Advertisement for orthosearch.org.uk
Results 1 - 20 of 40
Results per page:
Bone & Joint Research
Vol. 9, Issue 9 | Pages 578 - 586
1 Sep 2020
Ma M Liang X Wang X Zhang L Cheng S Guo X Zhang F Wen Y

Aims. Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD. Methods. The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between COMP-overexpression groups and control groups were examined after cell transfection. Results. The mRNA and protein expression levels of COMP were significantly lower in KBD chondrocytes than control chondrocytes. After the T-2 toxin intervention, the COMP mRNA expression of C28/I2 chondrocyte reduced and the protein level of COMP in three intervention groups was significantly lower than in the control group. MTT assay showed that the survival rate of COMP overexpression KBD chondrocytes were notably higher than in the blank control group. The mRNA expression levels of Survivin, SOX9, Caspase-3, and type II collagen were also significantly different among COMP overexpression, negative control, and blank control groups. Conclusion. Our study results confirmed the functional relevance of COMP with KBD. COMP may play an important role in the excessive chondrocytes apoptosis of KBD patients. Cite this article: Bone Joint Res 2020;9(9):578–586


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 460 - 460
1 Sep 2009
Lòpez-Franco M Lòpez-Franco O Murciano-Antòn MA Cañamero-Vaquero M Fernández-Aceñero MJ Herrero-Beaumont G Sánchez-Pernaute O Gòmez-Barrena E
Full Access

Meniscus injury is one of the causes of secondary osteoarthritis (OA). Cartilage oligomeric matrix protein (COMP) is a major component of the extracellular matrix of the musculoskeletal system. This study was undertaken to evaluate the changes occurring in meniscus from the knees of anterior cruciate ligament (ACL) transected rabbits during the early stages of OA development, especially regarding COMP changes. Ten skeletally mature white New Zealand male rabbits underwent ACL transaction of the right knee joint. Left knee joints were used as controls. Animals were sacrificed at 4 and 12 weeks post-surgery. Meniscal tissues were processed for histology and immunohistochemistry. The number of cells and positive cells were counted per high-power field (HPF). Anti-COMP antiserum was obtained according to Hauser et al. with minor modifications. Monoclonal Ki67 antibody was used to find out cells undergoing active division. TUNEL reaction was used for the study of apoptosis. Alcian blue staining was used to study glycosaminoglycans. At 4 weeks post-ACL section 2/5 of the medial menisci presented with incomplete vertical posterior tears, while all lateral menisci were no altered. At 12 weeks post-ACL section 5/5 of the medial menisci and 2/5 of lateral menisci presented tears. At 4 weeks postsurgery menisci showed: a weak increase of cells with a significant increase of cells undergoing active division; an increase in the number of apoptotic cells; glycosaminoglycans staining was increased and COMP staining was weakly increased. At 12 weeks postsurgery cells per HPF reverted to normal number; the number of cells undergoing active division decrease below normal; whereas the number of apoptotic cells was still elevated; glycosaminoglycans staining was more elevated than at 4 weeks postsurgery and COMP staining of extracellular matrix remain elevated. Areas of large and abundant cell clusters were seen post-ACL around menisci tears. We concluded that after ACL transaction, extracellular matrix changes and altered cell distribution occur early in the meniscus. Cellular division as well as apoptosis occur early too. Elevated concentrations of COMP after ACL transection might indicate meniscus changes early in osteoarthritis process


Bone & Joint Research
Vol. 13, Issue 6 | Pages 261 - 271
1 Jun 2024
Udomsinprasert W Mookkhan N Tabtimnark T Aramruang T Ungsudechachai T Saengsiwaritt W Jittikoon J Chaikledkaew U Honsawek S

Aims. This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients. Methods. A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry. Results. COMP protein levels were significantly elevated in serum and synovial fluid of knee OA patients, especially those in the advanced stages of the disease. Serum COMP was significantly correlated with radiological severity as well as measures of body composition, physical performance, knee pain, and disability. Receiver operating characteristic curve analysis unveiled a diagnostic value of serum COMP as a biomarker of knee OA (41.64 ng/ml, area under the curve (AUC) = 1.00), with a sensitivity of 99.6% and a specificity of 100.0%. Further analysis uncovered that COMP mRNA expression was markedly upregulated in the inflamed synovium of knee OA, consistent with immunohistochemical staining revealing localization of COMP protein in the lining and sub-lining layers of knee OA inflamed synovium. Most notably, relative COMP mRNA expression in knee OA synovium was positively associated with its protein levels in serum and synovial fluid of knee OA patients. In human knee OA FLSs activated with tumour necrosis factor-alpha, COMP mRNA expression was considerably up-regulated in a time-dependent manner. Conclusion. All results indicate that COMP might serve as a supportive diagnostic marker for knee OA in conjunction with the standard diagnostic methods. Cite this article: Bone Joint Res 2024;13(6):261–271


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 156 - 156
1 Nov 2021
Uthraraj NS Prakash M
Full Access

Introduction and Objective. The Cartilage Oligomeric Matrix Protein (COMP) is a glycoprotein that is elevated in patients with osteoarthritis. The elevation increases linearly with the radiological grade of osteoarthritis. The objective of this study was to study the levels of COMP in knee osteoarthritis in the Indian population and to correlate (establish ranges) with the specific radiological grade of osteoarthritis (Kellgreen and Lawrence grading). Since the radiological classification is subjective, the COMP levels would serve as a more objective way of classifying osteoarthritic joints. Materials and Methods. We analysed the COMP levels by the Enzyme Linked Immunosorbent Assay (ELISA) method in 100 patients presenting to the outpatient clinic of our hospital, after obtaining due approvals. The radiographs of these patients were classified according to the Kellgreen-Lawrence grading by a senior orthopaedic surgeon. Results. We found a linear correlation with the COMP levels and the radiological classification as established in the previous studies. We were also able to establish a range of COMP levels for each classification stage. Conclusions. This study would provide means to classify osteoarthritis without the need for radiographs thus minimising radiation to the patient. It would also help us to predict the radiological findings thus serving as a guide for further treatment planning


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 147 - 147
11 Apr 2023
Baker M Clinton M Lee S Castanheira C Peffers M Taylor S
Full Access

Osteoarthritis (OA) of the equine distal interphalangeal joint (DIPJ) is a common cause of lameness. MicroRNAs (miRNAs) from biofluids such as plasma and synovial fluid make promising biomarker and therapeutic candidates. The objectives of this study are (1) Identify differentially expressed (DE) miRNAs in mild and severe equine DIPJ OA synovial fluid samples and (2) Determine the effects of DE miRNAs on equine chondrocytes in monolayer culture. Synovial fluid samples from five horses with mild and twelve horses with severe DIPJ OA were submitted for RNA-sequencing; OA diagnosis was made from MRI T2 mapping, macroscopic and histological evaluation. Transfection of equine chondrocytes (n=3) was performed using the Lipofectamine® RNAiMAX system with a negative control and a miR-92a mimic and inhibitor. qPCR was used to quantify target mRNA genes. RNA-seq showed two miRNAs (miR-16 and miR-92a) were significantly DE (p<0.05). Ingenuity Pathway Analysis (IPA) identified important downstream targets of miR-92a involved in the pathogenesis of osteoarthritis and so this miRNA was used to transfect equine chondrocytes from three donor horses diagnosed with OA. Transfection was successfully demonstrated by a 1000-20000 fold increase in miR-92a expression in the equine chondrocytes. There was a significant (p<0.05) increase in COMP, COL3A1 and Sox9 in the miR-92a mimic treatment and there was no difference in ADAMTS-5 expression between the miR-92 mimic and inhibitor treatment. RNA-seq demonstrated miR-92a was downregulated in severe OA synovial fluid samples which has not previously been reported in horses, however miR-92a is known to play a role in the pathogenesis of OA in other species. Over expression of miR-92a in equine chondrocytes led to significantly increased COMP and Sox9 expression, consistent with a chondrogenic phenotype which has been identified in human and murine chondrocytes


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 88 - 88
1 Mar 2021
Elahi SA Fehervary H Famaey N Jonkers I
Full Access

To unravel the relation between mechanical loading and biological response, cell-seeded hydrogel constructs can be used in bioreactors under multi-axial loading conditions that combines compressive with torsional loading. Typically, considerable biological variation is observed. This study explores the potential confounding role of mechanical factors in multi-directional loading experiments. Indeed, depending on the material properties of the constructs and characteristics of the mechanical loading, the mechanical environment within the constructs may vary. Consequently, the local biological response may vary from chondrogenesis in some parts to proteoglycan loss in others. This study uses the finite element method to investigate the effects of material properties of cell-seeded constructs and multiaxial loading characteristics on local mechanical environment (stresses and strains) and relate these to chondrogenesis (based on maximum compressive principal strain (MCPS) - Zahedmanesh et al., 2014) and proteoglycan loss (based on fluid velocity (FV) - Orozco et al., 2018). The construct was modelled as a homogenized poro-hyperelastic (using a Neohookean model and Darcys law) cylinder of 8mm diameter and equal height using Abaqus. The bottom surface was fully constrained and dynamic unconfined compression and torsion loading were applied to the top surface. Free fluid flow was allowed through the lateral surface. We studied the sensitivity of the maximum values of the target parameters at 9 key locations to the material parameters and loading characteristics. Six input parameters were varied in preselected ranges: elastic modulus (E=[20,80]kPa), Poissons ratio (nu=[0.1,0.4]), permeability (k=[1,4]e-12m4/Ns), compressive strain (Comp=[5,20]%), rotation (Rot=[5,20]°) and loading frequency (Freq=[1,4]Hz). A full-factorial design of experiment method was used and a first-order polynomial surface including the interactions fitted the responses. MCPS varies between 7.34% and 33.52% and is independent of the material properties (E, nu and k) and Freq but has a high dependency on Comp and a limited dependency on Rot. The maximum value occurs centrally in the construct, except for high values of Rot and low Comp where it occurs at the edges. FV vary between 0.0013mm/sec and 0.1807mm/sec and dominantly depends on E, k and Comp, while its dependency on Rot and Freq is limited. The maximum value usually occurs at the edges, although at high Freq it may move towards the center of the superficial and deep zones. This study can be used as a guideline for the optimized selection of mechanical parameters of hydrogel for cell-seeded constructs and loading conditions in multi-axial bioreactor studies. In future work, we will study the effect in intact and injured cartilage explants


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 5 - 5
2 Jan 2024
Karaçoban L Gizer M Fidan BB Kaplan O Çelebier M Korkusuz P Turhan E Korkusuz F
Full Access

Osteoarthritis (OA) is a disabling disease depriving the quality of life of patients. Mesenchymal stem cells (MSCs) are recently used to modify the inflammatory and degenerative cascade of the disease. Source of MSCs could change the progression and symptoms of OA due to their different metabolomic activities. We asked whether MSCs derived from the infrapatellar fat (IPF), synovium (Sy) and subcutaneous (SC) tissues will decrease inflammatory and degenerative markers of normal and OA chondrocytes and improve regeneration in culture. Tissues were obtained from three male patients undergoing arthroscopic knee surgery due to sports injuries after ethical board approval. TNFa concentration decreased in all MSC groups (Sy=156,6±79, SC=42,1±6 and IPF=35,5±3 pg/ml; p=0,036) on day 14 in culture. On day seven (Sy=87,4±43,7, SC=23±8,9 and IPF=14,7±3,3 pg/ml, p=0,043) and 14 (Sy=29,1±11,2, SC=28,3±18,5 and IPF=20,3±16,2 pg/ml, p=0,043), MMP3 concentration decreased in all groups. COMP concentration changes however were not significant. Plot scores of tissues for PC2-13,4% were significantly different. Based on the results of liquid chromatography-mass spectrometry (LC-MS) metabolomics coupled with recent data processing strategies, clinically relevant seven metabolites (L-fructose, a-tocotrienol, coproporphyrin, nicotinamide, bilirubin, tauro-deoxycholic acid and galactose-sphingosine) were found statistically different (p<0.05 and fold change>1.5) ratios in tissue samples. Focusing on these metabolites as potential therapeutics could enhance MSC therapies. Acknowledgment: Hacettepe University, Scientific Research Projects Coordination Unit (#THD-2020-18692) and Turkish Society of Orthopedics and Traumatology (#TOTBID-89) funded this project. Feza Korkusuz MD is a member of the Turkish Academy of Sciences (TÜBA)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 135 - 135
2 Jan 2024
Füllemann P Jörimann T Bella E Stoddart M Matthys R Verrier S
Full Access

Bone healing outcome is highly dependent on the initial mechanical fracture environment [1]. In vivo, direct bone healing requires absolute stability and an interfragmentary strain (IFS) below 2% [2]. In the majority of cases, however, endochondral ossification is engaged where frequency and amplitude of IFS are key factors. Still, at the cellular level, the influence of those parameters remains unknown. Understanding the regulation of naïve hMSC differentiation is essential for developing effective bone healing strategies. Human bone-marrow-derived MSC (KEK-ZH-NR: 2010–0444/0) were embedded in 8% gelatin methacryol. Samples (5mm Ø x 4mm) were subjected to 0, 10 and 30% compressive strain (5sec compression, 2hrs pause sequence for 14 days) using a multi-well uniaxial bioreactor (RISystem) and in presence of chondro-permissive medium (CP, DMEM HG, 1% NEAA, 10 µM ITS, 50 µg/mL ascorbic acid, and 100 mM Dex). Cell differentiation was assessed by qRT-PCR and histo-/immunohistology staining. Experiments were repeated 5 times with cells from 5 donors in duplicate. ANOVA with Tukey post-hoc correction or Kurskal-Wallis test with Dunn's correction was used. Data showed a strong upregulation of hypertrophic related genes COMP, MMP13 and Type 10 collagen upon stimulation when compared to chondrogenic SOX9, ACAN, Type 2 collagen or to osteoblastic related genes Type 1 Collagen, Runx2. When compared to chondrogenic control medium, cells in CP with or without stimulation showed low proteoglycan synthesis as shown by Safranine-O-green staining. In addition, the cells were significantly larger in 10% and 30% strain compared to control medium with 0% strain. Type 1 and 10 collagens immunostaining showed stronger Coll 10 expression in the samples subjected to strain compared to control. Uniaxial deformation seems to mainly promote hypertrophic-like chondrocyte differentiation of MSC. Osteogenic or potentially late hypertrophic related genes are also induced by strain. Acknowledgments: Funded by the AO Foundation, StrainBot sponsored by RISystemAG & PERRENS 101 GmbH


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 44 - 44
2 Jan 2024
Ciftci E Grad S Alini M Li Z
Full Access

Osteoarthritis (OA) is the most prevalent degenerative joint disease that is a leading cause of disability worldwide. Existing therapies of OA only address the symptoms. Liraglutide is a well-known anti-diabetic medication that is used to treat type 2 diabetes and obesity. In inflammatory and post-traumatic OA animal models, liraglutide has demonstrated anti-inflammatory, pain-relieving, and cartilage-regenerating effects1 . The objective of this study is to investigate liraglutide's ability to reduce inflammation and promote anabolism in human OA chondrocytes in vitro. Pellets formed with human OA chondrocytes were cultured with a chondrogenic medium for one week to form cartilage tissue. Afterward, pellets were cultured for another 2 weeks with a chondropermissive medium. The OA group was treated with IL-1β to mimic an inflammatory OA condition. The drug group was treated with 0.5 or 10 µM liraglutide. On days 0, 1, and 14, pellets were collected. Conditioned medium was collected over the 2 weeks culture period. The gene and protein expression levels of regenerative and inflammatory biomarkers were evaluated and histological analyzes were performed. Results showed that the nitric oxide release of the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups were lower than the OA group. The DNA content of the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups were higher than the OA group on day 14. The RT-qPCR results showed that the anabolism (ACAN, COMP, and COL2) markers were higher expressed in the OA + 0.5 µM liraglutide and OA + 10 µM liraglutide groups when compared with the OA group. The inflammation (CCL-2 and IL-8) markers and catabolism markers (MMP-1, MMP-3, ADAMTS4, and ADAMTS5) had lower expression levels in the OA + liraglutide groups compared to the OA group. The histomorphometric analysis (Figure 1) supported the RT-qPCR results. The results indicate that liraglutide has anabolic and anti-inflammatory effects on human OA chondrocyte pellets. Acknowledgments: This project has received funding from the Eurostars-2 joint program with co-funding from the European Union Horizon 2020 research and innovation program. The funding agencies supporting this work are (in alphabetical order of participating countries): France: BPI France; Germany: Project Management Agency (DLR), which acts on behalf of the Federal Ministry of Education and Research (BMBF); The Netherlands: Netherlands Enterprise Agency (RVO); Switzerland: Innosuisse (the Swiss Innovation Agency). For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 279 - 279
1 May 2010
Lòpez-Franco M Lòpez-Franco O Murciano-Antòn MA Gòmez-Barrena E Sánchez-Pernaute O Cañamero M Herrero-Beaumont G
Full Access

Aim: Osteoarthritis can be a progressive disabling disease, which results from the pathological imbalance of degradative and reparative processes. The synovium, bone, and cartilage are each well established sites involved in the pathophysiological mechanisms that lead to progressive joint degeneration. However, the role of meniscus is not known enough. We studied the distribution of cartilage oligomeric matrix protein (COMP) in man menisci and its changes in osteoarthritis. Patients and Methods: We studied 30 internal menisci from patients with knee osteoarthritis that underwent a total knee arthroplasty and meniscal tissue get from partial arthroscopic meniscectomy in 5 young patients that suffered internal meniscus tear within three months after the damage. Meniscal samples were processed for histology, immunohistochemistry and in situ hybridization, for assessment of cell density, cells actively dividing as well as apoptotic cells, distribution of COMP and estimate the proteoglycan content. Results: Osteoarthritic meniscus demonstrated areas depleted of cells and significant decrease in COMP immunostaining. Cell clusters were found around meniscal tears. We did not find cells activity dividing in the osteoarthritic group, but there were dividing cells in meniscectomy group. Proteoglycan staining was decreased in meniscus from osteoarthritis group. Conclusions: Osteoarthritis leads to decrease cell population in menisci, loose of COMP as well as altered matrix organization. The role of meniscus in osteoarthritis of the knee is no clear but our results demonstrate changes in COMP and cells in osteoarthritis menisci. These changes reveal an altered scaffold and changes in the meniscus function. Perhaps these alterations have influence on development of knee osteoarthritis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 65 - 65
1 Sep 2012
Adesida A Sernik J Croutze R Laouar L Secretan C Jomha NM
Full Access

Purpose. Traumatic articular cartilage (AC) defects are common in young adults and frequently progresses to osteoarthritis. Matrix-Induced Autologous Chondrocyte Implantation (MACI) is a recent advancement in cartilage resurfacing techniques and is a variant of ACI, which is considered by some surgeons to be the gold standard in AC regeneration. MACI involves embedding cultured chondrocytes into a scaffold that is then surgically implanted into an AC defect. Unfortunately, chondrocytes cultured in a normoxic environment (conventional technique) tend to de-differentiate resulting in decreased collagen II and increased collagen I producing in a fibrocartilagous repair tissue that is biomechanically inferior to AC and incapable of withstanding physiologic loads over prolonged periods. The optimum conditions for maintenance of chondrocyte phenotype remain elusive. Normal oxygen tension within AC is <7%. We hypothesized that hypoxic conditions would induce gene expression and matrix production that more closely characterizes normal articular chondrocytes than that achieved under normoxic conditions when chondrocytes are cultured in a collagen scaffold. Method. Chondrocytes were isolated from Outerbridge grade 0 and 1 AC from four patients undergoing total knee arthroplasty and embedded within 216 bovine collagen I scaffolds. Scaffolds were incubated in hypoxic (3% O2) or normoxic (21% O2) conditions for 1hr, 21hr and 14 days. Gene expression was determined using Q-rt-PCR for col I/II/X, COMP, SOX9, aggrecan and B actin. Matrix production was determined using glycosaminoglycan (GAG) content relative to cell count determined by DNA quantification. Cell viability and location within the matrix was determined by Live/Dead assay and confocal microscopy. Statistical analysis was performed using a two-tailed T-test. Results. Chondrocytes cultured under hypoxic conditions showed an upregulation of all matrix related genes compared to normoxic conditions noted most markedly in col II, COMP and SOX9 expression. There were similar numbers of chondrocytes between hypoxic and normoxic groups (P=0.68) but the chondrocytes in the hypoxic group produced more GAG per cell (P= 0.052). Viable cells were seen throughout the matrix in both groups. Conclusion. Important matrix related genes (col II, COMP, SOX9) were most significantly upregulated in hypoxic conditions compared to normoxic conditions. This was supported by an increase in GAG production per cell in hypoxic conditions. The results indicate that hypoxia induces an upregulation in the production of extracellular matrix components typical of AC with only modest increases in col I (possibly related to the col I based scaffold used in this experiment). These results indicate that hypoxic conditions are important for the maintenance of chondrocyte phenotype even when the cells are cultured in a 3D environment. In conclusion, hypoxic culture conditions should be used to help maintain chondrocyte phenotype even when culturing these cells in a 3D scaffold


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 8 - 8
1 Mar 2021
Hulme CH Perry J Roberts S Gallacher P Jermin P Wright KT
Full Access

Abstract. Objectives. The ability to predict which patients will improve following routine surgeries aimed at preventing the progression of osteoarthritis is needed to aid patients being stratified to receive the most appropriate treatment. This study aimed to investigate the potential of a panel of biomarkers for predicting (prior to treatment) the clinical outcome following treatment with microfracture or osteotomy. Methods. Proteins known to relate to OA severity, with predictive value in autologous cell implantation treatment or that had been identified in proteomic analyses (aggrecanase-1/ ADAMTS-4, cartilage oligomeric matrix protein (COMP), hyaluronic acid (HA), Lymphatic Vessel Endothelial Hyaluronan Receptor-1, matrix metalloproteinases-1 and −3, soluble CD14, S100 calcium binding protein A13 and 14-3-3 protein theta) were assessed in the synovial fluid (SF) of 19 and 13 patients prior to microfracture or osteotomy, respectively, using commercial immunoassays. Levels of COMP and HA were measured in the plasma of these patients. To find predictors of postoperative function, multiple linear regression analyses were performed. Results. Linear regression analyses demonstrated that a lower concentration of HA in pre-operative SF was predictive of improved knee function (higher Lysholm score) following microfracture surgery. Further, lower pre-operative activity of ADAMTS-4 in SF was a significant, independent predictor of higher post-operative Lysholm score (improved joint function) following osteotomy surgery. Conclusion. This study is novel in identifying biomarkers with the potential to predict clinical outcome in patients treated with microfracture or osteotomy of the knee. Lower concentrations of HA and undetectable activity of ADAMTS-4 in the joint fluid of individuals with cartilage defects/early-OA may be used in algorithms to stratify patients to the most appropriate surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 466 - 466
1 Nov 2011
Koerver R Heyligers I Samijo S Grimm B
Full Access

Introduction: In clinical orthopaedics questionnaire based outcome scores such as the DASH shoulder score suffer from a ceiling effect, subjectivity and the dominance of pain perception over functional capacity. As a result it has becomes increasingly difficult to clinically validate medical innovations in therapy or implants and to account for rising patient demands. Thus, objective functional information needs to be added to routine clinical assessment. Motion analysis with opto-electronic systems, force plates or EMG is a powerful research tool but lab-based, too expensive and time consuming for routine clinical use. Inertia sensor based motion analysis (IMA) can produce objective motion parameters while being faster, cheaper and easier to operate. In this study a simple IMA shoulder test is defined and. its reliability tested,. its diagnostic power to distinguish healthy from pathological shoulders is measured and. it is validated against gold standard clinical scores. Methods: An inertia sensor (41x63x24mm3, 39g) comprising a triaxial accelerometer (±5g) and a triaxial gyroscope (±300°/sec) was taped onto the humerus in a standardised position. One-hundred healthy subjects without shoulder complaints (40.6 ±15.7yrs) and 40 patients (55.4 ±12.7yrs) with confirmed unilateral shoulder pathology (29 subacromial impingement, 9 rotator cuff pathology, 2 other) were measured. Two motion tasks (‘hand behind the head’ and ‘hand to the back’) based on the Simple Shoulder Test (SST) were performed on both shoulders (three repetitions at self selected speed). Motion parameters were calculated as the surface area described by combing two angular rate signals of independent axes (ARS) or by combing the angular rate and the acceleration of a single axis (COMP score). The relative asymmetry between two sides was scored. Results: The test produced high intra-(r2≥0.88) and inter-observer reliability (r2≥0.82). Healthy subjects scored a mean asymmetry of 9.6% (ARS) and 14.6% (Comp). Patients with shoulder complaints showed > 3× higher asymmetry (ARS: 34.1%, Comp: 42.7%) than the healthy controls (p< 0.01). Using thresholds (ARS: 16%, Comp 27%) healthy and pathological subjects could be distinguished with high diagnostic sensitivity (e.g. ARS: 97.5% [CI: 85.3–99.9%]) and specificity (e.g. COMP: 85.5% [CI: 76.1–91.1%]). Both asymmetry scores were strongly intercorrelated (r2=0.76) as were the clinical scores (r2=0.62, DASH-SST). Asymmetry and clinical scores were hardly correlated (r2< 0.14). Discussion: The IMA shoulder test and asymmetry scores showed high reliability meeting or exceeding common clinical scores. With a fast assessment of a simple ADL tasks (test duration < 60s) it was possible to provide diagnostic power at clinically usable level making routine clinical application feasible even by nonspecialist personnel. Weak correlations with the clinical scores show that the new test adds an objective functional dimension to outcome assessment which may have the potential to differentiate new treatments or implants required to trigger new therapeutic innovation cycles. Similar motion tests and parameters could also serve lower extremity outcome assessment


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 13 - 13
1 Mar 2021
Mak CC To K Fekir K Brooks R Khan W
Full Access

Abstract. Objective. Mesenchymal stem cells (MSCs) and chondrocytes have both been crucial in trials for cartilage repair, and there has been growing interest into their respective secretomes owing to their role in chondrogenic crosstalk. This has been studied by in vitro co-culture studies, yet the optimal ratio of seeding MSCs in co-culture has been understudied. Methods. Our study utilised an in vitro autologous co-culture of p0 adipose-derived MSCs (AMSCs) and articular chondrocytes derived from Kellgren-Lawrence Grade III/IV osteoarthritic knee joints (n=5). To investigate whether a large proportion of MSCs could be stimulated by a small number of chondrocytes, we seeded these MSCs at increasing logarithmic ratios to the number of chondrocytes at 1:1, 10:1, and 100:1. The AMSCs were phenotyped by a panel of MSC surface markers in flow cytometry, and allowed to undergo trilineage differentiation. Gene expression following in vitro co-culture was quantified by RT-qPCR with a panel comprising COL1A1, COL2A1, COL10A1, L-SOX5, SOX6, SOX9, ACAN, HSPG2, and COMP for chondrogenesis. Experiments were performed in triplicate. Results. The AMSCs had CD105, CD73, CD90, and heterogenous CD34 expression but not CD45, CD14, CD19, and HLA-DR expression in flow cytometric phenotyping, and demonstrated differentiation into chondrogenic, osteogenic, and adipogenic lineages. The chondrogenic gene expression profiles from co-cultures of larger MSC-to-chondrocyte ratio such as 10:1 and 100:1 were significantly lower than the expression profile of the 1:1 co-culture. No significant difference was observed between the 10:1 and 100:1 co-cultures. Conclusion. These findings suggest that the optimal ratio of co-culturing MSCs and chondrocytes approaches 1:1, and that seeding at larger ratios would diminish the overall chondrogenic expression and crosstalk involved. This therefore has implications in the limited efficacy of MSCs in in vitro co-culture studies or in existing trials of intra-articular and subchondral MSC injections, owing to a suboptimal in situ ratio of MSCs and chondrocytes. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 64 - 64
1 Mar 2021
Korntner S Pieri A Pugliese ZWE Zeugolis D
Full Access

The fibrocartilaginous enthesis displays a complex interface between two mechanically dissimilar tissues, namely tendon and bone. This graded transition zone consists of parallel collagen type I fibres arising from the tendon and inserting into bone across zones of fibrocartilage with aligned collagen type I and collagen type II fibres and mineralised fibrocartilage. Due the high stress concentrations arising at the interface, entheses are prone to traumatic and chronic overuse injuries such as rotator cuff and anterior cruciate ligament (ACL) tears. Treatment strategies range from surgical reattachment for complete tears and conservative treatments (physiotherapy, anti-inflammatory drugs) in chronic inflammatory conditions. Generally, the native tissue architecture is not re-established and mechanically inferior scar tissue is formed. Current interfacial tissue engineering approaches pose scaffold-associated drawbacks and limitations, such as foreign body response. Using a thermo-responsive electrospun scaffold that provides architectural signals similar to native tissues and can be removed prior to implantation, we aim to develop an ECM-rich, cell-based implant for tendon-enthesis regeneration. Alcian blue staining revealed highest sGAG deposition in cell (human adipose derived stem cells) sheets grown on random electrospun fibres and lowest sGAG deposition in collagen type I sponges. Cells did not show an equal distribution throughout the collagen type II scaffolds but tended to form localised aggregates. Thermo-responsive electrospun fibres with random and aligned fibre orientation provided an adequate three-dimensional environment for chondrogenic differentiation of multilayer hADSC-sheets shown by high ECM-production, especially high sGAG deposition. Chondrogenic cell sheets showed increased expression of SOX9, COL2A1, COL1A1, COMP and ACAN after 7 days of chondrogenic induction when compared to pellet culture. Anisotropic fibres enabled the generation of aligned chondrogenic cell sheets, shown by cell and collagen fibre alignment. Thermoresponsive electrospun fibres showed high chondro-inductivity due to their three-dimensionality and therefore pose a promising tool for the generation of scaffold-free multilayer constructs for tendon-enthesis repair within short culture periods. Aligned chondrogenic cell sheets mimic the zonal orientation of the native enthesis as the fibrocartilaginous zone exhibits high collagen alignment


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 532 - 532
1 Nov 2011
Galois L Cournil-Henrionnet C Huselstein C Mainard D Bensoussan D Stoltz J Netter P Gillet P Watrin-Pinzano A
Full Access

Purpose of the study: Monolayer cultures of chondrocytes multiply and rapidly lose their chondrocyte phenotype, limiting their potential for tissue engineering. Mesenchymatous stem cells can preserve their phenotypic characteristics after several monolayer passages, offering a promising alternative for cartilage repair. The purpose of this work was to study the influence of transforming growth factor beta-1 (TGF-beta1) and bone morphogenic protein-2 (BMP2) and/or culture supplements (hyaluronic acid) on matrix synthesis and chondrocyte differentiation of human mesenchymatous stem cells (MSC) cultured on collagen sponges. Material and methods: MSC were isolated from bone marrow harvested during hip arthroplsty. At the third passage in monolayer culture, the MSC were reseeded on collagen sponges and cultured in vitro for 28 days under seven differ conditions: insulin transferrin selenium (ITS), foetal calf serum (FCS), ITS+TGFbeta1, ITS+ hyaluronate, ITS+TGFbeta1+hyaluronate, ITS+TGFbeta1+BMP2, ITS +TGFbeta1+BMP2+hyaluronate. The phenotypic evolution was followed using the expression of different genes of interest with PCRq (collagen2, collagen1, collagen3, collagen10, agrecanne, versicanne, COMP, Sox9). Synthesis of matrix material was assessed histologically and immunohistochemically. Results: Used alone, hyaluronic acid did not trigger chondrocyte differentiation of MSC. For the additives FCS, ITS, or hyaluronate, the synthesis of matrix material in the sponge was weak and poor in major constituents of cartilage. Conversely, the other conditions in presence of TGFbeta1±BMP2 induced important expression of collagen2, agrecanne and COMP as well as increased matrix synthesis with a strong content in proteoglycans and collagen. Discussion: The usefulness of MSC is growing due to their pluripotent characteristics. The conditions leading to their differentiation into the chondrocyte phenotype remains a subject of discussion. Our results show the particular importance of TGFbeta1 in the process of differentiation. Conclusion: Chondrogenic differentiation of MSC cultured in collagen sponges as well as the synthesis of the cartilaginous matrix requires the presence of TGFbeta1 in the culture medium and to a lesser extent BMP2. These results suggest the perspective of using MSC for guided cell therapy targeting cartilage


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 128 - 128
1 Nov 2018
Stanco D Soldati G Ciardelli G
Full Access

Tendon injuries are common and current therapies often are unsuccessful. Cell-based therapy using mesenchymal stem cells (MSCs) seems to be the most promising approach to heal tendon. Moreover, providing safe and regulated cell therapy products to patients requires adherence to good manufacturing practices (GMP). Adipose-derived stem cells (n=4) were cultured in 6-well plates coated with type-I collagen in a chemically defined serum-free medium (SF) or a xenogenic-free human pooled platelet lysate medium (hPL). At passage 4, ASCs were induced to tendon lineage for 14 days using 100ng/ml CTGF, 10ng/ml TGFβ3, 50ng/ml BMP12 and 50µg/ml ascorbic acid in the SF (SF-TENO) or in the hPL (hPL-TENO) medium. Cells cultured without any supplements are used as control. Morphological appearance, cell viability and FACS were performed in undifferentiated cells to evaluate the xenogenic-free culture conditions; the gene and protein expression were performed by RT-PCR and immunofluorescence to evaluate to expression of stem cell- and tendon-related markers upon cell differentiation. SF-CTRL and hPL-CTRL showed similar viability and MSC's surface proteins and expressed the stemness markers NANOG, OCT4 and Ki67. Moreover, both SF-TENO and hPL-TENO expressed significant higher levels of SCX, COL1A1, COL3A1, COMP, MMP3 and MMP13 genes already at 3d (p<0.05) respect to CTRLs. Scleraxis and collagen were also detected in both SF-TENO and hPL-TENO at protein level in higher amount than CTRLs. In conclusion, ASCs exposed to CTGF, BMP12, TGFb3 and AA in both serum and xenogenic-free media possess similar tenogenic differentiation ability moving forward the GMP-compliant approaches for the clinical use of ASCs


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 116 - 116
1 Nov 2018
Sun YC Lian WS Ko JY Wang FS
Full Access

Osteophyte deposition and subchondral bone damage are notable features of osteoarthritis (OA). Deregulated mineralization contributes to osteophyte and subchondral irregularity. The microRNA-29 (miR-29) family is associated with arthritic disorders. This study is aimed to investigate miR-29a function to OA osteophyte formation and subchondral integrity. Intact and damaged articular cartilage in patients with end-stage knee OA who required total knee arthroplasty were harvested to probe miR-29a, cartilage, and mineralized matrix expression using RT-PCR and in situ hybridization. Osteophyte volume and subchondral morphometry of collagenase-induced OA knees in mice were quantified using μCT and histomorphometry. Increased bone matrix expression (collagen I and bone alkaline phosphatase) and reduced cartilage matrix (collagen II and aggrecan) along with low miR-29a expression existed in human OA specimens. Aged miR-29a knockout mice showed spontaneous osteophyte formation and articular cartilage erosion. In primary articular chondrocytes, miR-29a deficiency significantly reduced cartilage matrix synthesis, whereas von Kossa staining-positive mineralized matrix production was increased. Of interest, the severity of collagenase-induced osteophyte accumulation and subchondral damage along with serum cartilage breakdown products CTX-II and COMP levels were significantly compromised in mice overexpressing miR-29a. Intra-articularly injecting miR-29a significantly reduced osteophyte volume and subchondral integrity and retained cartilage morphology in collagenase-injured knees. Reduced miR-29a signalling worsens osteophyte and subchondral destruction in OA through increasing mineralized matrix formation of chondrocytes. Restoring miR-29a shields joints from cartilage degradation, osteophyte and subchondral destruction. This study conveys new mechanistic underlying OA osteophyte pathogenesis and shines light on the remedial potential of miR-29a to OA


Bone & Joint Research
Vol. 13, Issue 9 | Pages 474 - 484
10 Sep 2024
Liu Y Li X Jiang L Ma J

Aims

Rotator cuff tear (RCT) is the leading cause of shoulder pain, primarily associated with age-related tendon degeneration. This study aimed to elucidate the potential differential gene expressions in tendons across different age groups, and to investigate their roles in tendon degeneration.

Methods

Linear regression and differential expression (DE) analyses were performed on two transcriptome profiling datasets of torn supraspinatus tendons to identify age-related genes. Subsequent functional analyses were conducted on these candidate genes to explore their potential roles in tendon ageing. Additionally, a secondary DE analysis was performed on candidate genes by comparing their expressions between lesioned and normal tendons to explore their correlations with RCTs.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 34 - 34
1 Apr 2018
Sun YC Lian WS Ko JY Wang FS
Full Access

Introduction. Osteoarthritis (OA) of the knee, a prevalently degenerative joint disorder provoked by articular cartilage loss, accounts for the leading cause of total knee arthroplasty. Autophagy is an indispensable intracellular event that maintains chondrocyte survival and metabolism. MicroRNAs are non-coding small RNAs participating in tissue morphogenesis, remodeling, and homeostasis. This study was undertaken to investigate the effect of microRNA-128 (miR-128) knockdown on the development of OA knees. Materials/Methods. Knee joints in rats were subjected to anterior cruciate ligament transection (ACLT) for inducing OA. Articular cartilage, synovium, and subchondral bone microarchitecture were assessed by OARSI scoring system, histomorphometry, and μCT imaging. Chondrocyte autophagy in terms of the expression of autophagic markers Atg4, Atg12, microtubule-associated protein 1 light chain 3 (LC3), and autophagosome formation was verified. Expression of microRNA, mRNA and signaling transduction were quantified with in situ hybridization, RT- quantitative PCR, and immunoblotting. Results. Chondrocytes in the affected knees showed weak expression of autophagic markers Atg4, Atg12, and LC3-II abundances in conjunction with significant increases in OARSI scores and a 2.5-fold elevation in miR-128 expression. The gain of miR-128 signaling in intact joints through intra-articular injection of miR-128 precursor resulted in 1.8–2.1-fold elevations in serum cartilage breakdown products CTX-II and COMP concentrations. miR-128 overexpression caused the joints to show evident chondrocyte apoptosis as evidenced by TUNEL staining concomitant with severe cartilage damage. Of note, antisense oligonucleotide knockdown of miR-128 (miR-128-AS) enabled the affected knee joints to show minor responses to the ACLT escalation of autophagy dysfunction in chondrocytes, cartilage breakdown histopathology, and OARSI scores. Administration with miR-128-AS also attenuated the ACLT-induced synovial membrane thickening, hyper-angiogenesis, and hypercellularity, which subsequently alleviated osteophyte accumulation, subchondral plate destruction, and trabecular microstructure loss. Conclusion. miR-128 signaling impairs chondrocyte autophagy, which ramps up chondrocyte apoptosis and OA knee development. This study highlights an emerging miR-128 knockdown strategy that sustains cartilage microarchitecture integrity and thereby delays OA knee pathogenesis