Aims. Studies of infant
Background: Information on embryological
Background Information on embryological
Purpose: To study the development of the hip and the relationship of radiological angles between acetabulum and proximal femur in children 0–3 years and thus the influence of walking and weight bearing on
Femoroacetabular impingement (FAI) causes pain
and chondrolabral damage via mechanical overload during movement
of the hip. It is caused by many different types of pathoanatomy,
including the cam ‘bump’, decreased head–neck offset, acetabular
retroversion, global acetabular overcoverage, prominent anterior–inferior
iliac spine, slipped capital femoral epiphysis, and the sequelae
of childhood Perthes’ disease. Both evolutionary and developmental factors may cause FAI. Prevalence
studies show that anatomic variations that cause FAI are common
in the asymptomatic population. Young athletes may be predisposed
to FAI because of the stress on the physis during development. Other
factors, including the soft tissues, may also influence symptoms and
chondrolabral damage. FAI and the resultant chondrolabral pathology are often treated
arthroscopically. Although the results are favourable, morphologies
can be complex, patient expectations are high and the surgery is
challenging. The long-term outcomes of hip arthroscopy are still
forthcoming and it is unknown if treatment of FAI will prevent arthrosis.
Software to segment and to analyse connective CT-scan images of the bone-cement-stem complex was developed and validated. Parameters assessed included: volumes (cortical bone, cancelous bone, cement, stem, air in bone and air in cement), cement mantle thickness, cortical &
cancelous bone thickness, contact surface area between cement and bone, degree of centralisation (stem in cement, stem and cement in cancelous and in cortical bone). To validate and assess intra- and interob-server reliability two models were implanted in two dried macerated cadaver femurs using a third generation cementing technique. In the first a polished tapered stem (CPT, Zimmer) was cemented and removed after cement curing. The air filled cavity within the cement mantle could be identified as implant, avoiding metallic scatter artefacts. The second model (SLA) used a plastic stem prototype produced by computer design and a rapid prototyping stereolithographic technique. This model does not need to be removed before CT-scanning and allows assessment of whatever femoral implant. Validation occurred by comparing 41 manually segmented femoral cross-sections (25 CPT, 16 SLA) with data of corresponding CT-scan slices. Inter-observer reliability was assessed by having the same person performing the CT-scan and the analysis of both models four times. To assess intra-observer reliability, four different observers segmented 97 representative CT-images (46 CPT, 51 SLA). The average accuracy for surfaces areas (bone, cement, stem) within CT-images was 7.47 mm2 (1.80%), bone &
cement mantle thickness: 0.51 mm (9.39%), distances between centroids (stem-cement, stem-bone, cement-bone): 0.38 mm (18.5%) and contours (bone, cement): 0.27 mm (2.57%). The intra- and interobserver reliability of air content in bone and cement was suboptimal (intraclass-correlation coefficient (ICC) as low as 0.54, average ICC: 0.85). All other variables assessed were reliable (ICC >
0.81, average ICC: 0.96). Validity and reliability were comparable when assessed separately for the proximal, middle and distal third of both models. This in vitro technique can assess characteristics of cement mantles produced by different cementing techniques, centralizers and existing femoral implants or stem prototypes.
Aims. The primary aims of this study were to determine the time to sonographic correction of decentred hips during treatment with Pavlik harness for developmental dysplasia of the hip (DDH) and investigate potential risk factors for a delayed response to treatment. Methods. This was a retrospective cohort study of infants with decentred hips who underwent a comprehensive management protocol with Pavlik harness between 2012 and 2016. Ultrasound assessments were performed at standardized intervals and time to correction from centring of the femoral head was quantified. Hips with < 40% femoral head coverage (FHC) were considered decentred, and hips with > 50% FHC and α angles > 60° were considered corrected. Survival analyses using log-rank tests and Cox regression were performed to investigate potential risk factors for delayed time to correction. Results. A total of 108 infants (158 hips) successfully completed the bracing protocol and were included in the study. Mean age at treatment initiation was 6.9 weeks (SD 3.8). All included hips centred within two weeks of treatment initiation. At two, five, eight, and 12 weeks following centring of the femoral head, 13% (95% CI 8 to 19), 67% (95% CI 60 to 74), 98% (95% CI 95 to 99), and 99% (95% CI 98 to 100) of hips had cumulatively achieved sonographic correction, respectively. Low α angles at presentation were found to be a risk factor for delayed time to correction (hazard ratio per 1° decrease in α angle 1.04 (95% CI 1.01 to 1.06); p = 0.006). Conclusion. The majority of decentred hips undergoing Pavlik treatment achieved sonographic correction within eight weeks of centring and radiological severity at presentation was a predictor for slower recovery. These findings provide valuable insights into
As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the ligamentum teres and being a templating landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intrauterine development, plays a key role in
Avascular necrosis (AVN) of the femoral head is a potentially devastating complication of treatment for developmental dysplasia of the hip (DDH). AVN most commonly occurs following operative management by closed (CR) or open reduction (OR). This occurrence has frequently been examined in single centre, retrospective studies, however, little high-level evidence exists to provide insight on potential risk factors. The purpose of this observational, prospective multi-centre study was to identify predictors of AVN following operatively-managed DDH. A multi-centre, prospective database of infants diagnosed with DDH from 0–18 months was analyzed for patients treated by CR and/or OR. At minimum one year follow-up, the incidence of AVN (Salter criteria) was determined from AP pelvis radiographs via blinded assessment and consensus discussion between three senior paediatric orthopaedic surgeons. Patient demographics, clinical exam findings and radiographic data were assessed for potential predictors of AVN. A total of 139 hips in 125 patients (102 female, 23 male) underwent CR/OR at a median age of 10.4 months (range 0.7–27.9). AVN was identified in 37 cases (26.6% incidence) at a median 23 months post-surgery. Univariate logistic regression analysis comparing AVN and no AVN groups identified sex, age at diagnosis, age at surgery, pre-surgery IHDI grade and time between diagnosis and surgery as potential predictive factors. Specifically, male sex (OR 2.21 [0.87,5.72]), IHDI grade IV, and older age at diagnosis (7.4 vs. 9.5 months) and surgery (10.2 vs. 13.6 months) were associated with development of AVN. Likewise, increased time between diagnosis and surgery (2.9 vs. 5.5 months) was also associated with a higher incidence. No association was found with surgery type (CR vs. OR), pre-surgery acetabular index or surgical
Eccentric reductions may become concentric through femoral head ‘docking’ (FHD) following closed reduction (CR) for developmental dysplasia of the hip (DDH). However, changes regarding position and morphology through FHD are not well understood. We aimed to assess these changes using serial MRI. We reviewed 103 patients with DDH successfully treated by CR and spica casting in a single institution between January 2016 and December 2020. MRI was routinely performed immediately after CR and at the end of each cast. Using MRI, we described the labrum-acetabular cartilage complex (LACC) morphology, and measured the femoral head to triradiate cartilage distance (FTD) on the midcoronal section. A total of 13 hips with initial complete reduction (i.e. FTD < 1 mm) and ten hips with incomplete MRI follow-up were excluded. A total of 86 patients (92 hips) with a FTD > 1 mm were included in the analysis.Aims
Methods
Aims. Femoroacetabular impingement (FAI) is a potential cause of hip osteoarthritis (OA). The purpose of this study was to investigate the expression profile of matrix metalloproteinases (MMPs) in the labral tissue with FAI pathology. Methods. In this study, labral tissues were collected from four FAI patients arthroscopically and from three normal hips of deceased donors. Proteins extracted from the FAI and normal labrums were separately applied for MMP array to screen the expression of seven MMPs and three tissue inhibitors of metalloproteinases (TIMPs). The expression of individual MMPs and TIMPs was quantified by densitometry and compared between the FAI and normal labral groups. The expression of selected MMPs and TIMPs was validated and localized in the labrum with immunohistochemistry. Results. On MMP arrays, most of the targeted MMPs and TIMPs were detected in the FAI and normal labral proteins. After data normalization, in comparison with the normal labral proteins, expression of MMP-1 and MMP-2 in the FAI group was increased and expression of TIMP-1 reduced. The histology of the FAI labrum showed disorderly cell distribution and altered composition of thick and thin collagen fibres. The labral cells expressing MMP-1 and MMP-2 were localized and their percentages were increased in the FAI labrum. Immunohistochemistry confirmed that the percentage of TIMP-1 positive cells was reduced in the FAI labrum. Conclusion. This study established an expression profile of MMPs and TIMPs in the FAI labrum. The increased expression of MMP-1 and MMP-2 and reduced expression of TIMP-1 in the FAI labrum are indicative of a pathogenic role of FAI in
Between June 1988 and December 1997, 332 babies with 546 dysplastic hips were treated in the Pavlik harness for primary Developmental Dysplasia (DDH) as a product of the Southampton selective screening program. Each was managed by a strict protocol including ultrasonic monitoring of treatment within the harness. The group was prospectively studied over a mean duration of 6. 5 years (SD=2. 7y) with 89. 1% follow-up. The Acetabular Index (AI) and Centre-Edge angle of Wiberg (CEA) were measured on annual radiographs to determine the natural history of
This study aimed to evaluate sagittal spinopelvic alignment (SSPA) in the early stage of rapidly destructive coxopathy (RDC) compared with hip osteoarthritis (HOA), and to identify risk factors of SSPA for destruction of the femoral head within 12 months after the disease onset. This study enrolled 34 RDC patients with joint space narrowing > 2 mm within 12 months after the onset of hip pain and 25 HOA patients showing femoral head destruction. Sharp angle was measured for acetabular coverage evaluation. Femoral head collapse ratio was calculated for assessment of the extent of femoral head collapse by RDC. The following parameters of SSPA were evaluated using the whole spinopelvic radiograph: pelvic tilt (PT), sacral slope (SS), pelvic incidence (PI), sagittal vertical axis (SVA), thoracic kyphosis angle (TK), lumbar lordosis angle (LL), and PI-LL.Aims
Methods
The lateral centre-edge angle (LCEA) is a plain radiological measure of superolateral cover of the femoral head. This study aims to establish the correlation between 2D radiological and 3D CT measurements of acetabular morphology, and to describe the relationship between LCEA and femoral head cover (FHC). This retrospective study included 353 periacetabular osteotomies (PAOs) performed between January 2014 and December 2017. Overall, 97 hips in 75 patients had 3D analysis by Clinical Graphics, giving measurements for LCEA, acetabular index (AI), and FHC. Roentgenographical LCEA, AI, posterior wall index (PWI), and anterior wall index (AWI) were measured from supine AP pelvis radiographs. The correlation between CT and roentgenographical measurements was calculated. Sequential multiple linear regression was performed to determine the relationship between roentgenographical measurements and CT FHC.Aims
Methods
Purpose. Following closed or open reduction for developmental dysplasia of the hip (DDH), assessment of reduction is essential. With potentially poor accuracy in confirming reduction, the risk of abnormal
Background and Aims: Concentric pressure of the femoral head on acetabulum is the necessary prerequisite for normal
Early detection and management of developmental dysplasia of the hip (DDH) yields simpler and more effective the treatment. Diagnosis by ultrasound has changed the clinical view of the disease. However, the need and the way of ultrasound screening is still controversial. Diagnosis by ultrasound has shown that morphological abnormalities may not be associated with clinical signs. In Hungary all newborns are screened clinically within the first and also the third week of life, and controlled at the age of four month. Clinical examination is performed by an Ortopaedic specialist. Ultrasound screening is first performed for children with clinical signs and for children at risk at three weeks of age. Radiological examination, when necessary, is first performed at the age of four month. In the five year timeline (2001–2005) that was re-evaluated 7339 children presented 9706 times for screening for DDH at the University of Szeged (Hungary) Department of Orthopaedics. Out of these cases 6991 (95.2%) children were found to be healthy and 348 (4.8%) were diagnosed for DDH. Children with dysplasia presented 896 times for treatment and follow-up. Patient compliance in the DDH group was average 2.5 visits, while for the healthy group it was only average 1.2 visits. Because of clinical signs or risk factors 1569 (21%) children had ultrasound examination, all-together 2169 times. 84% of the initial ultrasound examination showed Graf stage Ia hip. Out of the diagnosed 348 DDH cases 31 patients (Graf IIa-IIc) were administered with Pavlik harness, and 314 (Graf Ib-IIa) were treated with splinting. Remaining 3 cases were diagnosed late, where no ultrasound examination was performed. In the DDH cases 832 ultrsonographic examination was performed during the treatment (average 2.4 examination/case). Radiographic control of all treated children excluded avascular necrosis in all cases. For this population 14 first operative procedure was needed so far. In our experience clinical screening and selective ultrasound examination is effective in the screening and early detection of developmental dyspalsia of the hip. In our practice, we promptly treated all patients with detected morphological changes as a deficiency in
Clinical screening aims to identify and treat infants with neonatal hip instability in order to reduce the risk of subsequent hip displacement but risks failures of diagnosis and treatment (abduction splinting) and potential iatrogenic effects. The Hip Trial aims to assess the clinical effectiveness of ultrasound (US) imaging compared to clinical assessment alone to guide the further management of infants with clinical hip instability. Infants with clinical hip instability confirmed by a second senior doctor were recruited from 33 UK centres and randomised to standardised US hip examination at age 2–8 weeks [US group: n=314] or clinical assessment alone [no ultrasound (NU) group: n=315. ] Primary outcomes by two years were hip X-ray appearances, operative treatment, abduction, splinting and walking. Analysis was ‘intention to treat’. Key prognostic factors were similar between the randomised groups. Protocol compliance was high (90% US; 92% NU). X-ray information was available for 91% by 12–14 months and 85% by two years. Fewer children in the US group had abduction splinting in the first two years (RR 0. 78; 95% CI 0. 65–0. 94; p=0. 01). Operative treatment was required by 21 US (6. 7%) and 25 NU (7. 9%) infants (RR 0. 84; 95% CI 0. 48–1. 47. ) By two years, subluxation, dislocation, acetabular dysplasia or avascular necrosis were identified on X-ray on one or both hips of 21 US and 21 NU children (RR 1. 00; 95% CI 0. 56 – 1. 80. ) One US and 4 NU children were not walking by two years (RR 0. 25; exact 95% CI 0. 03–2. 53; p=0. 37). The use of US imaging in infants with screen-detected clinical hip instability allows abduction splinting rates to be reduced, and is not associated with an increase in abnormal