTRODUCTION. Most total knees today are CR or PS, with lateral and medial condyles similar in shape. There is excellent durability, but a shortfall in functional outcomes compared with normals, evidenced by abnormal contact points and gait kinematics, and paradoxical sliding. However unicondylar, medial pivot, or bicruciate retaining, are preferred by patients, ascribed to AP stability or retention of anatomic structures (Pritchett; Zuiderbaan). Recently, Guided Motion knees have been shown to more closely reproduce anatomic kinematics (Walker; Willing; Amiri; Lin; Zumbrunn). As a design approach we proposed Design Criteria: reproduce the function of each anatomic stabilizing structure with bearing surfaces on the lateral and medial sides and intercondylar; resected cruciates because this is surgically preferred; avoid a cam-post because of central femur bone removal, soft tissue entrapment, noises, and damage (Pritchett; Nunley). Our hypothesis was that these criteria could produce a Guided Motion design with normal kinematics. METHODS & MATERIALS. Numerous studies on stability and laxity showed the ACL was essential to controlling posterior femoral displacement on the tibia whether the knee was loaded or unloaded. Under load, the anterior upwards slope of the medial tibial plateau prevented anterior displacement (Griffen; Freeman; Pinskerova; Reynolds). The posterior cruciate and the downward lateral tibial slope produced lateral rollback in flexion. The Replica Guided Motion knee had 3 bearings (Fig 1). The lateral side was shallow and sloped posteriorly, with a posterior lip to prevent excess displacement. The medial anterior tibial and femoral slopes were increased as in the anatomic knee. In the intercondylar region, a saddle bearing replaced ACL function by controlling posterior femoral displacement. For testing, a typical PS design was used as comparison. A Knee Test Machine (Fig 2) flexed the knee, and applied axial compression, shear and torque to represent a range of functions. Bone shapes were reproduced by 3D printing and collaterals by elastomeric bands. Motion was recorded with a digital camera, and Geomagic to process data. RESULTS. The kinematics of normal knees was the benchmark (Arno). The results for neutral path of motion, and the AP laxity about the neutral path, are shown (Fig 3). The PS showed symmetric motion, with anterior medial sliding and excessive constraint in low and high flexion. For the Replica, the medial condyle remained almost constant, but the lateral side rolled posteriorly with flexion, less than normal to prevent damage to the posterior lateral tibial plastic. The lateral side had similar anterior laxity to anatomic, but more than anatomic in late flexion. Based on 10 parameter motion scoring, the Replica was closer to normal than the PS, 82% cf 51%. DISCUSSION. Functional outcomes after TKA are less than normal, TKA design being a likely factor. The approach shown here is intended to reproduce more anatomic kinematics of neutral path of motion and laxity. Such a Replica Guided Motion knee, based on an anatomic structure/stability approach, could reproduce close to normal kinematics even without the cruciates or a cam-post. This may result in improved functional outcomes, and a closer feeling of a normal knee. For any figures or tables, please contact authors directly (see Info & Metrics tab above).