Advertisement for orthosearch.org.uk
Results 1 - 20 of 72
Results per page:
Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 12
1 Mar 2002
Synnott K Kenkinson A Walsh M O’Brien T
Full Access

Introduction: Gait initiation is a sequence of stereotypical postural shifts culminating in a forward step. Muscular and gravitational forces interact leading to appropriate dynamic conditions that allow progression. This requires a complicated system of neural and muscular control. Derangement of ground reaction forces during gait initiation may be a more specific indicator of neuromuscular disease than steady state gait. Little work has been done on gait initiation in children and there is no published data on gait initiation with cerebral palsy. The aim of this study was to examine the ground reaction forces and centre of pressure in normal children during gait initiation, to compare these to similar values in hemiplegic children and to try to identify differences between the two which may be diagnostic for hemiplegia. Patients and methods: Five normal and five hemiplegic children were studied. Kinematic and dynamic data were collected using a CodaTM motion analysis system and KestlerTM force plate. All subjects stood with one foot on and one foot off the force plate and walked off upon hearing an audible cue. Tests were repeated measuring right and left, normal and hemiplegic legs as both stance and swing legs. Ground reaction forces in the X,Y and Z axes, centre of pressure and kinematic data were collected and studied. Results: 1) Normal children. In the vertical direction for the stance leg there is an initial fall in GRF, followed by a bimodal peak in GRF. In the fore-aft direction the GRF is initially directed backwards and subsequently has a bimodal forward force. Medio-laterally the stance GRF tending to adduct falls initially and subsequently rises with a bimodal peak. The forces in the swing leg reciprocate these forces. 2) Hemiplegic children. The overall pattern seen when the normal leg is the stance leg are similar to those in normal children with certain specific variations in force development and magnitude. When the hemiplegic leg is the stance leg the overall patterns are again similar but considerably less smooth with characteristic changes indicative of neuro-muscular disturbance. The initial “adjusting” forces tend to be larger indicating the greater force required for control. Discussion: The pattern and relative magnitude of forces measured for normal children are identical to those previously reported for adults. This validates our study design and indicates that central programming for gait initiation develops early in life. It is therefore an early developmental skill and may be used as a diagnostic test in childhood. Significant variations are seen in cerebral palsy. Knowledge of these specific changes may allow earlier and more accurate diagnosis of cerebral palsy in children under investigation for movement disorders. Normal GRF patterns during gait initiations may provide early reassurance for parents of children suspected of having cerebral palsy


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 475 - 475
1 Nov 2011
Pritchard E Mahfouz M
Full Access

Force profiles across the foot yield information on abnormal kinematics and may be used to indicate pathological changes in the lower limb. However, current technology is limited to tethered systems using wired sensors. This paper outlines a wireless prototype that allows force profile measurement and through an in-shoe monitoring device utilizing custom high-accuracy sensors. Direct measurement of the ground reaction force using a force plate is common practice for use in kinematic studies and is used as an input for mathematical models to predict forces across joints of interest during various activities. Force plates are reasonably accurate but are bulky and only allow one net force measurement at a single location and are not portable. Thus natural patient motion may be modified, intentionally or unintentionally, in order for heelstrike to occur on the force plate. In addition to force magnitude, it is useful to record force location to correlate with kinematics; abnormal kinematics will cause weight-bearing forces to shift across the foot. Current in-shoe pressure measurement devices on the market are plagued by errors up to 30% and require a cumbersome cable out of the shoe to read sensor data. By eliminating all wires, our device enables in-shoe monitoring in a research or clinical environment. The device uses microelectromechanical system (MEMS) capacitive pressure sensors fabricated in a flexible array that attaches to a shoe insole or orthotic. The sensors are concentrated at the heel and forefoot in the prototype design and they exhibit a highly linear response to loading, eliminating the need for constant recalibration. Electronics embedded in the shoe read the entire array of 256 sensors at a rate of 60 Hz. The data is transmitted via Bluetooth at 2.4 GHz to the receiving computer for visualization and analysis. The paper assesses current technology in in-shoe sensing, outlines the device design, and reports initial stages of testing. The prototype developed in this study shows promise for wireless monitoring of ground reaction forces for biomechanics analysis without restricting activity or impeding natural motion


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_7 | Pages 13 - 13
8 May 2024
Winson D Lawrence O Cazzola D Winson I
Full Access

Fifth metatarsal fractures in sport are known to be associated with acceleration and cross cutting movements when running. It is also established that playing surface has an impact on the ground reaction forces through the foot, increasing the strain through the fifth metatarsal. But what impact does boot design have on these forces? Current thought is that boots that utilise a blade stud design resist sideways slipping of the planted foot more than boots with a rounded stud. This study aims to compare ground reaction forces through the fifth metatarsal in 2 two different designs of rugby boot to assess what impact stud design might have. The forces across the foot were measured using Tekscan in-shoe pressure plates in 24 rugby players. Each player was asked to complete an agility course to measure acceleration, cutting and cross-cutting in the two different designs of rugby boot, reproducing true playing conditions. The boots used were the Canterbury Phoenix Club 8 Stud boot and the Canterbury Speed Club Blade boot. The trial was conducted on an 4G artificial pitch at the Cardiff Arms Park rugby ground. Ethical approval was obtained from Bath University and a research grant was provided by British Orthopaedic Foot and Ankle Society. The blade boot had significantly higher contact pressures than the stud boot on the fifth metatarsal in the combined movements (17.909 ± 10.442 N/cm2 Blade Vs 16.888 ± 9.992 N/cm2 Boot; P < .0125; n= 864 steps in each boot group). The blade boot also produced higher pressure during cross-cutting (32.331 ± 13.568 N/cm2 Vs 27.651 ± 15.194 N/cm2 p < 0.007). Pressures were also higher in both acceleration and cutting, although not significantly so. These results will guide clinicians advising athletes in shoe design, especially those predisposed to or rehabilitating from a fifth metatarsal fracture


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 63 - 63
17 Nov 2023
Bicer M Phillips AT Melis A McGregor A Modenese L
Full Access

Abstract. OBJECTIVES. Application of deep learning approaches to marker trajectories and ground reaction forces (mocap data), is often hampered by small datasets. Enlarging dataset size is possible using some simple numerical approaches, although these may not be suited to preserving the physiological relevance of mocap data. We propose augmenting mocap data using a deep learning architecture called “generative adversarial networks” (GANs). We demonstrate appropriate use of GANs can capture variations of walking patterns due to subject- and task-specific conditions (mass, leg length, age, gender and walking speed), which significantly affect walking kinematics and kinetics, resulting in augmented datasets amenable to deep learning analysis approaches. METHODS. A publicly available (. https://www.nature.com/articles/s41597-019-0124-4. ) gait dataset (733 trials, 21 women and 25 men, 37.2 ± 13.0 years, 1.74 ± 0.09 m, 72.0 ± 11.4 kg, walking speeds ranging from 0.18 m/s to 2.04 m/s) was used as the experimental dataset. The GAN comprised three neural networks: an encoder, a decoder, and a discriminator. The encoder compressed experimental data into a fixed-length vector, while the decoder transformed the encoder's output vector and a condition vector (containing information about the subject and trial) into mocap data. The discriminator distinguished between the encoded experimental data from randomly sampled vectors of the same size. By training these networks jointly using the experimental dataset, the generator (decoder) could generate synthetic data respecting specified conditions from randomly sampled vectors. Synthetic mocap data and lower limb joint angles were generated and compared to the experimental data, by identifying the statistically significant differences across the gait cycle for a randomly selected subset of the experimental data from 5 female subjects (73 trials, aged 26–40, weighing 57–74 kg, with leg lengths between 868–931 mm, and walking speeds ranging from 0.81–1.68 m/s). By conducting these comparisons for this subset, we aimed to assess the synthetic data generated using multiple conditions. RESULTS. We visually inspected the synthetic trials to ensure that they appeared realistic. The statistical comparison revealed that, on average, only 2.5% of the gait cycle showed significantly differences in the joint angles of the two data groups. Additionally, the synthetic ground reaction forces deviated from the experimental data distribution for an average of 2.9% of the gait cycle. CONCLUSIONS. We introduced a novel approach for generating synthetic mocap data of human walking based on the conditions that influence walking patterns. The synthetic data closely followed the trends observed in the experimental data, also in the literature, suggesting that our approach can augment mocap datasets considering multiple conditions, an approach unfeasible in previous work. Creation of large, augmented datasets allows the application of other deep learning approaches, with the potential to generate realistic mocap data from limited and non-lab-based data. Our method could also enhance data sharing since synthetic data does not raise ethical concerns. You can generate and download virtual gait data using our GAN approach from . https://thisgaitdoesnotexist.streamlit.app/. . Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 13, Issue 12 | Pages 716 - 724
4 Dec 2024
Cao S Chen Y Zhu Y Jiang S Yu Y Wang X Wang C Ma X

Aims. This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation. Methods. A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups. Results. The patients with OLT showed significantly increased dorsiflexion moment in the ankle joint compared with healthy subjects during 38.2% to 40.9% of the gait cycle, and increased eversion moment in the ankle joint compared with patients without OLT during 25.5% to 27.6% of the gait cycle. Compared with healthy subjects, the patients with OLT showed increased anterior force during 42% to 43% of the gait cycle, and maximal medial force (p = 0.005, ηp2 = 0.399). Conclusion. The patients with concomitant CAI and OLT exhibit increased dorsiflexion and eversion moment, as well as increased anterior and medial ankle joint reaction force during stair descent, compared with patients with CAI but without OLT and healthy subjects, respectively. Thus, a rehabilitative regimen targeting excessive ankle dorsiflexion and eversion moment may help to reduce ankle joint loading. Cite this article: Bone Joint Res 2024;13(12):716–724


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 5 - 5
1 Feb 2020
Burton W Myers C Rullkoetter P
Full Access

Introduction. Gait laboratory measurement of whole-body kinematics and ground reaction forces during a wide range of activities is frequently performed in joint replacement patient diagnosis, monitoring, and rehabilitation programs. These data are commonly processed in musculoskeletal modeling platforms such as OpenSim and Anybody to estimate muscle and joint reaction forces during activity. However, the processing required to obtain musculoskeletal estimates can be time consuming, requires significant expertise, and thus seriously limits the patient populations studied. Accordingly, the purpose of this study was to evaluate the potential of deep learning methods for estimating muscle and joint reaction forces over time given kinematic data, height, weight, and ground reaction forces for total knee replacement (TKR) patients performing activities of daily living (ADLs). Methods. 70 TKR patients were fitted with 32 reflective markers used to define anatomical landmarks for 3D motion capture. Patients were instructed to perform a range of tasks including gait, step-down and sit-to-stand. Gait was performed at a self-selected pace, step down from an 8” step height, and sit-to-stand using a chair height of 17”. Tasks were performed over a force platform while force data was collected at 2000 Hz and a 14 camera motion capture system collected at 100 Hz. The resulting data was processed in OpenSim to estimate joint reaction and muscle forces in the hip and knee using static optimization. The full set of data consisted of 135 instances from 70 patients with 63 sit-to-stands, 15 right-sided step downs, 14 left-sided step downs, and 43 gait sequences. Two classes of neural networks (NNs), a recurrent neural network (RNN) and temporal convolutional neural network (TCN), were trained to predict activity classification from joint angle, ground reaction force, and anthropometrics. The NNs were trained to predict muscle and joint reaction forces over time from the same input metrics. The 135 instances were split into 100 instances for training, 15 for validation, and 20 for testing. Results. The RNN and TCN yielded classification accuracies of 90% and 100% on the test set. Correlation coefficients between ground truth and predictions from the test set ranged from 0.81–0.95 for the RNN, depending on the activity. Predictions from both NNs were qualitatively assessed. Both NNs were able to effectively learn relationships between the input and output variables. Discussion. The objective of the study was to develop and evaluate deep learning methods for predicting patient mechanics from standard gait lab data. The resulting models classified activities with excellent performance, and showed promise for predicting exact values for loading metrics for a range of different activities. These results indicate potential for real-time prediction of musculoskeletal metrics with application in patient diagnostics and rehabilitation. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 6 - 6
17 Apr 2023
Maslivec A Leon D Cobb J
Full Access

Reports of improved functional outcome of Metal on Metal Hip Resurfacing Arthroplasty (mHRA) to Total Hip Replacement needs to be balanced with concerns of metal ion release. By removing cobalt-chrome, cHRA reduces these risks. To the author's knowledge, there is no data available on functional outcomes of cHRA, therefore the aim of the study was to compare the function between cHRA patients and mHRA patients. 24 patients received a unilateral cHRA (H1, Embody) and was compared to 24 age and gender matched patients with a unilateral mHRA (BHR, Smith and Nephew). All patients completed the Oxford Hip Score (OHS)[T2] and underwent gait analysis on an instrumented treadmill before and at a mean of 74wks (+/− 10) for mHRA and 53wks (+/− 2) for cHRA post op. Walking trials started at 4km/h and increased in 0.5km/h increments until a top walking speed (TWS) was achieved. Vertical ground reaction forces (GRF) were recorded along with the symmetry index (SI). Spatiotemporal measures of gait were also recorded. Vertical GRF were captured for the entire normalised stance phase using statistical parametric mapping (SPM; CI = 95%). The gain in OHS was similar: H1 (25-46), BHR(27-47). TWS increased by 19% with H1 (6.02 – 8.0km/hr), and 20% with BHR (6.02 – 7.37km/hr). SPM of the entire gait cycle illustrated the restoration of symmetry in both groups with no difference in GRF across the stance phase between groups at 5km/hr pre-op and post-op. At faster speeds (6.5km/hr), H1 patients had a mid-support GRF slightly closer to normal compared to BHR. Both groups increased step length similar from pre to post op (H1:0.76 – 0.85cm, BHR:0.77-0.86cm). In this study, subjective and objective functional outcome measures suggest that short term functional outcomes of ceramic resurfacing is not inferior to metal resurfacing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 4 - 4
2 Jan 2024
Han S Yoo Y Choi H Lee K Korhonen R Esrafilian A
Full Access

It is known that the gait dynamics of elderly substantially differs from that of young people. However, it has not been well studied how this age-related gait dynamics affects the knee biomechanics, e.g., cartilage mechanical response. In this study, we investigated how aging affects knee biomechanics in a female population using subject-specific computational models. Two female subjects (ages of 23 and 69) with no musculoskeletal disorders were recruited. Korea National Institute for Bioethics Policy Review Board approved the study. Participants walked at a self-selected speed (SWS), 110% of SWS, and 120% of SWS on 10 m flat ground. Three-dimensional marker trajectories and ground reaction forces (Motion Analysis, USA), and lower limbs’ muscle activities were measured (EMG, Noraxon USA). Knee cartilage and menisci geometries were obtained from subjects’ magnetic resonance images (3T, GE Health Care). An EMG-assisted musculoskeletal finite element modeling workflow was used to estimate knee cartilage tissue mechanics in walking trials. Knee cartilage and menisci were modeled using a transversely isotropic poroviscoelastic material model. Walking speed in SWS, 110%, and 120% of SWS were 1.38 m/s, 1.51 m/s, and 1.65 m/s for the young, and 1.21 m/s, 1.34 m/s and 1.46 m/s for the elderly, respectively. The maximum tensile stress in the elderly tibial cartilage was ~25%, ~33%, and ~32% lower than the young at SWS, 110%, and 120% of SWS, respectively. These preliminary results suggest that the cartilage in the elderly may not have enough stimulation even at 20% increases in walking speed, which may be one reason for tissue degeneration. To enhance these findings, further study with more subjects and different genders will investigate how age-related gait dynamics affects knee biomechanics. Acknowledgments: Australian NHMRC Ideas Grant (APP2001734), KITECH (JE220006)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 8 - 8
11 Apr 2023
Piet J Vancleef S Mielke F Van Nuffel M Orozco G Korhonen R Lories R Aerts P Van Wassenbergh S Jonkers I
Full Access

Altered mechanical loading is a widely suggested, but poorly understood potential cause of cartilage degeneration in osteoarthritis. In rodents, osteoarthritis is induced following destabilization of the medial meniscus (DMM). This study estimates knee kinematics and contact forces in rats with DMM to gain better insight into the specific mechanisms underlying disease development in this widely-used model. Unilateral knee surgery was performed in adult male Sprague-Dawley rats (n=5 with DMM, n=5 with sham surgery). Radio-opaque beads were implanted on their femur and tibia. 8 weeks following knee surgery, rat gait was recorded using the 3D²YMOX setup (Sanctorum et al. 2019, simultaneous acquisition of biplanar XRay videos and ground reaction forces). 10 trials (1 per rat) were calibrated and processed in XMALab (Knörlein et al. 2016). Hindlimb bony landmarks were labeled on the XRay videos using transfer learning (Deeplabcut, Mathis et al. 2019; Laurence-Chasen et al. 2020). A generic OpenSim musculoskeletal model of the rat hindlimb (Johnson et al. 2008) was adapted to include a 3-degree-of-freedom knee. Inverse kinematics, inverse dynamics, static optimization of muscle forces, and joint reaction analysis were performed. In rats with DMM, knee adduction was lower compared to sham surgery. Ground reaction forces were less variable with DMM, resulting in less variability in joint external moments. The mediolateral ground reaction force was lower, resulting in lower hip adduction moment, thus less force was produced by the rectus femoris. Rats with DMM tended to break rather than propel, resulting in lower hip flexion moment, thus less force was produced by the semimembranosus. These results are consistent with lower knee contact forces in the anteroposterior and axial directions. These preliminary data indicate no overloading of the knee joint in rats with DMM, compared with sham surgery. We are currently expanding our workflow to finite element analysis, to examine mechanical cues in the cartilage of these rats (Fig1G)


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 23 - 23
1 Apr 2018
Zeller I Dessinger G Sharma A Fehring T Komistek R
Full Access

Background. Previous in vivo fluoroscopic studies have documented that subjects having a PS TKA experience a more posterior condylar contact position at full extension, a high incidence of reverse axial rotation and mid flexion instability. More recently, a PS TKA was designed with a Gradually Reducing Radius (Gradius) curved condylar geometry to offer patients greater mid flexion stability while reducing the incidence of reverse axial rotation and maintaining posterior condylar rollback. Therefore, the objective of this study was to assess the in vivo kinematics for subjects implanted with a Gradius curved condylar geometry to determine if these subjects experience an advantage over previously designed TKA. Methods. In vivo kinematics for 30 clinically successful patients all having a Gradius designed PS fixed bearing TKA with a symmetric tibia were assessed using mobile fluoroscopy. All of the subjects were scored to be clinically successful. In vivo kinematics were determined using a 3D-2D registration during three weight-bearing activities: deep-knee-bend (DKB), gait, and ramp down (RD). Flexion measurements were recorded using a digital goniometer while ground reaction forces were collected using a force plate as well. The subjects then assessed for range of motion, condyle translation and axial rotation and ground reaction forces. Results. During a DKB, subjects implanted a Gradius designed, PS fixed bearing TKA design exhibited an average of 3.35 mm of posterior femoral rollback of the lateral condyle and 2.73 mm of the medial condyle with an average axial rotation of 4.90° in the first 90° of flexion. The average max flexion was 111.4°. From full extension to maximum flexion, the average axial rotation was 4.73°, while the subjects experienced 5.34 and 1.97 mm on the lateral and medial condyle rollback, respectively. During mid flexion from 30 to 60 degrees of flexion, the subjects experienced 1.34° of axial rotation, −1.13 and −0.11 mm of lateral and medial condyle motion. Conclusions. Subjects in this study did experience good weight-bearing flexion and magnitudes of axial rotation and posterior femoral rollback similar to previous PS TKA designs. During mid flexion, subjects in this study did experience less mid flexion paradoxical sliding than other PS TKA, leading to greater mid flexion stability for the patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 64 - 64
14 Nov 2024
Hudson P Federer S Dunne M Pring C Smith N
Full Access

Introduction. Weight is a modifiable risk factor for osteoarthritis (OA) progression. Despite the emphasis on weight loss, data quantifying the changes seen in joint biomechanics are limited. Bariatric surgery patients experience rapid weight loss. This provides a suitable population to study changes in joint forces and function as weight changes. Method. 10 female patients undergoing gastric bypass or sleeve gastrectomy completed 3D walking gait analysis at a self-selected pace, pre- and 6 months post-surgery. Lower limb and torso kinematic data for 10 walking trials were collected using a Vicon motion capture system and kinetics using a Kistler force plate. An inverse kinematic model in Visual 3D allowed for no translation of the hip joint centre. 6 degrees of freedom were allowed at other joints. Data were analysed using JASP with a paired samples t-test. Result. On average participants lost 28.8±7.60kg. No significant changes were observed in standing knee and hip joint angles. Walking velocity increased from 1.10±0.11 ms. -1. to 1.23±0.17 ms. -1. (t(9)=-3.060, p = 0.014) with no change in step time but a mean increase in stride length of 0.12m (SE: 0.026m; t(9)=-4.476, p = 0.002). A significant decrease of 21.5±4.2% in peak vertical ground reaction forces was observed (t(9)=12.863, p <0.001). Stride width significantly decreased by 0.04m (SE: 0.010m; t(9)=4.316, p = 0.002) along with a decrease in lateral impulse of 21.2Ns (SE: 6.977Ns; t(7), p = 0.019), but no significant difference in knee joint angles were observed. Double limb support time also significantly reduced by 0.02s (SE: 0.006s; t(9) = 3.639, p=0.005). Conclusion. The reduction in stance width and lateral impulse suggests a more sagittal compass-gait walk is being achieved. This would reduce valgus moments on the knee reducing loading in the medial compartment. The reduction in peak ground reaction force would reduce knee contact forces and again potentially slow OA progression


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 2 - 2
1 Mar 2013
Acquaah F Abel R Ahmed F Brown K
Full Access

Ontogeny of long bone cross-sectional geometry has lasting effects on adult bone structure. Growth and development of bone is influenced by biological and mechanical factors but the importance of these factors is poorly understood. A study of prenatal, neonatal and infant development in a bone with simple loading patterns, may improve our understanding. Five vertebral columns aged between 6 months prenatal to 2.5 years postnatal, were analysed to quantify the changes in trabecular architecture before and after birth. Several measures were collected including trabecular: thickness, bone volume fraction, connectivity density, number, structure model index and anisotropy. The findings show that in the first year after birth there is a substantial loss of bone volume via decreasing trabecular thickness and number, which tends to increase after 1.2 years. This sequential pattern of development may be a functional response to the initial requirement for calcium mineral homeostasis before birth, followed by the need for trabecular architecture to adapt to mechanical loading after birth. Calcium is essential for growing neonates and therefore osteoclastic resorbtion is up regulated by increasing parathyroid hormone levels. This may account for the loss of bone between 0–1 year. At one year infants begin to walk bipedally, thus weight bearing and ground reaction forces increase. The stable bone volume and increase in organisation of trabecular architecture after one year may reflect increasing weight bearing and ground reaction forces. These findings suggest that nutritional requirements after birth may have a stronger influence on vertebral trabeculae architecture than learning to walk


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 278 - 278
1 Jul 2011
Fuentes A Mezghani N Hagemeister N de Guise JA
Full Access

Purpose: Gait analysis has become an innovative approach to assess the biomechanical adaptations due to an ACL injury. However, interpreting the large amount of data collected often requires an expert. Therefore, there is a need to develop an automatic method capable to distinguish kinetic pattern of an ACL deficient patients from an asymptomatic population. Method: 26 ACL deficient patients and 30 asymptomatic participants took part in a treadmill gait analysis. 3D ground reaction forces (vertical, medio-lateral and anterior-posterior) were collected using the ADAL 3D treadmill. Features were extracted from the 3D ground reaction forces as a function of time and then classified by the nearest neighbour rule using a wavelet decomposition method. The classification method was tested on our data base of 56 participants. Results: The proposed classification method obtained an accuracy of 90%. The classification accuracy per class was higher for the ACL deficient group allowing classifying correctly 25 out of 26 ACL deficient patient. 25 out of the 30 asymptomatic participants were properly classified. Conclusion: This study shows that an automatic objective computer method could be used in a clinical setting to help diagnose an anterior cruciate ligament injury during a gait analysis evaluation. Future studies should apply this method on a larger database including data from patients with other musculoskeletal pathologies to help diagnose other injuries


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 15 - 15
17 Nov 2023
Mondal S Mangwani J Brockett C Gulati A Pegg E
Full Access

Abstract. Objectives. This abstract provides an update on the Open Ankle Models being developed at the University of Bath. The goal of this project is to create three fully open-source finite element (FE) ankle models, including bones, ligaments, and cartilages, appropriate musculoskeletal loading and boundary conditions, and heterogeneous material property distribution for a standardised representation of ankle biomechanics and pre-clinical ankle joint analysis. Methods. A computed tomography (CT) scan data (pixel size of 0.815 mm, and slice thickness of 1 mm) was used to develop the 3D geometry of the bones (tibia, talus, calcaneus, fibula, and navicular). Each bone was given the properties of a heterogeneous elastic material based on the CT greyscale. The density values for each bone element were calculated using a linear empirical relation, ρ= 0.0405 + (0.000918) HU and then power law equations were utilised to get the Young's Modulus value for each bone element [1]. At the bone junction, a thickness of cartilage ranging from 0.5–1 mm, and was modelled as a linear material (E=10 MPa, ν=0.4 [2]). All ligament insertions and positions were represented by four parallel spring elements, and the ligament stiffness and material attributes were applied in accordance with the published literature [2]. The ankle model was subjected to static loading (balance standing position). Four noded tetrahedral elements were used for the discretization of bones and cartilages. All degrees of freedom were restricted at the proximal ends of the tibia and fibula. The ground reaction forces were applied at the underneath of the calcaneus bone. The interaction between the cartilages and bones was modelled using an augmented contact algorithm with a sliding elastic contact between each cartilage. A tied elastic contact was used between the cartilages and the bone. FEbio 2.1.0 (University of Utah, USA) was used to construct the open-source ankle model. Results. When the double-legged stance phase loading condition was taken into consideration, stress at the antero-medial tibial wall (ranged from 1 to 7 MPa) was found to be similar to the prior work [2], indicating bulk of the load transfer was through this region. The maximum principal strain was predicted at the different regions on bones around the ankle joint. The proximal surface of the talus, and tibial distal surface were shown to have the highest maximum principal strains followed by antero-medial walls of the tibia bone, at the proximal location. Conclusions. The present open 3D FE model of the ankle will assist researchers in better understanding ankle biomechanics, precisely predicting load transfer, and examining the ankle to address unmet clinical needs for this joint. The results of the current investigation are realistic in terms of load transfer and stress-strain distribution across the ankle joint and well comparable to those reported in the literature [2]. However, sensitivity and ankle instability simulations will be performed in future work to investigate the model's reliability and robustness. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 18 - 18
1 Jan 2013
Wiik A Tankard S Lewis A Krishnan S Amis A Cobb J
Full Access

Background. High functional aspirations and an active ageing population equate to a growing number of patients awaiting hip arthroplasty demanding superior biomechanical function. The purpose of this study was to compare the biomechanics of top walking speed between two commonly used hip arthroplasty procedures to determine if a performance advantage existed. Methods. A retrospective comparative study was performed using sixty-seven subjects, twenty-two subjects in both hip resurfacing and total hip arthroplasty groups along with twenty-three healthy controls. All arthroplasty subjects were recruited based on high psychometric scoring and had been performed through a posterior approach, and had been discharged from follow-up. On an instrumented treadmill each subject was measured by a researcher blinded to which procedure that patient had undergone. After a six minute acclimatization period, the speed was increased incrementally until top walking performance had been attained. At all increments, ground reaction forces and temporospatial measurements were collected. Results. The two arthroplasty groups were well matched demographically, with no significant differences with regards to age, sex, height, BMI and pre-operative radiological severity. Treadmill temporospatial analysis demonstrated significant differences between the two groups. The hip resurfacing group were able to walk statistically faster (p=0.023) with an increased step length(p=0.041). The top walking speed mean of 2.06m/sec by the resurfacing almost matched the healthy controls. Assessing ground reaction forces and symmetry also demonstrated hip resurfacing was superior (Graph 1). [Graph 1: Mean Gait Biomechanics at Top Speed]. Conclusion. This study is the first to focus on high end performance following hip arthroplasty, encouraging patients to achieve as high a speed as they comfortably could. The total hip arthroplasty group walked nine percent faster than the previously published top speed of 1.73m/sec, however the resurfacings still walked ten percent faster, matching the normal controls for speed and step length


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 56 - 56
1 Dec 2022
Bishop E Kuntze G Clark M Ronsky J
Full Access

Individuals with multi-compartment knee osteoarthritis (KOA) frequently experience challenges in activities of daily living (ADL) such as stair ambulation. The Levitation “Tri-Compartment Offloader” (TCO) knee brace was designed to reduce pain in individuals with multicompartment KOA. This brace uses novel spring technology to reduce tibiofemoral and patellofemoral forces via reduced quadriceps forces. Information on brace utility during stair ambulation is limited. This study evaluated the effect of the TCO during stair descent in patients with multicompartment KOA by assessing knee flexion moments (KFM), quadriceps activity and pain. Nine participants (6 male, age 61.4±8.1 yrs; BMI 30.4±4.0 kg/m2) were tested following informed consent. Participants had medial tibiofemoral and patellofemoral OA (Kellgren-Lawrence grades two to four) diagnosed by an orthopaedic surgeon. Joint kinetics and muscle activity were evaluated during stair descent to compare three bracing conditions: 1) without brace (OFF); 2) brace in low power (LOW); and 3) brace in high power (HIGH). The brace spring engages from 60° to 120° and 15° to 120° knee flexion in LOW and HIGH, respectively. Individual brace size and fit were adjusted by a trained researcher. Participants performed three trials of step-over-step stair descent for each bracing condition. Three-dimensional kinematics were acquired using an 8-camera motion capture system. Forty-one spherical reflective markers were attached to the skin (on each leg and pelvis segment) and 8 markers on the brace. Ground reaction forces and surface EMG from the vastus medialis (VM) and vastus lateralis (VL) were collected for the braced leg. Participants rated knee pain intensity performing the task following each bracing condition on a 10cm Visual Analog Scale ranging from “no pain” (0) to “worst imaginable pain” (100). Resultant brace and knee flexion angles and KFM were analysed during stair contact for the braced leg. The brace moment was determined using brace torque-angle curves and was subtracted from the calculated KFM. Resultant moments were normalized to bodyweight and height. Peak KFMs were calculated for the loading response (Peak1) and push-off (Peak2) phases of support. EMG signals were normalized and analysed during stair contact using wavelet analysis. Signal intensities were summed across wavelets and time to determine muscle power. Results were averaged across all 3 trials for each participant. Paired T-tests were used to determine differences between bracing conditions with a Bonferroni adjustment for multiple comparisons (α=0.025). Peak KFM was significantly lower compared to OFF with the brace worn in HIGH during the push-off phase (p Table 1: Average peak knee flexion moments, quadriceps muscle power and knee pain during stair descent in 3 brace conditions (n=9). Quadriceps activity, knee flexion moments and pain were significantly reduced with TCO brace wear during stair descent in KOA patients. These findings suggest that the TCO assists the quadriceps to reduce KFM and knee pain during stair descent. This is the first biomechanical evidence to support use of the TCO to reduce pain during an ADL that produces especially high knee forces and flexion moments. For any figures or tables, please contact the authors directly


Bone & Joint Research
Vol. 10, Issue 11 | Pages 723 - 733
1 Nov 2021
Garner AJ Dandridge OW Amis AA Cobb JP van Arkel RJ

Aims. Bi-unicondylar arthroplasty (Bi-UKA) is a bone and anterior cruciate ligament (ACL)-preserving alternative to total knee arthroplasty (TKA) when the patellofemoral joint is preserved. The aim of this study is to investigate the clinical outcomes and biomechanics of Bi-UKA. Methods. Bi-UKA subjects (n = 22) were measured on an instrumented treadmill, using standard gait metrics, at top walking speeds. Age-, sex-, and BMI-matched healthy (n = 24) and primary TKA (n = 22) subjects formed control groups. TKA subjects with preoperative patellofemoral or tricompartmental arthritis or ACL dysfunction were excluded. The Oxford Knee Score (OKS) and EuroQol five-dimension questionnaire (EQ-5D) were compared. Bi-UKA, then TKA, were performed on eight fresh frozen cadaveric knees, to investigate knee extensor efficiency under controlled laboratory conditions, using a repeated measures study design. Results. Bi-UKA walked 20% faster than TKA (Bi-UKA mean top walking speed 6.7 km/h (SD 0.9),TKA 5.6 km/h (SD 0.7), p < 0.001), exhibiting nearer-normal vertical ground reaction forces in maximum weight acceptance and mid-stance, with longer step and stride lengths compared to TKA (p < 0.048). Bi-UKA subjects reported higher OKS (p = 0.004) and EQ-5D (p < 0.001). In vitro, Bi-UKA generated the same extensor moment as native knees at low flexion angles, while reduced extensor moment was measured following TKA (p < 0.003). Conversely, at higher flexion angles, the extensor moment of TKA was normal. Over the full range, the extensor mechanism was more efficient following Bi-UKA than TKA (p < 0.028). Conclusion. Bi-UKA had more normal gait characteristics and improved patient-reported outcomes, compared to matched TKA subjects. This can, in part, be explained by differences in extensor efficiency. Cite this article: Bone Joint Res 2021;10(11):723–733


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 405 - 406
1 Oct 2006
Bandi S Chockalingam N Rahmatalla A Dangerfield P Ahmed E Cochrane T
Full Access

Objective: To establish a relationship between the scoliotic curve and the centre of gravity during level walking in patients diagnosed with adolescent idiopathic scoliosis. Background data: There is no established aetiology for adolescent idiopathic scoliosis and the reasons for the progression of the curve are still unknown. But there is an agreement regarding multifactorial nature of the aetiology among many authors. One of the interesting factors suggested is asymmetry in the ground reaction forces during walking and their relation to the deformity, indicated by gait analysis studies. Studies have also indicated that the cause and progression of the deformity in idiopathic scoliosis may be due to kinematic differences in the spine, pelvis and lower limb. If a relation could be established between the scoliotic curve and the centre of gravity, it is possible to draw some conclusions regarding the aetiology. There is no method or study till date which looked at the relation of scoliotic curve with the centre of gravity. Materials and Methods: Patients who were diagnosed with adolescent idiopathic scoliosis were selected. Informed consent was taken for gait analysis. 16 Markers were placed over the lower limb and force plate, using modified Helen Hays set. 5 markers were placed over the surface landmarks of selected spinous processes (C7, T6, T12, L3 and S2). Ground reaction forces and motion data were analysed, using APAS gait system and the lines of vectors were developed and correlated with the marker over the second sacral spinous process. Results: With the help of this method we were able to establish a relationship between the scoliotic curve and centre of gravity line. These in turn were expressed in terms of changes in the moment in relation to the midline of the coronal plane. The results indicated that the changes were proportional to the severity of the scoliotic curve. Conclusion: We present a new method of establishing the relation of scoliotic curve with the ground reaction force and the centre of gravity. Initial results obtained from this method indicate the asymmetries in the deviation of the centre of gravity line in relation to the curve, during walking. Ongoing studies based on this method, will help to understand the pathogenesis and aetiology of scoliosis on a biomechanical basis which can help in developing new treatment modalities and efficient management of these patients


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 46 - 46
1 Mar 2008
Maurer J Ronsky J Loitz-Ramage B Andersen M Zernicke R Harder J
Full Access

The relations among tissue quality, socket discomfort, gait characteristics, and socket pressures are not well established for the unilateral below-knee amputee population. These relations were evaluated for six amputees at seventeen regions of interest on the residual limb. Pressure sensors were placed directly on the residual limb. Peak dynamic socket pressures were not directly related to peak joint moments. However, increases in ground reaction forces (GRFs) related to increases in socket pressures. The relations among tissue quality, socket discomfort, gait characteristics, and socket pressures are not well established for the unilateral below-knee amputee population. The purpose of this study was to evaluate these relations for six amputees. A thorough understanding of pressure distribution between the residual limb and prosthetic socket is critical to socket design and limb health. The subjects ranged in age from thirty to seventy-two years of age. The inclusion criteria were male, unilateral transtibial amputation, ability to ambulate independently, non-diabetic, no debilitating health conditions, non-recent amputee. Tissue sensation and socket discomfort were evaluated at seventeen regions of interest on the residual limb. Tissue sensation was assessed using Semmes-Weinstein monofilaments to test light touch/deep pressure sensation, tuning fork to test vibration sensation, and pinprick to test pain sensation. Socket discomfort was assessed using 10 cm Visual Analogue Scale. Gait characteristics were recorded during walking using a Motion Analysis System. Socket pressure measurements were made using F-socket pressure sensors in conjunction with I-Scan software program. Pressure sensors were placed directly on residual limb. Gait characteristics and socket pressures were compared across three different testing days. The site-specific tissue sensitivity scores did not correlate with the socket discomfort scores. In addition, site-specific discomfort scores did not correlate with peak socket pressures recorded at subject’s normal walking speed. Significant day-to-day pressure differences were found at four of the seventeen areas of interest. Peak dynamic socket pressures were not directly related to peak joint moments. Two subjects demonstrated direct relations between ground reaction forces (GRFs) and socket pressure on the different test days. Funding: NSERC, Workers’ Compensation Board (Alberta), University of Calgary


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 166 - 166
1 Jul 2014
Flaxman T Smith A Benoit D
Full Access

Summary Statement. Using a weight-bearing force control task, age-related changes in muscle action were observed in osteoarthritic subjects, however, greater activation of rectus femoris and medial hamstring muscles in the OA group compared to control indicates greater cocontraction and varied stabilisation strategies. Introduction. Osteoarthritis (OA) is the most debilitating condition among older adults. OA is thought to be mechanically driven by altering the stabilising integrity of the joint. The main contributor to knee joint stability is that of muscular contraction. In cases where the history of a traumatic knee joint injury is not a causal factor, a change in muscle function, resulting in reduced strength and force control in believed to induce OA development and progression. Since age is also a determining factor of OA, the purpose of this study was to investigate the muscle activation patterns of young healthy adults (YC), older healthy adults (OC), and adults with OA during a standing isometric force control task. Patients & Methods. A force matching protocol was used to evaluate muscle activation patterns of 41 YC (23.1±1.9 years of age) 18 OC (59.7±5.14 years), and 19 OA (63.5±8.1 years). Subjects stood with their leg of interest fixed to a force platform and modulated ground reaction forces while exposing equal body weight to each leg. Surface electromyography (EMG) of 8 muscles that cross the knee joint, kinetics and kinematics were recorded while subjects generated 30% of their maximal force in 12 different directions, corresponding to various combinations of medial-lateral-anterior-posterior ground reaction forces. Processed EMG was normalised to previously recorded maximum voluntary isometric contraction (MVIC) and ensemble averaged into group means for each loading direction. Muscle activation patterns were displayed in EMG polar plots and were quantified with symmetry analyses, mean activation levels (X. EMG. ), directions (Φ), and specificity indices (SI). Group differences were tested with independent T-tests at the p<0.05 level. Results. Muscle activation patterns were similar between groups (i.e. symmetry and Φ). However, X. EMG. of 7 muscles was significantly greater in both the OA and OC groups compared to YC. OA group also demonstrated significantly greater X. EMG. in the rectus femoris and tensor fascia lata as well as lower SI in semitendinosus hamstrings compared to OC. Discussion/Conclusion. Our results indicate that regardless of loading direction, both OC and OA groups have greater levels of muscle co-contraction than YC. This is suggested to be an adaptive response to age-related changes in muscle strength and force control. Since individuals with OA have reduced muscle strength and force control compared to age-matched controls, our results suggest that the OA group's greater, less specific activation of knee joint muscles relative to the OC is this “stiffening” response adapted by the OA group, however, to an extent that may expose the joint to detrimental loading conditions, contributing to the progression of OA. Further investigation regarding age-related neuromuscular changes and their influence on joint loading conditions and development of OA is warranted