Plantar fasciitis (PF) is one of the widespread conditions causing hindfoot pain. The most common presenting symptoms are functional limitation and pain (first step and activity) on plantar surface of the foot. The non-operative treatments provide complete resolution of pain in 90% of patients, but functional limitation still remains as a risk factor for recurrency of PF. Although the number of non-operative treatment options showing efficacy on pain and functional limitation are excessive, the evidences are limited for functional limitation. Additionally, Mulligan mobilization with movement (MMWM) in Chronic Plantar Fasciitis has been poorly studied in the literature. According to these findings, the study was aimed to determine effectiveness of Mulligan mobilization with movement on Chronic Plantar Fasciitis. A total of 25 patients (40 feet) with chronic PF were included in the study. The patients were randomly divided into Mulligan
Introduction. The regionalisation of major trauma in the UK has significantly improved outcomes for patients with severe, lower limb injuries. Chronic pain after complex lower limb injuries is well documented, but seems to remain a problem despite better clinical and radiological outcomes. We hypothesised that pain was mediated through the saphenous nerve, especially as most tibial injuries affected the soft tissues medially. As a proof of
Background. The anatomy of the human knee is very different than the tibiofemoral surface geometry of most modern total knee replacements (TKRs). Many TKRs are designed with simplified articulating surfaces that are mediolaterally symmetrical, resulting in non-natural patterns of motion of the knee joint [1]. Recent orthopaedic trends portray a shift away from basic tibiofemoral geometry towards designs which better replicate natural knee kinematics by adding constraint to the medial condyle and decreasing constraint on the lateral condyle [2]. A recent design
Nerve transfer is an emerging treatment to restore upper limb function in people with tetraplegia. The objective of this study is to examine if a flexible collage sheet (FCS) can act as epineurial-like substitute to promote nerve repair in nerve transfer. A preclinical study using FCS was conducted in a rat model of sciatic nerve transection. A prospective case series study of nerve transfer was conducted in patients with C5-C8 tetraplegia who received nerve transfer to restore upper limb function. Motor function in the upper limb was assessed pre-treatment, and at 6-,12-, and 24-months post-treatment. Macroscopic assessment in preclinical model showed nerve healing by FCS without encapsulation or adhesions. Microscopic examination revealed that a new, vascularised epineurium-like layer was observed at the FCS treatment sites, with no evidence of inflammatory reaction or nerve compression. Treatment with FCS resulted in well-organised nerve fibres with dense neurofilaments distal to the coaptation site. Axon counts performed proximal and distal to the coaptation site showed that 97% of proximal axon count of myelinated axons regenerated across the coaptation site after treatment with CND. In the proof of
Mixed Reality has the potential to improve accuracy and reduce required dissection for the performance of peri-acetabular osteotomy. The current work assesses initial proof of
Aim. Reconstruction of composite soft-tissue defects with extensor apparatus deficiency in patients with periprosthetic joint infection (PJI) of the knee is challenging. We present a single-centre multidisciplinary orthoplastic treatment
Aim. To provide proof of
Aims. Plating displaced proximal humeral fractures is associated with a high rate of screw perforation. Dynamization of the proximal screws might prevent these complications. The aim of this study was to develop and evaluate a new gliding screw
Objectives. CT-based three-column classification (TCC) has been widely used in the treatment of tibial plateau fractures (TPFs). In its updated version (updated three-column
Fracture fixation has advanced significantly with the introduction of locked plating and minimally invasive surgical techniques. However, healing complications occur in up to 10% of cases, of which a significant portion may be attributed to unfavorable mechanical conditions at the fracture. Moreover, state-of-the-art plates are prone to failure from excessive loading or fatigue. A novel biphasic plating
Culture of multiple intraoperative tissue samples is the standard of microbiological diagnosis of prosthetic joint infections. Recently, improved sensitivity of using prosthesis sonication method and molecular techniques has been reported in the literature. However, collecting the removed prosthesis as well as additional specimens for molecular analysis is not straightforward for the surgeons and assistants in the operation theatre. Our All-in-a-Box
Introduction and Objective. Digital infra-red thermography may have the capability of identifying local inflammations. Nevertheless, the role of thermography in diagnosing pin site infection has not been explored yet and the reliability and validity of this method for pin site surveillance is in question. The purpose of this study was to explore the capability and intra-rater reliability of thermography in detecting pin site infection. Materials and Methods. This explorative proof of
Total hip replacement procedures are among the most frequent surgical interventions in all industrialized countries. Although it is a routine operationliterature reports that important parameters regarding for example cup orientation and leg length discrepancy often turn out to be not satisfying after surgery. This paper presents a novel
Objective. To investigate the effectiveness of applying fast track surgery
Introduction. An increasing trend in the incidence of primary and revision bone replacements has been observed throughout the last decades, mainly among patients under 65 years old.10-year revision rates are estimated in the 5–20% range, mainly due to peri-implant bone loss. Recent advances allow the design of implants with custom-made geometries, nanometer-scale textured surfaces and multi-material structures. Technology also includes (bio)chemical modifications of the implants' surfaces. However, these approaches present significant drawbacks, as their therapeutic actuations are unable to: (1) perform long-term release of bioactive substances, namely after surgery; (2) deliver personalized stimuli to target bone regions and according to bone-implant integration states. The Innovative
Successful reconstruction of bone defects requires an adequate filling material that supports regeneration and formation of new bone within the treated defect in an optimal fashion. Currently available synthetic bone graft substitutes cannot fulfill all requirements of the highly complex biological processes involved in physiological bone healing. Due their unphysiologically asynchronous biodegradation properties, their specific foreign material-mediated side effects and complications and their relatively modest overall osteogenic potential, their overall clinical performance typically lags behind conventional bone grafts of human origin. However, defect- and pathology specific combination of synthetic bone graft substitutes exhibiting appropriate carrier properties with therapeutic agents and/or conventional bone graft materials allows creation of biologically enhanced composite constructs that can surpass the biological and therapeutic limits even of autologous bone grafts. This presentation introduces a bone defect reconstruction
Background. The management of non-unions of subtrochanteric femoral fractures with associated implant failure is challenging. This study assessed the outcome of a cohort of patients treated according to the diamond
Introduction: Traditionally the fixation of choice as recommended by the AO ASIF group for transverse fractures of the Olecranon and the Patella is the tension band wiring technique. The
Introduction High precision of axis alignement in Total Knee Arthroplasty by usage of navigation tools is a known fact. However, a common disadvantage of navigation tools is the additional time needed for calibration. Especially in time/cost-sensitive hospital environments this can lead to a neglection of navigation tools usage. In this study we address work-economics during navigation assisted total knee arthroplasty. Specifically, we introduce the
Introduction. The orthopaedic market offers more than two hundred different hip femoral stems. Of these, very few have undergone scientific studies with published results. The differences of designs of the stem are mainly related to surface texture and geometry sections. The development of a new cemented hip prosthesis is certainly a very hard task if aiming the improvement of actual performance. Materials and Methods. This study presents the influence of geometric variables in a novel hip stem