Objective. This study compared the primary stability of two commercially
available acetabular components from the same manufacturer, which
differ only in
Introduction. The various problems that are managed with circular external fixation (e.g. deformity, complex fractures) also typically require serial plain x-ray imaging. One of the challenges here is that the relatively radio-opaque components of the circular external fixator (e.g. the rings) can obscure the view of the area of interest (e.g. osteotomy site, fracture site). In this presentation we describe how the
Aims. In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Methods. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the
Patients receiving reverse total shoulder arthroplasty (RTSA) often have osseous erosions because of glenohumeral arthritis, leading to increased surgical complexity. Glenoid implant fixation is a primary predictor of the success of RTSA and affects micromotion at the bone-implant interface. Augmented implants which incorporate specific
INTRODUCTION. Precise determination of material loss is essential for failure analysis of retrieved hip cups. To determine wear, the measured
Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for independent 3-dimensional medial and lateral femoral condylar
Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for 3-dimensional medial and lateral femoral condylar
Introduction. Kinematics post-TKA are complex; component alignment, component
Summary Statement. Subject specific FE models of human Achilles tendon were developed and optimum material properties were found. Stress concentration occurred at the midsection but dependent on stiffening and thinning of tendon, indicating that they are two major factors for tendon rupture. Introduction. Achilles tendon injuries are common, occurring about 250,000 per year in the US alone, yet the mechanisms of tendinopathy and rupture remain unknown. Most Achilles tendon ruptures occur at 2 to 6 cm above the insertion to the calcaneus bone. Previous angiographic studies have suggested that there is an avascular area in this region. However, it is not understood why that region receives poor blood supply and prone to rupture. The aim of this study is to investigate influence of
Introduction: The normal relationships of the patellofemoral joint provide a basis for the evaluation of patients with patellofemoral abnormalities. Previous studies have often described the patellofemoral joint using X-rays which are encumbered with projectional inaccuracies. We have used CT to describe the
Background. While posterior cruciate retaining (PCR) implants are a more common total knee arthroplasty (TKA) design, newer bi-cruciate retaining (BCR) TKAs are now being considered as an option for many patients, especially those that are younger. While PCR TKAs remove the ACL, the BCR TKA designs keep both cruciate ligaments intact, as it is believed that the resection of the ACL greatly affects the overall kinematic patterns of TKA designs. Various fluoroscopic studies have focused on determination of kinematics but haven't defined differentiators that affect motion patterns. This research study assesses the importance of the cruciate ligaments and femoral
Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for 3-dimensional medial and lateral femoral condylar
Summary. Our statistical shape analysis showed that size is the primary geometrical variation factor in the medial meniscus. Shape variations are primarily focused in the posterior horn, suggesting that these variations could influence cartilage contact pressures. Introduction. Variations in meniscal
Cemented acetabular components commonly have a long posterior wall (LPW). Alternative components have a hooded or offset reorientating
Introduction. A majority of the acetabular shells used today are designed to be press-fit into the acetabulum. Adequate initial stability of the press-fit implant is required to achieve biologic fixation, which provides long-term stability for the implant. Amongst other clinical factors, shell seating and initial stability are driven by the interaction between the implant's outer
Introduction: Patellofemoral complications are one of the major causes for revision surgery. In the prosthetic knee, the main determinant within the patellofemoral mechanism is said to be the design of the groove (Kulkarni et al., 2000). Other studies characterising the native trochlear groove used indirect methods such as photography, plain radiographs and measurements using probes and micrometer. The aim of this study was to define the 3-dimensional
The study aimed to compare trochlear profiles in recent total knee arthroplasty (TKA) models and to determine whether they feature improvements compared to their predecessors. The hypothesis was that recent TKA models have more anatomic trochlear compartments and would display no signs of trochlear dysplasia. The authors analyzed the
The management of skeletal metastases can be challenging for the orthopaedic surgeon. They represent a significant source of pain and disability for cancer patients, adding to the morbidity of their condition. Treatment is directed at the alleviation of symptoms and the restoration of function. Metastatic involvement of the proximal humerus can be especially debilitating, having the potential to cause severe pain which leads to loss of function, and may also be complicated by pathological fracture and hence attenuate upper limb function. We present a report of four cases where the use of reverse
The protective effect of lipped polyethylene uncemented acetabular liners against revision THA for instability has been reported. However, the effect of lip size has not been explored, nor has the effect on revision THA for loosening. We aimed to determine if uncemented acetabular liner
Background. Artificial total knee designs have revolutionized over time, yet 20% of the population still report dissatisfaction. The standard implants fail to replicate native knee kinematic functionality due to mismatch of condylar surfaces and non-anatomically placed implantation. (Daggett et al 2016; Saigo et al 2017). It is essential that the implant surface matches the native knee to prevent Instability and soft tissue impingement. Our goal is to use computational modeling to determine the ideal shapes and orientations of anatomically-shaped components and test the accuracy of fit of component surfaces. Methods. One hundred MRI scans of knees with early osteoarthritis were obtained from the NIH Osteoarthritis Initiative, converted into 3D meshes, and aligned via an anatomic coordinate system algorithm. Geomagic Design X software was used to determine the average anterior-posterior (AP) length. Each knee was then scaled in three dimensions to match the average AP length. Geomagic's least-squares algorithm was used to create an average surface model. This method was validated by generating a statistical shaped model using principal component analysis (PCA) to compare to the least square's method. The averaged knee surface was used to design component system sizing schemes of 1, 3, 5, and 7 (fig 1). A further fifty arthritic knees were modeled to test the accuracy of fit for all component sizing schemes. Standard deviation maps were created using Geomagic to analyze the error of fit of the implant surface compared to the native femur surface. Results. The average shape model derived from Principal Component Analysis had a discrepancy of 0.01mm and a standard deviation of 0.05mm when compared to Geomagic least squares. The bearing surfaces showed a very close fit within both models with minimal errors at the sides of the epicondylar line (fig 2). The surface components were lined up posteriorly and distally on the 50 femurs. Statistical Analysis of the mesh deviation maps between the femoral condylar surface and the components showed a decrease in deviation with a larger number of sizes reducing from 1.5 mm for a 1-size system to 0.88 mm for a 7-size system (table 1). The femoral components of a 5 or 7-size system showed the best fit less than 1mm. The main mismatch was on the superior patella flange, with maximum projection or undercut of 2 millimeters. Discussion and Conclusion. The study showed an approach to total knee design and technique for a more accurate reproduction of a normal knee. A 5 to 7 size system was sufficient, but with two widths for each size to avoid overhang. Components based on the average anatomic shapes were an accurate fit on the bearing surfaces, but surgery to 1-millimeter accuracy was needed. The results showed that an accurate match of the femoral bearing surfaces could be achieved to better than 1 millimeter if the component