Advertisement for orthosearch.org.uk
Results 1 - 20 of 6762
Results per page:
Bone & Joint Open
Vol. 2, Issue 2 | Pages 86 - 92
10 Feb 2021
Ibrahim Y Huq S Shanmuganathan K Gille H Buddhdev P

Aims. This observational study examines the effect of the COVID-19 pandemic upon the paediatric trauma burden of a district general hospital. We aim to compare the nature and volume of the paediatric trauma during the first 2020 UK lockdown period with the same period in 2019. Methods. Prospective data was collected from 23 March 2020 to 14 June 2020 and compared with retrospective data collected from 23 March 2019 to 14 June 2019. Patient demographics, mechanism of injury, nature of the injury, and details of any surgery were tabulated and statistically analyzed using the independent-samples t-test for normally distributed data and the Mann-Whitney-U test for non-parametric data. Additionally, patients were contacted by telephone to further explore the mechanism of injury where required, to gain some qualitative insight into the risk factors for injury. Results. The 2020 lockdown resulted in 30% fewer paediatric trauma presentations (441 vs 306), but no significant change in the number of patients requiring surgery (47 vs 51; p = 0.686). Trampolining injuries increased in absolute numbers by 168% (p < 0.001), almost four times more common when considered as percentage of all injuries observed in 2020 vs 2019. There was a decrease in high energy trauma from road traffic accidents and falls from height (21.5% decrease, p < 0.001). Despite a shift towards more conservative treatment options, trampolining injuries continued to require surgery in similar proportions (19.4 vs 20%; p = 0.708). Qualitative investigation revealed that the most common risk factor for trampolining injury was concurrent usage, especially with an older child. Conclusion. COVID-19 lockdown has resulted in a decrease in paediatric orthopaedic presentations and high energy trauma. However, due to a marked increase in home trampolining injuries, and their unchanged requirement for surgery, there has been no change in the requirement for surgery during the lockdown period. As home exercise becomes more prevalent, a duty of public health falls upon clinicians to advise parents against trampoline usage. Cite this article: Bone Jt Open 2021;2(2):86–92


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 88 - 88
11 Apr 2023
Souleiman F Heilemann M Hennings R Hepp P Gueorguiev B Richards G Osterhoff G Gehweiler D
Full Access

The aim of this study was to investigate the effect of different loading scenarios and foot positions on the configuration of the distal tibiofibular joint (DTFJ). Fourteen paired human cadaveric lower legs were mounted in a loading frame. Computed tomography scans were obtained in unloaded state (75 N) and single-leg loaded stand (700 N) of each specimen in five foot positions: neutral, 15° external rotation, 15° internal rotation, 20° dorsiflexion, and 20° plantarflexion. An automated three-dimensional measurement protocol was used to assess clear space (diastasis), translational angle (rotation), and vertical offset (fibular shortening) in each foot position and loading condition. Foot positions had a significant effect on the configuration of DTFJ. Largest effects were related to clear space increase by 0.46 mm (SD 0.21 mm) in loaded dorsal flexion and translation angle of 2.36° (SD 1.03°) in loaded external rotation, both versus loaded neutral position. Loading had no effect on clear space and vertical offset in any position. Translation angle was significantly influenced under loading by −0.81° (SD 0.69°) in internal rotation only. Foot positioning noticeably influences the measurement when evaluating the configuration of DTFJ. The influence of the weightbearing seems to have no relevant effect on native ankles in neutral position


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 76 - 76
1 Dec 2022
Kruse C Axelrod D Johal H Al-Mohrej O Daniel R
Full Access

Despite the routine use of systemic antibiotic prophylaxis, postoperative infection following fracture surgery remains a persistent issue with substantial morbidity. The use of additional local antibiotic prophylaxis may have a protective effect and some orthopaedic surgeons have adopted their use in recent years, despite limited evidence of its beneficial effect. The purpose of this systematic review and meta-analysis was to evaluate the current literature regarding the effect of prophylactic local antibiotics on the rate of infection in fracture surgery in both open and closed fractures. A comprehensive search of Medline, EMBASE, and PubMed was performed. Cohort studies were eligible if they investigated the effect on infection rate of additional local antibiotic prophylaxis compared with systemic prophylaxis alone following fracture surgery. The data were pooled in a meta-analysis. In total, four randomized controlled trials and 11 retrospective cohort studies with a total of 6161 fractures from various anatomical locations were eligible for inclusion. The majority of the included studies were Level 3 evidence and had a moderate risk of bias. When all fractures were pooled, the risk of infection was significantly reduced when local antibiotics were applied compared with the control group receiving systemic prophylaxis only (OR = 0.39; 95%CI: 0.26 to 0.53, P < 0.001). In particular, there was a significant reduction in deep infections (OR = 0.59; 95%CI: 0.38 to 0.91, P = 0.017). The beneficial effect of local antibiotics for preventing total infection was seen in both open fractures (OR = 0.35; 95%CI: 0.23 to 0.53, P < 0.001) and closed fractures (OR = 0.58; 95%CI: 0.35 to 0.95, P = 0.029) when analyzed separately. This meta-analysis suggests a significant risk reduction for postoperative infection following fracture surgery when local antibiotics were added to standard systemic prophylaxis, with a protective effect present in both open and closed fractures


Bone & Joint Open
Vol. 4, Issue 3 | Pages 129 - 137
1 Mar 2023
Patel A Edwards TC Jones G Liddle AD Cobb J Garner A

Aims. The metabolic equivalent of task (MET) score examines patient performance in relation to energy expenditure before and after knee arthroplasty. This study assesses its use in a knee arthroplasty population in comparison with the widely used Oxford Knee Score (OKS) and EuroQol five-dimension index (EQ-5D), which are reported to be limited by ceiling effects. Methods. A total of 116 patients with OKS, EQ-5D, and MET scores before, and at least six months following, unilateral primary knee arthroplasty were identified from a database. Procedures were performed by a single surgeon between 2014 and 2019 consecutively. Scores were analyzed for normality, skewness, kurtosis, and the presence of ceiling/floor effects. Concurrent validity between the MET score, OKS, and EQ-5D was assessed using Spearman’s rank. Results. Postoperatively the OKS and EQ-5D demonstrated negative skews in distribution, with high kurtosis at six months and one year. The OKS demonstrated a ceiling effect at one year (15.7%) postoperatively. The EQ-5D demonstrated a ceiling effect at six months (30.2%) and one year (39.8%) postoperatively. The MET score did not demonstrate a skewed distribution or ceiling effect either at six months or one year postoperatively. Weak-moderate correlations were noted between the MET score and conventional scores at six months and one year postoperatively. Conclusion. In contrast to the OKS and EQ-5D, the MET score was normally distributed postoperatively with no ceiling effect. It is worth consideration as an arthroplasty outcome measure, particularly for patients with high expectations. Cite this article: Bone Jt Open 2023;4(3):129–137


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 36 - 36
2 Jan 2024
Bagur-Cardona S Perez-Romero K Stiliyanov K Calvo J Gayà A Barceló-Coblijn G Rodriguez RM Gomez-Florit M
Full Access

Macrophages (Mφ) are immune cells that play a crucial role in both innate and adaptive immunity as they are involved in a wide range of physiological and pathological processes. Depending on the microenvironment and signals present, Mφ can polarize into either M1 or M2 phenotypes, with M1 macrophages exhibiting pro-inflammatory and cytotoxic effects, while M2 macrophages having immunosuppressive and tissue repair properties. Macrophages have been shown to play key roles in the development and progression or inhibition of various diseases, including cancer. For example, macrophages can stimulate tumor progression by promoting immunosuppression, angiogenesis, invasion, and metastasis. This work aimed to investigate the effect of extracellular vesicles (EVs)-derived from polarized macrophages on an osteosarcoma cell line. Monocytes were extracted from buffy coats and cultured in RPMI medium with platelet lysate or M-CSF. After 6 days of seeding, Mφ were differentiated into M1 and M2 with INF-γ/LPS and IL-4/IL-13, respectively. The medium with M1 or M2 derived EVs was collected and EVs were isolated by differential centrifugation and size exclusion chromatography and its morphology and size were characterized with SEM and NTA, respectively. The presence of typical EVs markers (CD9, CD63) was assessed by Western Blot. Finally, EVs from M1 or M2-polarized Mφ were added onto osteosarcoma cell cultures and their effect on cell viability and cell cycle, proliferation, and gene expression was assessed. The EVs showed the typical shape, size and surface markers of EVs. Overall, we observed that osteosarcoma cells responded differentially to EVs isolated from the M1 and M2-polarized Mφ. In summary, the use of Mφ-derived EVs for the treatment of osteosarcoma and other cancers deserves further study as it could benefit from interesting traits of EVs such as low immunogenicity, nontoxicity, and ability to pass through tissue barriers. Acknowledgements: Carlos III Health Institute and the European Social Fund for contract CP21/00136 and project PI22/01686


Bone & Joint Research
Vol. 11, Issue 8 | Pages 585 - 593
1 Aug 2022
Graham SM Jalal MMK Lalloo DG Hamish R. W. Simpson A

Aims. A number of anti-retroviral therapies (ART) have been implicated in potentially contributing to HIV-associated bone disease. The aim of this study was to evaluate the effect of combination ART on the fracture healing process. Methods. A total of 16 adult male Wistar rats were randomly divided into two groups (n = eight each): Group 1 was given a combination of Tenfovir 30 mg, Lamivudine 30 mg, and Efavirenz 60 mg per day orally, whereas Group 2 was used as a control. After one week of medication preload, all rats underwent a standardized surgical procedure of mid-shaft tibial osteotomy fixed by intramedullary nail with no gap at the fracture site. Progress in fracture healing was monitored regularly for eight weeks. Further evaluations were carried out after euthanasia by micro-CT, mechanically and histologically. Two blinded orthopaedic surgeons used the Radiological Union Scoring system for the Tibia (RUST) to determine fracture healing. Results. The fracture healing process was different between the two groups at week 4 after surgery; only two out of eight rats showed full healing in Group 1 (ART-treated), while seven out of eight rats had bone union in Group 2 (control) (p = 0.040). However, at week eight postoperatively, there was no statistical difference in bone healing; seven out of eight progressed to full union in both groups. Conclusion. This study demonstrated that combination ART resulted in delayed fracture healing at week 4 after surgery in rats, but did not result in the development of nonunion. Cite this article: Bone Joint Res 2022;11(8):585–593


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 75 - 75
19 Aug 2024
Hieda Y Choe H Ike H Abe K Shimoda M Kumagai K Kobayashi N Inaba Y
Full Access

Dislocation is a serious complication to be avoided in total hip arthroplasty (THA) and its incidence risk increases in revision surgery. Combined anteversion (CA) of the cup and stem is a concept for appropriate implant positioning; however, the effect of functional changes in femoral rotation has not been well investigated. The aim of this study was to investigate whether functional CA, considering femoral rotation, is associated with dislocation in patients undergoing revision THA. Seventy-three patients who underwent revision THA and had at least one year of follow-up with pre- and postoperative supine CT imaging were included. Cup and stem were placed with a target combined angle of 37.3° using Widmer's formula. Anatomical and functional CA was calculated postoperatively using the following formula: Anatomical CA: cup anteversion + 0.7 × anatomical stem anteversion; Functional CA: cup anteversion + 0.7 × (anatomical stem anteversion + femoral rotation). Patient demographics, cup and stem angles, CA and their relationship to dislocation were statistically evaluated. Dislocation was observed in 12 patients. In these dislocated cases, there were no significant differences in cup angle, stem angle and anatomical CA compared to non-dislocated cases. However, dislocated cases showed significantly higher values of functional CA [52.7 ± 17.5° (range, 5.9–69.3) vs. 36.0 ± 12.5° (range, 8.6–68.8), p=0.009] and significant deviation from identical CA [17.3 ± 9.6° (range, 2.8–32) vs. 7.5 ± 7.1° (range, 0.1–28.7), p=0.010]. Functional CA considering femoral rotation was associated with dislocation in revision THA patients. This finding suggests that consideration of femoral rotation may be necessary for implant positioning in revision THA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 139 - 139
1 Nov 2021
Müller M Thierbach M Aurich M Wildemann B
Full Access

Introduction and Objective. The rupture of the anterior cruciate ligament is a common sports injury and surgical reconstruction is often required to restore full function of the knee. Hamstring tendons are usually used as autografts. In addition to knee pain and stiffness, infections are feared complications after surgery. Incubation of the autograft in a vancomycin solution until implantation reduced the infection rate by about ten-fold. Recent studies showed no negative effect of vancomycin on the biomechanical properties of porcine tendons. A negative effect of high vancomycin concentrations on chondrocytes and osteoblast is reported, but the effect on tendon and tenocytes is not known. Materials and Methods. Rat Achilles tendons or isolated tenocytes were incubated with an increasing concentration of vancomycin (0 – 10 mg). Tendons were incubated for 0 – 40 minutes, while tenoyctes were incubated for 20 minutes followed by culturing for up to 7 days. Cell viability was assessed with PrestoBlue Assay and live/dead stain. The potential effect of vancomycin on the expression of tendon specific genes and extracellular matrix (ECM) genes was quantified. Possible structural changes of the tendon are analyzed. Results. Incubation of the tendons or tenocytes with 5 mg vancomycin for 20 minutes (clinical use) had no negative effects on the cell viability in the tendons or the isolated tenocytes, while incubation with the toxic control (ethanol) significantly reduced cell viability. Even twice the concentration and a longer incubation time had no negative effect on the cells in the tendons or the isolated cells. Vancyomycin did not affect the expression of Col1a1, Col3a1, and the tenocyte markers mohawk, scleraxis and tenomodulin. Conclusions. The results showed that clinical practice of wrapping the autograft in vancomycin did not impair the tenocyte viability. The expression of collagens and tenocyte markers was also not affected, neither in the incubated tendons nor in the isolated cells. This indicates that vancomycin had no effect on cell phenotype and the formation of the extracellular matrix, which, in addition to cell viability, is important for the performance of the autograft


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 61 - 61
11 Apr 2023
Wendlandt R Herchenröder M Hinz N Freitag M Schulz A
Full Access

Vacuum orthoses are being applied in the care of patients with foot and lower leg conditions, as ankle fractures or sprains. The lower leg is protected and immobilized, which increases mobility. Due to the design, the orthoses lead to a difference in leg length, i.e. the side with the orthosis becomes longer, which changes the gait kinematics. To prevent or mitigate the unfavourable effects of altered gait kinematics, leg length-evening devices (shoe lifts) are offered that are worn under the shoe on the healthy side. Our aim was to evaluate the effect of such a device on the normality of gait kinematics. Gait analysis was conducted with 63 adult, healthy volunteers having signed an informed consent form that were asked to walk on a treadmill at a speed of 4.5km/h in three different conditions:. barefoot - as reference for establishing the normality score baseline. with a vacuum orthosis (VACOPed, OPED GmbH, Germany) and a sport shoe. with a vacuum orthosis and a shoe lift (EVENup, OPED GmbH, Germany). Data was sampled using the gait analysis system MCU 200 (LaiTronic GmbH, Austria). The positions of the joint markers were exported from the software and evaluated for the joint angles during the gait cycle using custom software (implemented in DIAdem 2017, National Instruments). A normality score using a modification of the Gait Profile Score (GPS) was calculated in every 1%-interval of the gait cycle and evaluated with a Wilcoxon signed rank test. The GPS value was reduced by 0.33° (0.66°) (median and IQR) while wearing the shoe lift. The effect was statistically significant, and very large (W = 1535.00, p < .001; r (rank biserial) = 0.52, 95% CI [0.29, 0.70]). The significant reduction of the GPS value indicates a more normal gait kinematics while using the leg length-evening device on the contralateral shoe. This rather simple and inexpensive device thus might improve patient comfort and balance while using the vacuum orthoses


Bone & Joint Open
Vol. 4, Issue 11 | Pages 859 - 864
13 Nov 2023
Chen H Chan VWK Yan CH Fu H Chan P Chiu K

Aims. The surgical helmet system (SHS) was developed to reduce the risk of periprosthetic joint infection (PJI), but the evidence is contradictory, with some studies suggesting an increased risk of PJI due to potential leakage through the glove-gown interface (GGI) caused by its positive pressure. We assumed that SHS and glove exchange had an impact on the leakage via GGI. Methods. There were 404 arthroplasty simulations with fluorescent gel, in which SHS was used (H+) or not (H-), and GGI was sealed (S+) or not (S-), divided into four groups: H+S+, H+S-, H-S+, and H-S-, varying by exposure duration (15 to 60 minutes) and frequency of glove exchanges (0 to 6 times). The intensity of fluorescent leakage through GGI was quantified automatically with an image analysis software. The effect of the above factors on fluorescent leakage via GGI were compared and analyzed. Results. The leakage intensity increased with exposure duration and frequency of glove exchanges in all groups. When SHS was used and GGI was not sealed (H+S-), the leakage intensity via GGI had the fastest increase, consistently higher than other groups (H+S+, H-S+ and H-S-) after 30 minutes (p < 0.05) and when there were more than four instances of glove exchange (p < 0.05). Additionally, the leakage was strongly correlated with the duration of exposure (r. s. = 0.8379; p < 0.050) and the frequency of glove exchange (r. s. = 0.8198; p < 0.050) in H+S-. The correlations with duration and frequency turned weak when SHS was not used (H-) or GGI was sealed off (S+). Conclusion. Due to personal protection, SHS is recommended in arthroplasties. Meanwhile, it is strongly recommended to seal the GGI of the inner gloves and exchange the outer gloves hourly to reduce the risk of contamination from SHS. Cite this article: Bone Jt Open 2023;4(11):859–864


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 6 - 6
1 Dec 2022
Roversi G Nusiner F De Filippo F Rizzo A Colosio A Saccomanno M Milano G
Full Access

Recent studies on animal models focused on the effect of preserving tendon remnant of rotator cuff on tendon healing. A positive effect by combining tendon remnant preservation and small bone vents on the greater tuberosity in comparison with standard tendon-to-bone repair has been shown. The purpose of the present clinical study was to evaluate the efficacy of biologic augmentation of arthroscopic rotator cuff repair by maintaining tendon remnant on rotator cuff footprint combined with small bone vents of the greater tuberosity. A retrospective study was conducted. All patients who underwent arthroscopic rotator cuff repair associated with small bone vents (nanofractures) and tendon footprint preservation were considered eligible for the study. Inclusion criteria were: diagnosis of full-thickness rotator cuff tear as diagnosed at preoperative magnetic resonance imaging (MRI) and confirmed at the time of surgery; minimum 24-month of follow-up and availability of post-operative MRI performed not earlier than 6 months after surgery. Exclusion criteria were: partial thickness tears, irreparable tears, capsulo-labral pathologies, calcific tendonitis, gleno-humeral osteoarthritis and/or previous surgery. Primary outcome was the ASES score. Secondary outcomes were: Quick-DASH and WORC scores, and structural integrity of repaired tendons by magnetic resonance imaging (MRI) performed six months after surgery. A paired t-test was used to compare pre- and postoperative clinical outcomes. Subgroup analysis was performed according to tear size. Significance was set at p < 0.05. The study included 29 patients (M:F = 15:14). Mean age (+ SD) of patients was 61.7 + 8.9 years. Mean follow-up was 27.4 ± 2.3 months. Comparison between pre- and postoperative functional scores showed significant clinical improvement (p < 0.001). Subgroup analysis for tear size showed significant differences in the QuickDASH score (0.04). Particularly, a significant difference in the QuickDASH score could be detected between medium and large tears (p=0.008) as well as medium and massive lesions (p=0.04). No differences could be detected between large and massive tears (p= 0.35). Postoperative imaging showed healed tendons in 21 out of 29 (72%) cases. Preservation of tendon remnant combined with small bone vents in the repair of medium-to-massive full-thickness rotator cuff tears provided significant improvement in clinical outcome compared to baseline conditions with complete structural integrity in 72% of the cases


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 76 - 76
7 Nov 2023
Bell K Oliver W White T Molyneux S Clement N Duckworth A
Full Access

The aim of this study was to determine the floor and ceiling effects for both the QuickDASH and PRWE following a fracture of the distal radius. Secondary aims were to determine the degree to which patients with a floor or ceiling effect felt that their wrist was ‘normal’, and if there were patient factors associated with achieving a floor or ceiling effect. A retrospective cohort study of patients sustaining a distal radius fracture and managed at the study centre during a single year was undertaken. Outcome measures included the QuickDASH, the PRWE, EuroQol-5 Dimension-3 Levels (EQ-5D-3L), and the normal wrist score. There were 526 patients with a mean age of 65yrs (20–95) and 421 (77%) were female. Most patients were managed non-operatively (73%, n=385). The mean follow-up was 4.8yrs (4.3–5.5). A ceiling effect was observed for both the QuickDASH (22.3%) and PRWE (28.5%). When defined to be within the minimum clinical important difference of the best available score, the ceiling effect increased to 62.8% for the QuickDASH and 60% for the PRWE. Patients that achieved a ceiling score for the QuickDASH and PRWE subjectively felt their wrist was only 91% and 92% normal, respectively. On logistic regression analysis, a dominant hand injury and better health-related quality of life were the common factors associated with achieving a ceiling score for both the QuickDASH and PRWE (all p<0.05). The QuickDASH and PRWE demonstrate ceiling effects when used to assess the outcome of fractures of the distal radius. Patients achieving ceiling scores did not consider their wrist to be ‘normal’. Future patient-reported outcome assessment tools for fractures of the distal radius should aim to limit the ceiling effect, especially for individuals or groups that are more likely to achieve a ceiling score


Bone & Joint Research
Vol. 11, Issue 7 | Pages 503 - 512
25 Jul 2022
Wu Y Shao Y Xie D Pan J Chen H Yao J Liang J Ke H Cai D Zeng C

Aims. To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction. Methods. In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing. Results. SLPI improved the migration ability of BMSCs and upregulated the expression of genes related to osteogenic differentiation of BMSCs in vitro. In vivo, the SLPI group had higher histological scores at the tendon-bone interface by histological evaluation. Micro-CT showed more new bone formation and bone ingrowth around the grafted tendon in the SLPI group. Evaluation of the healing strength of the tendon-bone connection showed that the SLPI group had a higher maximum failure force and stiffness. Conclusion. SLPI can effectively promote early tendon-to-bone healing after ACL reconstruction via enhancing the migration and osteogenic differentiation of BMSCs. Cite this article: Bone Joint Res 2022;11(7):503–512


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 13 - 13
4 Apr 2023
Meesters D Groven R Wijnands N Poeze M
Full Access

Nitric oxide is a free radical which in vivo is solely produced during the conversion of the amino acid arginine into citrulline by nitric oxide synthase enzymes. Recently, the importance of nitric oxide on inflammation and bone metabolism has been investigated. However, the knowledge regarding possible in vitro effects of arginine supplementation on chondrogenic differentiation is limited. ATDC5, a cell line which is derived from mouse teratocarcinoma cells and which is characterized as chondrogenic cell line, were proliferated in Dulbecco's Modified Eagle Medium (DMEM)/F12 and subsequently differentiated in proliferation medium supplemented with insulin, transferrin and sodium-selenite and where arginine was added in four different concentrations (0, 7.5, 15 and 30 mM). Samples were harvested after 7 or 10 days and were stored at −80 °C for subsequent RNA isolation for qPCR analysis. To determine chondrogenic differentiation, Alcian Blue staining was performed to stain the proteoglycan aggrecan, which is secreted by differentiated ATDC5 cells. All measurements were performed in triplo. Alcian Blue staining showed a qualitative increase of proteoglycan aggrecan secretion in differentiated ATDC5 cells after treatment with 7 and 15 mM arginine, with additional increased expression of ColII, ColX, Bmp4 and Bmp6. Treatment with 30 mM arginine inhibited chondrogenic differentiation and expression of aforementioned genes, however, Cox-2 and Vegfa gene expression were increased in these samples. Bmp7 was not significantly expressed in any experimental condition. The obtained results are suggestive for a dose-dependent effect of arginine supplementation on chondrogenic differentiation and associated gene expression, with 7.5 and 15 mM as most optimal concentrations and implications for apoptosis after incubation with 30 mM arginine. A future recommendation would be to investigate the effects of citrulline in a similar experiment, as this shows even more promising results to enhance the nitric oxide metabolism in sepsis and bone healing


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 9 - 9
1 Apr 2022
Williams S Pryce G Board T Isaac G Williams S
Full Access

The 10 year survivorship of THR is generally over 95%. However, the incidence of revision is usually higher in year one. The most common reason being dislocation which at least in part is driven by inadequate range of motion (ROM) leading to impingement, subluxation and ultimately dislocation which is more frequently posterior. ROM is affected by patient activity, bone and component geometry, and component placement. To reduce the incidence of dislocation, supported by registry data, there has been an increase in the use of so-called ‘lipped’ liners. Whilst this increases joint stability, the theoretical ROM is reduced. The aim of this study was to investigate the effect of lip placement on impingement. A rigid body geometric model was incorporated into a CT scan hemi-pelvis and femur, with a clinically available THR virtually implanted. Kinematic activity data associated with dislocation was applied, comprising of five posterior and two anterior dislocation risk activities, resulting from anterior and posterior impingement respectively. Cup inclination and anteversion was varied (30°-70°, 0°-50° respectively) to simulate extremes of clinical outcomes. The apex position of a ‘lipped’ liner was rotated from the superior position, anteriorly and posteriorly in steps of 45°. Incidence and location of implant and bone impingement was recorded in 5346 cases generated. A liner with the lip placed superior increased the occurrence of implant-implant impingement compared with a neutral liner. Rotation of the lip from superior reduced this incidence. This effect was more marked with posterior rotation which after 90° reduced anterior impingement to levels similar to a neutral liner. Complete inversion of the lipped liner reduced impingement, but this and anterior rotation both negate its function – additional stability. This study comprises one bone geometry and component design and one set of activity profiles. Nevertheless, it indicates that appropriate lip placement can minimise the likelihood of impingement for a range of daily activities whilst still providing additional joint stability


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 135 - 135
2 Jan 2024
Iaquinta M Lanzillotti C Tognon M Martini F Stoddart M Bella ED
Full Access

The effects of dexamethasone (dex), during in vitro human osteogenesis, are contrasting. Indeed, dex downregulates SOX9 during osteogenic differentiation of human bone marrow mesenchymal stromal cells (HBMSCs). However, dex also promotes PPARG expression, resulting in the formation of adipocyte-like cells within the osteogenic monolayers. The regulation of both SOX9 and PPARG seems to be downstream the transactivation activity of the glucocorticoid receptor (GR), thus the effect of dex on SOX9 downregulation is indirect. This study aims at determining whether PPAR-γ regulates SOX9 expression levels, as suggested by several studies. HBMSCs were isolated from bone marrow of patients with written informed consent. HBMSCs were cultured in different osteogenic induction media containing 10 or 100 nM dex. Undifferentiated cells were used as controls. Cells were treated either with a pharmacological PPAR-γ inhibitor T0070907 (donors n=4) or with a PPARG-targeting siRNA (donors n=2). Differentiation markers or PPAR-γ target genes were analysed by RT-qPCR. Mineral deposition was assessed by ARS staining. Two-way ANOVA followed by a Tukey's multiple comparison test compared the effects of treatments. At day 7, T0070907 downregulated ADIPOQ and upregulated CXCL8, respectively targets of PPAR-γ-mediated transactivation and transrepression. RUNX2 and SOX9 were also significantly downregulated in absence of dex. PPARG was successfully downregulated by siRNA. ADIPOQ expression was also inhibited, while CXCL8 did not show any significant difference between siRNA treatment groups. RUNX2 was downregulated by the PPARG-siRNA treatment in presence of 100 nM dexamethasone, while SOX9 levels were not affected. ARS showed no change in the mineralization levels when PPARG expression or activity was inhibited. Understanding how dex regulates HBMSC differentiation is of pivotal importance to refine current in vitro models. These results suggest that PPARG does not mediate SOX9 downregulation. Unexpectedly, RUNX2 expression was also unaltered or even downregulated after PPAR-γ inhibition. Acknowledgements: AO Foundation, AO Research Institute (CH) and PRIN 2017 MUR (IT) for financial support


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_4 | Pages 1 - 1
3 Mar 2023
Kinghorn AF Whatling G Bowd J Wilson C Holt C
Full Access

This study aimed to examine the effect of high tibial osteotomy (HTO) on the ankle and subtalar joints via analysis of static radiographic alignment. We hypothesised that surgical alteration of the alignment of the proximal tibia would result in compensatory distal changes. 35 patients recruited as part of the wider Biomechanics and Bioengineering Centre Versus Arthritis HTO study between 2011 and 2018 had pre- and postoperative full-length weightbearing radiographs taken of their lower limbs. In addition to standard alignment measures of the limb and knee (mechanical tibiofemoral angle, Mikulicz point, medial proximal tibial angle), additional measures were taken of the ankle/subtalar joints (lateral distal tibial angle, ground-talus angle, joint line convergence angle of the ankle) as well as a novel measure of stance width. Results were compared using a paired T-test and Pearson's correlation coefficient. Following HTO, there was a significant (5.4°) change in subtalar alignment. Ground-talus angle appeared related both to the level of malalignment preoperatively and the magnitude of the alignment change caused by the HTO surgery; suggesting subtalar positioning as a key adaptive mechanism. In addition to compensatory changes within the subtalar joints, the patients on average had a 31% wider stance following HTO. These two mechanisms do not appear to be correlated but the morphology of the tibial plafond may influence which compensatory mechanisms are employed by different subgroups of HTO patients. These findings are of vital importance in clinical practice both to anticipate potential changes to the ankle and subtalar joints following HTO but it could also open up wider indications for HTO in the treatment of ankle malalignment and osteoarthritis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 82 - 82
2 Jan 2024
Barcik J Ernst M Buchholz T Constant C Mys K Epari D Zeiter S Gueorguiev B Windolf M
Full Access

Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing. A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were randomly assigned into two groups which mimicked early (immediate group) and late (delayed group) weight-bearing. The immediate group received daily stimulation (1000 cycles/day) from the first day post-op and the delayed group from the 22nd day post-op. Healing progression was evaluated by measurements of the stiffness of the repair tissue during mechanical stimulation and by quantifying callus area on weekly radiographs. At the end of the five weeks period, callus volume was measured on the post-mortem high-resolution computer tomography (HRCT) scan. Stiffness of the repair tissue (p<0.05) and callus progression (p<0.01) on weekly radiographs were significantly larger for the immediate group compared to the delayed group. The callus volume measured on the HRCT was nearly 3.2 times larger for the immediate group than for the delayed group (p<0.01). This study demonstrates that the absence of immediate mechanical stimuli delays callus formation, and that mechanical stimulation already applied in the early post-op phase promotes bone healing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 70 - 70
4 Apr 2023
Maestro-Paramio L García-Rey E Bensiamar F Rodríguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Mesenchymal stem cells (MSC) have potent immunomodulatory and regenerative effects via soluble factors. One approach to improve stem cell-based therapies is encapsulation of MSC in hydrogels based on natural proteins such as collagen and fibrin, which play critical roles in bone healing. In this work, we comparatively studied the influence of collagen and fibrin hydrogels of varying stiffness on the paracrine interactions established by MSC with macrophages and osteoblasts. Type I collagen and fibrin hydrogels in a similar stiffness range loaded with MSC from donants were prepared by modifying the protein concentration. Viability and morphology of MSC in hydrogels as well as cell migration rate from the matrices were determined. Paracrine actions of MSC in hydrogels were evaluated in co-cultures with human macrophages from healthy blood donors or with osteoblasts from bone explants of patients with osteonecrosis of the femoral head. Lower matrix stiffness resulted in higher MSC viability and migration. Cell migration rate from collagen hydrogels was higher than from fibrin matrices. The secretion of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E. 2. (PGE. 2. ) by MSC in both collagen and fibrin hydrogels increased with increasing matrix stiffness. Tumor necrosis factor-α (TNF-α) secretion by macrophages cultured on collagen hydrogels was lower than on fibrin matrices. Interestingly, higher collagen matrix stiffness resulted in lower secreted TNF-α while the trend was opposite on fibrin hydrogels. In all cases, TNF-α levels were lower when macrophages were cultured on hydrogels containing MSC than on empty gels, an effect partially mediated by PGE. 2. Finally, mineralization capacity of osteoblasts co-cultured with MSC in hydrogels increased with increasing matrix stiffness, although this effect was more notably for collagen hydrogels. Paracrine interactions established by MSC in hydrogels with macrophages and osteoblasts are regulated by matrix composition and stiffness


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 65 - 65
1 Dec 2022
Rosario R Coleman R Arruda E Grant J
Full Access

The goal of this study was to identify the effect of mismatches in the subchondral bone surface at the native:graft interface on cartilage tissue deformation in human patellar osteochondral allografts (OCA). Hypothesis: large mismatches in the subchondral bone surface will result in higher stresses in the overlying and surrounding cartilage, potentially increasing the risk of graft failure. Nano-CT scans of ten 16mm diameter cadaveric patellar OCA transplants were used to develop simplified and 3D finite element (FE) models to quantify the effect of mismatches in the subchondral bone surface. The simplified model consisted of a cylindrical plug with a 16 mm diameter (graft) and a washer with a 16 mm inner diameter and 36 mm outer diameter (surrounding native cartilage). The thickness of the graft cartilage was varied from 0.33x the thickness of native cartilage (proud graft subchondral bone) to 3x the thickness of native cartilage (sunken graft subchondral bone; Fig. 1). The thickness of the native cartilage was set to 2 mm. The surface of the cartilage in the graft was matched to the surrounding native cartilage. A 1 MPa pressure was applied to the fixed patellar cartilage surface. Scans were segmented using Dragonfly and meshed using HyperMesh. FE simulations were conducted in Abaqus 2019. The simplified model demonstrated that a high stress region occurred in the cartilage at the sharp bony edge between the graft and native subchondral bone, localized to the region with thinner cartilage. A 20% increase in applied pressure occurs up to 50μm away from the graft edge (primarily in the graft cartilage) for grafts with proud subchondral bone but varies little based on the graft cartilage thickness. For grafts with sunken subchondral bone, the size of the high stress region decreases as the difference between graft cartilage and native cartilage thickness decreases (Fig. 2-4), with a 200 μm high stress region occurring when graft cartilage was 3x thicker than native cartilage (i.e., greater graft cartilage thickness produces larger areas of stress in the surrounding native cartilage). The 3D models reproduced the key features demonstrated in the simplified model. Larger differences between native and graft cartilage thickness cause larger high stress regions. Differences between the 3D and simplified models are caused by heterogeneous cartilage surface curvature and thickness. Simplified and 3D FE analysis confirmed our hypothesis that greater cartilage thickness mismatches resulted in higher cartilage stresses for sunken subchondral bone. Unexpectedly, cartilage stresses were independent of the cartilage thickness mismatch for proud subchondral bone. These FE findings did not account for tissue remodeling, patient variability in tissue mechanical properties, or complex tissue loading. In vivo experiments with full-thickness strain measurements should be conducted to confirm these findings. Mismatches in the subchondral bone can therefore produce stress increases large enough to cause local chondrocyte death near the subchondral surface. These stress increases can be reduced by (a) reducing the difference in thickness between graft and native cartilage or (b) using a graft with cartilage that is thinner than the native cartilage. For any figures or tables, please contact the authors directly