The 3D interplay between femoral component placement on contact stresses and range of motion of hip resurfacing was investigated with a hip model. Pre- and post-operative contours of the bone geometry and the gluteus medius were obtained from grey-value CT-segmentations. The joint contact forces and stresses were simulated for variations in component placement during a normal gait. The effect of component placement on range of motion was determined with a collision model. The contact forces were not increased with optimal component placement due to the compensatory effect of the medialisation of the center of rotation. However, the total range of motion decreased by 33%. Accumulative displacements of the femoral and acetabular center of rotation could increase the contact stresses between 5–24%. Inclining and anteverting the socket further increased the contact stresses between 6–11%. Increased socket inclination and anteversion in combination with shortening of the neck were associated with extremely high contact stresses. The effect of
Purpose:
Background: Leg length equality and
This study aimed to evaluate the accuracy of implant placement with robotic-arm assisted total hip arthroplasty (THA) in patients with developmental dysplasia of the hip (DDH). The study analyzed a consecutive series of 69 patients who underwent robotic-arm assisted THA between September 2018 and December 2019. Of these, 30 patients had DDH and were classified according to the Crowe type. Acetabular component alignment and 3D positions were measured using pre- and postoperative CT data. The absolute differences of cup alignment and 3D position were compared between DDH and non-DDH patients. Moreover, these differences were analyzed in relation to the severity of DDH. The discrepancy of leg length and combined offset compared with contralateral hip were measured.Aims
Methods