Advertisement for orthosearch.org.uk
Results 1 - 20 of 3128
Results per page:
Bone & Joint Open
Vol. 5, Issue 6 | Pages 524 - 531
24 Jun 2024
Woldeyesus TA Gjertsen J Dalen I Meling T Behzadi M Harboe K Djuv A

Aims. To investigate if preoperative CT improves detection of unstable trochanteric hip fractures. Methods. A single-centre prospective study was conducted. Patients aged 65 years or older with trochanteric hip fractures admitted to Stavanger University Hospital (Stavanger, Norway) were consecutively included from September 2020 to January 2022. Radiographs and CT images of the fractures were obtained, and surgeons made individual assessments of the fractures based on these. The assessment was conducted according to a systematic protocol including three classification systems (AO/Orthopaedic Trauma Association (OTA), Evans Jensen (EVJ), and Nakano) and questions addressing specific fracture patterns. An expert group provided a gold-standard assessment based on the CT images. Sensitivities and specificities of surgeons’ assessments were estimated and compared in regression models with correlations for the same patients. Intra- and inter-rater reliability were presented as Cohen’s kappa and Gwet’s agreement coefficient (AC1). Results. We included 120 fractures in 119 patients. Compared to radiographs, CT increased the sensitivity of detecting unstable trochanteric fractures from 63% to 70% (p = 0.028) and from 70% to 76% (p = 0.004) using AO/OTA and EVJ, respectively. Compared to radiographs alone, CT increased the sensitivity of detecting a large posterolateral trochanter major fragment or a comminuted trochanter major fragment from 63% to 76% (p = 0.002) and from 38% to 55% (p < 0.001), respectively. CT improved intra-rater reliability for stability assessment using EVJ (AC1 0.68 to 0.78; p = 0.049) and for detecting a large posterolateral trochanter major fragment (AC1 0.42 to 0.57; p = 0.031). Conclusion. A preoperative CT of trochanteric fractures increased detection of unstable fractures using the AO/OTA and EVJ classification systems. Compared to radiographs, CT improved intra-rater reliability when assessing fracture stability and detecting large posterolateral trochanter major fragments. Cite this article: Bone Jt Open 2024;5(6):524–531


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 14 - 14
1 Mar 2021
Au K Gammon B Undurraga S Culliton K Louati H D'Sa H
Full Access

The clinical diagnosis of distal radioulnar joint (DRUJ) instability remains challenging. The current diagnostic gold standard is a dynamic computerized topography (CT) scan. This investigation compares the affected and normal wrists in multiple static positions of forearm rotation.. However, its accuracy has been questioned, as the wrist is unloaded and not placed under stress. This may fail to capture DRUJ instability that does not result in static malalignment between the ulnar head and sigmoid notch. The purpose of this biomechanical study was to evaluate the effectiveness of both dynamic and stress CT scans in detecting DRUJ instability. A customized DRUJ arthrometer was designed that allows for both static positioning, as well as dorsal and volar loading at the DRUJ in various degrees of forearm rotation. Ten fresh frozen cadavers were prepared and mounted in the apparatus. CT scans were performed both in the unloaded condition (dynamic CT) and with each arm subjected to a standardized 50N volar and dorsal force (stress CT) in neutral and maximum pronation/ supination. The TFCC (triangular fibrocartilage complex)was then sectioned peripherally to simulate DRUJ instability and the methodology was repeated. CT scans were then evaluated for displacement using the radioulnar ratio method. When calculating the radioulnar ratio for intact wrists using the dynamic CT technique, values were 0.50, 0.64, 0.34 for neutral, pronation and supination, respectively. When the TFCC was sectioned and protocol repeated, the values for the simulated unstable wrist for dynamic CT were 0.54, 0.62, 0.34 for neutral, pronation and supination, respectively. There was no statistically significant difference between the intact and sectioned states for any position of forearm rotation using dynamic CT. Usingstress CT, mean radioulnar ratios for the intact specimens were calculated to be 0.44, 0.36 and 0.31 for neutral, pronation and supination, respectively. After sectioning the TFCC, the radioulnar ratios increased to 0.61, 0.39 and 0.46 for neutral, pronation and supination. There was a statistically significant difference between intact and simulated-unstable wrists in supination (p = 0.002) and in neutral (p=0.003). The radioulnar ratio values used to measure DRUJ translation for dynamic CT scans were unable to detect a statistically significant difference between stable and simulated unstable wrists. This was true for all positions of forearm rotation. However, when a standard load was placed across the DRUJ, statically significant changes in the radioulnar ratio were seen in neutral and supination between stable and simulated unstable wrists. This discrepancy challenges the current gold standard of dynamic CT in its ability to accurately diagnosis DRUJ instability. It also introduces stress CT as a possible solution for diagnosing DRUJ instability from peripheral TFCC lesions


Bone & Joint Open
Vol. 4, Issue 7 | Pages 478 - 489
1 Jul 2023
Tennent D Antonios T Arnander M Ejindu V Papadakos N Rastogi A Pearse Y

Aims. Glenoid bone loss is a significant problem in the management of shoulder instability. The threshold at which the bone loss is considered “critical” requiring bony reconstruction has steadily dropped and is now approximately 15%. This necessitates accurate measurement in order that the correct operation is performed. CT scanning is the most commonly used modality and there are a number of techniques described to measure the bone loss however few have been validated. The aim of this study was to assess the accuracy of the most commonly used techniques for measuring glenoid bone loss on CT. Methods. Anatomically accurate models with known glenoid diameter and degree of bone loss were used to determine the mathematical and statistical accuracy of six of the most commonly described techniques (relative diameter, linear ipsilateral circle of best fit (COBF), linear contralateral COBF, Pico, Sugaya, and circle line methods). The models were prepared at 13.8%, 17.6%, and 22.9% bone loss. Sequential CT scans were taken and randomized. Blinded reviewers made repeated measurements using the different techniques with a threshold for theoretical bone grafting set at 15%. Results. At 13.8%, only the Pico technique measured under the threshold. At 17.6% and 22.9% bone loss all techniques measured above the threshold. The Pico technique was 97.1% accurate, but had a high false-negative rate and poor sensitivity underestimating the need for grafting. The Sugaya technique had 100% specificity but 25% of the measurements were incorrectly above the threshold. A contralateral COBF underestimates the area by 16% and the diameter by 5 to 7%. Conclusion. No one method stands out as being truly accurate and clinicians need to be aware of the limitations of their chosen technique. They are not interchangeable, and caution must be used when reading the literature as comparisons are not reliable. Cite this article: Bone Jt Open 2023;4(7):478–489


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm. 3. ). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis. Results. CT-aBMD was successfully measured in 976/978 hips (99.8%). A significant correlation was found between CT-aBMD and DXA-BMD (r = 0.941; p < 0.001). In the ROC analysis, the area under the curve to diagnose osteoporosis was 0.976. The diagnostic sensitivity and specificity were 88.9% and 96%, respectively, with the cutoff set at 0.625 g/cm. 2. . Conclusion. Accurate DXA-BMD measurements and diagnosis of osteoporosis were performed from CT images using the system developed herein. As the models are open-source, clinicians can use the proposed system to screen osteoporosis and determine the surgical strategy for hip surgery. Cite this article: Bone Joint Res 2023;12(9):590–597


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 45 - 45
17 Nov 2023
Rix L Tushingham S Wright K Snow M
Full Access

Abstract. Objective. A common orthopaedic pain found in a wide spectrum of individuals, from young and active to the elderly is anterior knee pain (AKP). It is a multifactorial disorder which is thought to occur through muscular imbalance, overuse, trauma, and structural malalignment. Over time, this can result in cartilage damage and subsequent chondral lesions. Whilst the current gold standard for chondral lesion detection is MRI, it is not a highly sensitive tool, with around 20% of lesions thought to be mis-diagnosed by MRI. Single-photon emission computerised tomography with conventional computer tomography (SPECT/CT) is an emerging technology, which may hold clinical value for the detection of chondral lesions. SPECT/CT may provide valuable diagnostic information for AKP patients who demonstrate absence of structural change on other imaging modalities. This review systematically assessed the value of SPECT/CT as an imaging modality for knee pain, and its ability to diagnose chondral lesions for patients who present with knee pain. Methods. Using PRISMA guidelines, a systematic search was carried out in PubMed, Science Direct, and Web of Knowledge, CINAHL, AMED, Ovid Emcare and Embase. Inclusion criteria consisted of any English language article focusing on the diagnostic value of SPECT/CT for knee chondral lesions and knee pain. Furthermore, animal or cadaver studies, comparator technique other than SPECT/CT or patients with a pathology other than knee chondral lesions were excluded from the study. Relevant articles underwent QUADAS-2 bias assessment. Results. 11,982 manuscripts were identified, and the titles were screened for relevance. Seven studies were selected as being appropriate and were subjected to QUADAS-2 assessment. All 7 articles scored low for bias. Two papers deemed that the ICRS score of chondral lesions at intraoperative assessment correlated with SPECT/CT tracer uptake. Two studies concluded that MRI significantly correlated with SPECT/CT tracer uptake, with some instances whereby SPECT/CT identified more chondral lesions than MRI. Two papers compared bone scintigraphy (BS) to SPECT/CT and concluded that SPECT/CT was not only able to identify more chondral lesions than BS, but also localise and characterise the lesions. Conclusion. Evidence implies that SPECT/CT may be a useful imaging modality for the detection and localisation of cartilage lesions, particularly in discrepant cases whereby there is an absence of lesions on other imaging modalities, or a lack of correspondence with patients’ symptoms. More studies would be of value to confirm the conclusions of this review. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 124 - 125
1 Mar 2009
Martin A Sheinkop M Prenn M Moosmann D von Strempel A
Full Access

Introduction: Optimal component position in all planes and well balanced soft tissues lead to a good clinical outcome and long-term survival after total knee arthroplasty. We investigated the implantation accuracy of navigated total knee arthroplasty at 3 months followup and the influence on the clinical outcome at 2 years followup. Patients and Methods: Forty-four patients (44 procedures) were enrolled in our prospective study. One half of the surgeries were performed using a computed tomography based navigation system, and one half of the surgeries were performed without computed tomography navigation. Outcomes were based on the Insall knee score parameters, anterior knee pain, patient satisfaction, feeling of instability, and step test. The radiographic parameters were the mechanical axis, tibial slope, lateral distal femoral angle, and medial proximal tibial angle. Results: The radiographic measurements showed no differences between both groups (patients within ± 3° inaccuracy range in computed tomography based/computed tomography free groups; mechanical axis 86%/81%, tibial slope 95%/91%, lateral distal femoral angle 95%/91%, medial proximal tibial angle 91%/95%). The cumulative error of alignment showed no difference between the study groups. Seventeen of 21 (81%) patients fulfilled four criteria in the CT based group, and 15 of 21 (71.4%) patients fulfilled four criteria in the comparison group. Nineteen of 21 (90.5%) patients in both groups achieved three criteria in an optimal manner. An increased (p < 0.001) Insall knee score was found for changes over time in both study groups; however, there were no differences between the CT based or CT free patient groups. The postoperative ROM in both groups showed no difference at the 3-month and 2-year followup examinations. Both groups had an increase (p ≤ 0.002) in ROM between the 3-month and 2-year followup examinations. The examination of ligament balancing in full extension showed a higher rate of a stable soft tissue situation in the CT free navigation group but the difference was not significant. In 30° of flexion we detected a better (p = 0.004) ligament situation medially and laterally in the CT free group. The anterior drawer test showed a better (p = 0.035) stability in the CT free navigation group. Discussion: The computed tomography free system provided equal radiographic results, but we found improved ligament balancing in the computed tomography free group. The computed tomography based module has an optimal preoperative planning procedure, but is more expensive and time consuming


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 1020 - 1029
1 Sep 2023
Trouwborst NM ten Duis K Banierink H Doornberg JN van Helden SH Hermans E van Lieshout EMM Nijveldt R Tromp T Stirler VMA Verhofstad MHJ de Vries JPPM Wijffels MME Reininga IHF IJpma FFA

Aims. The aim of this study was to investigate the association between fracture displacement and survivorship of the native hip joint without conversion to a total hip arthroplasty (THA), and to determine predictors for conversion to THA in patients treated nonoperatively for acetabular fractures. Methods. A multicentre cross-sectional study was performed in 170 patients who were treated nonoperatively for an acetabular fracture in three level 1 trauma centres. Using the post-injury diagnostic CT scan, the maximum gap and step-off values in the weightbearing dome were digitally measured by two trauma surgeons. Native hip survival was reported using Kaplan-Meier curves. Predictors for conversion to THA were determined using Cox regression analysis. Results. Of 170 patients, 22 (13%) subsequently received a THA. Native hip survival in patients with a step-off ≤ 2 mm, > 2 to 4 mm, or > 4 mm differed at five-year follow-up (respectively: 94% vs 70% vs 74%). Native hip survival in patients with a gap ≤ 2 mm, > 2 to 4 mm, or > 4 mm differed at five-year follow-up (respectively: 100% vs 84% vs 78%). Step-off displacement > 2 mm (> 2 to 4 mm hazard ratio (HR) 4.9, > 4 mm HR 5.6) and age > 60 years (HR 2.9) were independent predictors for conversion to THA at follow-up. Conclusion. Patients with minimally displaced acetabular fractures who opt for nonoperative fracture treatment may be informed that fracture displacement (e.g. gap and step-off) up to 2 mm, as measured on CT images, results in limited risk on conversion to THA. Step-off ≥ 2 mm and age > 60 years are predictors for conversion to THA and can be helpful in the shared decision-making process. Cite this article: Bone Joint J 2023;105-B(9):1020–1029


Bone & Joint Research
Vol. 11, Issue 6 | Pages 398 - 408
22 Jun 2022
Xu T Zeng Y Yang X Liu G Lv T Yang H Jiang F Chen Y

Aims. We aimed to evaluate the utility of . 68. Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with . 99m. Tc-methylene bisphosphonates (. 99m. Tc-MDP) bone scan. Methods. We studied 39 patients with suspected PJI or AL. These patients underwent . 68. Ga-citrate PET/CT, . 99m. Tc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations. Results. Overall, 23 and 16 patients were diagnosed with PJI and AL, respectively. The sensitivity and specificity of three-phase bone scan and SPECT/CT were 100% and 62.5%, 82.6%, and 100%, respectively. Attenuation correction (AC) at 60 minutes and non-AC at 60 minutes of PET/CT had the same highest sensitivity and specificity (91.3% and 100%), and AC at 60 minutes combined with SPECT/CT could improve the diagnostic efficiency (sensitivity = 95.7%). Diagnostic efficacy of the SUVmax was low (area under the curve (AUC) of ten minutes and 60 minutes was 0.814 and 0.806, respectively), and SUVmax of the lesion/SUVmean of the normal bone at 60 minutes was the best semi-quantitative parameter (AUC = 0.969). Conclusion. 68. Ga-citrate showed the potential to differentiate PJI from AL, and visual analysis based on uptake pattern of tracer was reliable. The visual analysis method of AC at 60 minutes, combined with . 99m. Tc-MDP SPECT/CT, could improve the sensitivity from 91.3% to 95.7%. In addition, a major limitation of our study was that it had a limited sample size, and more detailed studies with a larger sample size are warranted. Cite this article: Bone Joint Res 2022;11(6):398–408


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 68 - 68
2 Jan 2024
Li J
Full Access

Applications of weightbearing computed tomography (WBCT) imaging in the foot and ankle have emerged over the past decade. However, the potential diagnostic benefits are scattered across the literature, and a concise overview is currently lacking. Therefore, we aimed to systematically review all reported diagnostic applications per anatomical region in the foot and ankle. A systematic literature search was performed in the electronic databases PubMed, EMBASE, Cochrane Library, and Web of Science. Search terms consisted of “weightbearing/standing CT and ankle, hind-, mid- or forefoot”. English language studies analyzing the diagnostic applications of WBCT were included. Studies were excluded if they simulated weightbearing CT, described normal subjects, included cadaveric samples or samples were case reports. The modified Methodological Index for Non-Randomized Studies (MINORS) was applied for quality assessment. The added value was defined as the review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and registered in the Prospero database (CRD42019106980). A total of 48 studies (prospective N=8, retrospective N=36, cohort study N=1, diagnostic N=2, prognostic comparative study N=1) were found to be eligible for review. The following diagnostic applications were identified per anatomical area in the foot: ankle (osteoarthritis N=5, ligament injury N=6); hindfoot (deformity N=9); midfoot (Lisfranc injury N=2, flatfoot deformity N=13, osteoarthritis N=1); forefoot (hallux valgus N=12). The identified studies contained diagnostic applications that could not be used on plain radiographs. The mean MINORS equaled 10.1 on a total of 16 (range: 8 to 12). Diagnostic applications of weightbearing CT imaging are most frequently studied in hindfoot deformity, but other area's areas are on the rise. Post-processing of images was identified as the main added value compared to WBRX. However, the findings should be interpreted with caution as the average quality score was moderate. Therefore, future prospective studies are warranted to consolidate the role of WBCT in diagnostic and therapeutic algorithms


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 70 - 70
2 Jan 2024
Peiffer M
Full Access

Acute syndesmotic ankle injuries continue to impose a diagnostic dilemma and it remains unclear whether weighbearing or external rotation should be exerted rotation during the imaging process. Therefore, we aimed to implement both axial load (weightbearing) and external rotation in the assessment of a clinical cohort of patients with syndesmotic ankle injuries syndesmotic using weightbearing CT imaging. In this retrospective comparative cohort study, patients with an acute syndesmotic ankle injury were analyzed using a WBCT (N= 20; Mean age= 31,64 years; SD= 14,07. Inclusion criteria were an MRI confirmed syndesmotic ankle injury imaged by a bilateral WBCT of the ankle during weightbearing and combined weightbearing-external rotation. Exclusion criteria consisted of fracture associated syndesmotic ankle injuries. Three-dimensional (3D) models were generated from the CT slices. Tibiofibular displacement and Talar Rotation was quantified using automated3D measurements (Anterior TibioFibular Distance (ATFD), Alpha Angle, Posterior TibioFibular Distance (PTFD) and Talar Rotation (TR) Angle) in comparison to a cohort of non-injured ankles. Results. The difference in neutral-stressed Alpha° and ATFD showed a significant difference between patients with a syndesmotic ankle lesion and healthy ankles (P = 0.046 and P = 0.039, respectively) The difference in neutral-stressed PTFD and TR° did not show a significant difference between patients with a syndesmotic ankle lesion and healthy ankles (P = 0.492; P = 0.152, respectively). Conclusion. Application of combined weightbearing-external rotation reveals a dynamic anterior tibiofibular widening in patients with syndesmotic ankle injuries. This study provides the first insights based on 3D measurements to support the potential relevance of applying external rotation during WBCT imaging. However, to what extent certain displacement patterns are associated with syndesmotic instability and thus require operative treatment strategies has yet to be determined in future studies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 16 - 16
17 Nov 2023
Youssef A Pegg E Gulati A Mangwani J Brockett C Mondal S
Full Access

Abstract. Objectives. The fidelity of a 3D model created using image segmentation must be precisely quantified and evaluated for the model to be trusted for use in subsequent biomechanical studies such as finite element analysis. The bones within the ankle joint vary significantly in size and shape. The purpose of this study was to test the hypothesis that the accuracy and reliability of a segmented bone geometry is independent of the particular bone being measured. Methods. Computed tomography (CT) scan data (slice thickness 1 mm, pixel size 808±7 µm) from three anonymous patients was used for the development of the ankle geometries (consisting of the tibia, fibula, talus, calcaneus, and navicular bones) using Simpleware Scan IP software (Synopsys, Exeter, UK). Each CT scan was segmented 4 times by an inexperienced undergraduate, resulting in a total of 12 geometry assemblies. An experienced researcher segmented each scan once, and this was used as the ‘gold standard’ to quantify the accuracy. The solid bone geometries were imported into CAD software (Inventor 2023, Autodesk, CA, USA) for measurement of the surface area and volume of each bone, and the distances between bones (tibia to talus, talus to navicular, talus to calcaneus, and tibia to fibula) were carried out. The intra-class coefficient (ICC) was used to assess intra-observer reliability. Bland Altman plots were employed as a statistical measure for criteria validity (accuracy) [1]. Results. The average ICC score was 0.93, which is regarded as a high reliability score for an inexperienced user. The talus to navicular and talus to tibia separations, which had the smallest distances, showed a slight decrease in reliability and this was observed for all separations shorter than 2 mm. According to the Bland-Altman plots, more than 95% of the data points were inside the borders of agreement, which is an excellent indication of accuracy. The bias percentage (average error percentage) varied between 1% and 4% and was constant across all parameters, with the proportion rising for short distance separations. Conclusions. The current study demonstrates that an inexperienced undergraduate, with access to software manuals, can segment an ankle CT scan with excellent reliability. The present study also concluded that all five bones were segmented with high levels of accuracy, and this was not influenced by bone volume or type. The only factor found to influence the reliability was the magnitude of distance between bones, where if this was smaller than 2 mm it reduced the reliability, indicating the influence of CT scan resolution on the segmentation reliability. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 98 - 98
1 Jul 2022
Vidakovic H Meen R Ohly N
Full Access

Abstract. Introduction. Mako robotic assisted knee arthroplasty requires a planning CT scan within 8 weeks of surgery according to the supplier's protocol. This is often impractical, therefore we evaluated whether CT scans remain valid for an extended period. Methodology. Patients undergoing Mako partial (PKA) and total (TKA) knee arthroplasty were identified from our hospital database. The hospital PACS system was used to define the time interval between the initial planning CT scan and surgery, and whether further imaging was required prior to surgery. Results. 443 consecutive Mako cases (225 TKA and 218 PKA) were undertaken between November 2019 and December 2021 (33 cases to March 2020, and 410 cases from August 2020). CT scans were done within 8 weeks of surgery in 229 patients (51.7%); between 8 and 24 weeks in 148 patients (33.4%); between 24 and 48 weeks in 53 patients (12.0%); and more than 48 weeks in 13 patients (2.9%). Repeat pre-operative radiographs were done in the first 43 patients with a delay to surgery of more than 8 weeks following their CT scan. No gross anatomical changes were identified, and this practice was therefore discontinued. No patients required a repeat CT scan. There were no intra-operative registration errors in any patient in this series. Conclusion. Planning CT scans were valid for up to one year in a large series of patients undergoing Mako PKA and TKA. This may allow for more cost-effective use of resources, while minimising irradiation to patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 118 - 118
10 Feb 2023
Sundaraj K Corbett J Yong Yau Tai J Salmon L Roe J
Full Access

The emergence of patient specific instrumentation has seen an expansion from simple radiographs to plan total knee arthroplasty (TKA) with modern systems using computed tomography (CT) or magnetic resonance imaging scans. Concerns have emerged regarding accuracy of these non-weight bearing modalities to assess true mechanical axis. The aim of our study was to compare coronal alignment on full length standing AP imaging generated by the EOS acquisition system with the CT coronal scout image. Eligible patients underwent unilateral or bilateral primary TKA for osteoarthritis under the care of investigating surgeon between 2017 and 2022, with both EOS X-Ray Imaging Acquisition System and CT scans performed preoperatively. Coronal mechanical alignment was measured on the supine coronal scout CT scan and the standing HKA EOS. Pre-operative lower limb coronal alignment was assessed on 96 knees prior to TKA on the supine coronal scout CT scan and the standing HKA EOS. There were 56 males (56%), and 44 right knees (44%). The mean age was 68 years (range 53-90). The mean coronal alignment was 4.7 degrees (SD 5.3) on CT scan and 4.6 degrees (SD 6.2) on EOS (p=0.70). There was a strong positive correlation of coronal alignment on CT scan and EOS (pearson. 0.927, p=0.001). The mean difference between EOS and CT scan was 0.9 degrees (SD 2.4). Less than 3 degrees variation between measures was observed in 87% of knees. On linear regression for every 1° varus increase in CT HKA alignment, the EOS HKA alignment increased by 0.93° in varus orientation. The model explained 86% of the variability. CT demonstrates excellent reliability for assessing coronal lower limb alignment compared to EOS in osteoarthritic knees. This supports the routine use of CT to plan TKA without further weight bearing imaging in routine cases


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 82 - 82
7 Aug 2023
Jones R Phillips J Panteli M
Full Access

Abstract. Introduction. Total joint arthroplasty (TJA) is one of the commonest and most successful orthopaedic procedures, used for the management of end-stage arthritis. With the recent introduction of robotic assisted joint replacement, Computed Tomography (CT) has become part of required pre-operative planning. The aim of this study is to quantify and characterise incidental CT findings, their clinical significance, and their effect on planned joint arthroplasty. Methodology. All consecutive patients undergoing an elective TJR (hip or knee arthroplasty) were retrospectively identified, over a 3-year period (December 2019 and December 2022). Data documented and analysed included patient demographics, type of joint arthroplasty, CT findings, their clinical significance, as well as potential delays to the planned arthroplasty because of these findings and subsequent further investigation. Results. A total of 624 patients (637 studies, 323 (51.8%) female, 301 (48.2%) male) were identified of which 163 (25.6%) showed incidental findings within the long bones or pelvis. Of these 52 (8.2%) were significant, potentially requiring further management, 32 (5.0%) represented potential malignancy and 4 (0.6%) resulted in a new cancer diagnosis. Conclusion. It is not currently national standard practice to report planning CT imaging as it is deemed an unnecessary expense and burden on radiology services. Within the study cohort 52 (8.2%) of patients had a significant incidental finding that required further investigation or management and 4 (0.6%) had a previously undiagnosed malignancy. In order to avoid the inevitability of a missed malignancy on a planning CT, we must advocate for formal reports in all cases


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 82 - 82
19 Aug 2024
Courington R Ferreira R Shaath MK Green C Langford J Haidukewych G
Full Access

When treating periprosthetic femur fractures (PPFFs) around total hip arthroplasty (THA)], determining implant fixation status preoperatively is important, since this guides treatment regarding ORIF versus revision. The purpose of this study was to determine the accuracy of preoperative implant fixation status determination utilizing plain films and CT scans. Twenty-four patients who underwent surgery for Vancouver B type PPFF were included in the study. Two joint surgeons and two traumatologists reviewed plain films alone and made a judgment on fixation status. They then reviewed CT scans and fixation status was reassessed. Concordance and discordance were recorded. Interobserver reliability was assessed using Kendall's W and intraobserver reliability was assessed using Cohen's Kappa. Ultimately, the “correct” response was determined by intraoperative findings, as we routinely test the component intraoperatively. Fifteen implants were found to be well-fixed (63%) and 9 were loose. Plain radiographs alone predicted correct fixation status in 53% of cases. When adding the CT data, the correct prediction only improved to 55%. Interestingly, concordance between plain radiographs and CT was noted in 82%. In concordant cases, the fixation status was found to be correct in 55% of cases. Of the 18% of cases with discordance, plain films were correct in 43% of cases, and the CT was correct in 57%. Interobserver reliability demonstrated poor agreement on plain films and moderate agreement on CT. Intraobserver reliability demonstrated moderate agreement on both plain films and CT. The ability to determine fixation status for proximal PPFFs around uncemented femoral components remains challenging. The addition of routine CT scanning did not significantly improve accuracy. We recommend careful intraoperative testing of femoral component fixation with surgical dislocation if necessary, and the surgeon should be prepared to revise or fix the fracture based on those findings


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 86 - 86
1 Sep 2012
Harvie P Fletcher T Sloan K Beaver R
Full Access

In order to avoid complications of hip arthroplasty such as dislocation, impingement and eccentric liner wear accurate acetabular orientation is essential. The three-dimensional assessment of acetabular cup orientation using two-dimensional plain radiographs is inaccurate. The aim of this study was to develop a CT-based protocol to accurately measure postoperative acetabular cup inclination and anteversion establishing which bony reference points facilitate the most accurate estimation of these variables. An all-polyethylene acetabular liner was implanted into a cadaveric acetabulum. A conventional pelvic CT scan was performed and reformatted images created in both functional and anterior pelvic planes. CT images were transferred to a Freedom-Plus Graphics software package enabling an identical, virtual, three dimensional model of the cadaveric pelvis to be created. Using a computer interface this model could be ‘palpated’, bony landmarks accurately identified and definitive acetabular cup orientation established. Using original CT scans, acetabular cup inclination and anteversion were measured on five occasions by eight radiographers using differing predetermined bony landmarks as reference points. The intra- and inter-observer variation in measurement of acetabular cup orientation using varying bony reference points was assessed in comparison to the previously elucidated definitive cup position. Statistical analysis using appropriate ANOVA models was performed in order to assess the significance of the results obtained. Virtually derived definitive acetabular cup orientation was measured showing cup inclination and anteversion as 41.0 and 22.5 degrees respectively. Mean CT-based measurement of cup inclination and anteversion by eight radiographers were 43.1 and 20.8 degrees respectively. No statistically significant difference was found in intra- and inter-observer recorded results. No statistically significant differences were found when using different bony landmarks for the measurement of inclination and anteversion (p= 0.255 and 0.324 respectively). CT assessment of acetabular component inclination and anteversion is accurate, reliable and reproducible when measured using differing bony landmarks as reference points. We recommend measuring acetabular inclination and anteversion from the inferior acetabular wall/teardrop and posterior ischium respectively. The Perth CT hip protocol is easily reproducible in the clinical setting both in the routine assessment of hip arthroplasty patients and as research tool. In our unit its initial application will be to validate commercially available hip navigation systems


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 592 - 593
1 Nov 2011
Bailey CS Alsaleh K Ho D Rosas-Arellano P Bailey SI Gurr KR
Full Access

Purpose: Magnetic resonance imaging (MRI) and Computerized tomography (CT) are commonly used for the diagnosis and assessment of lumbar spinal stenosis. The available literature has not identified which modality is superior. We compared the reliability and accuracy of CT and MRI in the assessment of lumbar spinal stenosis. Method: We performed a prospective review of CT and MRI scans of 54 patients referred for surgical consultation. One orthopaedic spine fellow and one neuro-radiologist reviewed the CTs and MRIs. A qualitative and quantitative analysis was performed. Intra-observer and inter-observer reliability was determined using Kappa coefficient. The patient’s official reports were correlated with analysis performed by the two reviewers. Owsestry and SF-36 data was correlated with the qualitative and qualitative assessment of stenosis on CT, MRI using the Pearson’s R coefficient. Results: MRI – substantial inter-observer agreement was achieved between surgeon and neuro-radiologist as well as between surgeon and reporting radiologist (κ= 0.74 and κ=0.64 respectively). Moderate agreement was found between neuro-radiologist and reporting radiologist (κ=0.57). Almost perfect intra-observer reliability for MRI was achieved by the two expert reviewers (κ=0.91 for surgeon and κ=0.92 for neuro-radiologist). CT – moderate inter-observer agreement (κ=0.58) was found between surgeon and neuro-radiologist. Fair agreement was found between neuro-radiologist and reporting radiologist and between surgeon and reporting radiologist (κ=0.30 and 0.32 respectively). Substantial intra-observer agreement was found for the surgeon (κ=0.77) while the neuro-radiologist achieved almost perfect agreement (κ=0.96). Conclusion: This study directly demonstrates that MRI is likely a more reliable tool than CT, but neither correlates with functional status


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 89 - 89
23 Feb 2023
Marasco S Gieroba T Di Bella C Babazadeh S Van Bavel D
Full Access

Identifying and restoring alignment is a primary aim of total knee arthroplasty (TKA). In the coronal plane, the pre-pathological hip knee angle can be predicted using an arithmetic method (aHKA) by measuring the medial proximal tibial angle (MPTA) and lateral distal femoral angle (aHKA=MPTA - LDFA). The aHKA is shown to be predictive of coronal alignment prior to the onset of osteoarthritis; a useful guide when considering a non-mechanically aligned TKA. The aim of this study is to investigate the intra- and inter-observer accuracy of aHKA measurements on long leg standing radiographs (LLR) and preoperative Mako CT planning scans (CTs). Sixty-eight patients who underwent TKA from 2020–2021 with pre-operative LLR and CTs were included. Three observers (Surgeon, Fellow, Registrar) measured the LDFA and MPTA on LLR and CT independently on three separate occasions, to determine aHKA. Statistical analysis was undertaken with Bland-Altman test and coefficient of repeatability. An average intra-observer measurement error of 3.5° on LLR and 1.73° on CTs for MPTA was detected. Inter-observer errors were 2.74° on LLR and 1.28° on CTs. For LDFA, average intra-observer measurement error was 2.93° on LLR and 2.3° on CTs, with inter-observer errors of 2.31° on LLR and 1.92° on CTs. Average aHKA intra-observer error was 4.8° on LLR and 2.82° on CTs. Inter-observer error of 3.56° for LLR and 2.0° on CTs was measured. The aHKA is reproducible on both LLR and CT. CT measurements are more reproducible both between and within observers. The difference between measurements using LLR and CT is small and hence these two can be considered interchangeable. CT may obviate the need for LLRs and may overcome difficulties associated with positioning, rotation, body habitus and flexion contractures when assessing coronal alignment


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 155 - 155
1 May 2011
Harvie P Fletcher T Morrison D Day R Sloan K Beaver R
Full Access

Aim: In order to avoid complications of hip arthroplasty such as dislocation, impingement and eccentric liner wear accurate acetabular orientation is essential. The three-dimensional assessment of acetabular cup orientation using two-dimensional plain radiographs is inaccurate. The aim of this study was to develop a CT-based protocol to accurately measure postoperative acetabular cup inclination and anteversion establishing which bony reference points facilitate the most accurate estimation of these variables. Methods: An all-polyethylene acetabular liner was implanted into a cadaveric acetabulum. A conventional pelvic CT scan was performed and reformatted images created in both functional and anterior pelvic planes. CT images were transferred to a Freedom-Plus Graphics software package enabling an identical, virtual, three dimensional model of the cadaveric pelvis to be created. Using a computer interface this model could be ‘palpated’, bony landmarks accurately identified and definitive acetabular cup orientation established. Using original CT scans, acetabular cup inclination and anteversion were measured on five occasions by eight radiographers using differing predetermined bony landmarks as reference points. The intra- and inter-observer variation in measurement of acetabular cup orientation using varying bony reference points was assessed in comparison to the previously elucidated definitive cup position. Statistical analysis using appropriate ANOVA models was performed in order to assess the significance of the results obtained. Results: Virtually derived definitive acetabular cup orientation was measured showing cup inclination and anteversion as 41.0 and 22.5 degrees respectively. Mean CT-based measurement of cup inclination and anteversion by eight radiographers were 43.1 and 20.8 degrees respectively. No statistically significant difference was found in intra- and inter-observer recorded results. No statistically significant differences were found when using different bony landmarks for the measurement of inclination and anteversion (p= 0.255 and 0.324 respectively). Conclusions: CT assessment of acetabular component inclination and anteversion is accurate, reliable and reproducible when measured using differing bony landmarks as reference points. We recommend measuring acetabular inclination and anteversion from the inferior acetabular wall/teardrop and posterior ischium respectively. The Perth CT hip protocol is easily reproducible in the clinical setting both in the routine assessment of hip arthroplasty patients and as research tool. In our unit its initial application will be to validate commercially available hip navigation systems


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 66 - 66
2 Jan 2024
Burssens A
Full Access

Osteotomies in the musculoskeletal system are joint preserving procedures to correct the alignment of the patient. In the lower limb, most of the pre-operative planning is performed on full leg weightbearing radiographs. However, these images contain a 2-dimensional projection of a 3-dimensional deformity, lack a clear visualization of the joint surface and are prone to rotational errors during patient positioning. Weightbearing CT imaging has demonstrated to overcome these shortcomings during the first applications of this device at level of the foot and ankle. Recent advances allow to scan the entire lower limb and novel applications at the level of the knee and hip are on the rise. Here, we will demonstrated the current techniques and 3-dimensional measurements used in supra- and inframalleolar osteotomies around the ankle. Several of these techniques will be transposed to other parts in the lower limb to spark future studies in this field