Advertisement for orthosearch.org.uk
Results 1 - 20 of 4483
Results per page:
Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims. Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (. 99m. Tc-UBI. 29-41. -Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods. Methods. 99m. Tc-UBI. 29-41. -Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria. Results. Bacteria could be effectively stained in vitro and on prostheses, irrespective of the presence of biofilm. Infected prostheses revealed bacterial presence on the transition zone between the head and neck, and in the screw hole. Qualitative 2D fluorescence images could be complemented with quantitative 3D fhSPECT scans. Despite thorough chlorhexidine treatments, 28% to 44% of the signal remained present in the locations of the infection that were identified using imaging, which included 500 to 2,000 viable bacteria. Conclusion. The hybrid tracer . 99m. Tc-UBI. 29-41. -Cy5 allowed effective bacterial staining. Qualitative real-time fluorescence guidance could be effectively combined with nuclear imaging that enables quantitative monitoring of the effectiveness of cleaning strategies. Cite this article: Bone Joint Res 2023;12(1):72–79


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 438 - 439
1 Oct 2006
Baena FRY
Full Access

Measurements of a patient’s anatomy are often made in two different forms, for instance from a computer tomography (CT) scan and by direct measurement of the anatomy, or when comparing a CT and a magnetic resonance imaging (MRI) scan or at different times. Therefore, it is almost inevitable that the patient will be measured in a different position each time, since the relative position between the patient and the measuring or scanning device will be different. To align the patient’s anatomy between these different measurement systems a process of registration is used. This is necessary in a number of fields including computer assisted navigation, robotic assisted surgery and diagnostics. Computer assisted surgery (CAS) generally involves “patient to modality” registration, as, in any CAS application that involves planning, the relationship between the modeled space (where the procedure is planned) and the patient’s workspace (where the procedure is executed) needs to be established. Patient to modality registration involves the registration of patient-specific anatomy with an image acquired using one of many modalities. It is usually associated with intra-operative registration, where the actual patient’s position needs to be known with respect to a pre-operative or previously acquired image. Even though the acquisition of patient-specific information may itself involve the use of a modality, the purpose of the process is to register the patient’s position against the model. The two co-ordinate systems to be registered belong to the patient and to the modality used to acquire the registration image, respectively. In “image-based” methods, identifiable features, such as fiducial marker screws or anatomical landmarks, are first extracted from the model, which is generally reconstructed from CT images, and then “sensed,” or located, in the operating theatre. This process provides the system with enough positional information for the model’s and patient’s spaces to be registered against a common co-ordinate system. In recent years, the CAS community has seen a shift to “image-free” methods, where both the plan and registration process are carried out without any prior knowledge of the patient’s anatomy. The pre-operative image acquisition stage is avoided altogether, and the planning is executed intra-operatively during surgery. A complete functional model of the patient is reconstructed from anatomical landmarks sensed intra-operatively and, in some instances; intra-operatively acquired surface information is used to “morph” a standard anatomical atlas to resemble that of the patient. Image-free methods offer the prospect of no pre-operative imaging or planning, however their value, in terms of intra-operative workflow and accuracy of outcome, has yet to be assessed when compared to image-based methods


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 355 - 355
1 Dec 2013
Ishimaru M Shiraishi Y Hino K Onishi Y Miura H
Full Access

Introduction:. The widespread use of TKA promoted studies on kinematics after TKA, particularly of the femorotibial joint. Knee joint kinematics after TKA, including the range of motion (ROM) and the physical performance, are also influenced by the biomechanical properties of the patella. Surgeons sometimes report complications after TKA involvinganterior knee pain, patellofemoral impingement and instability. However, only few studies have focused specially on the patella. Because the patella bone is small and overlapped with the femoral component on scan images. In addition, the patellar component in TKA is made of x-ray–permeable ultra-high molecular weight polyethylene. It is impossible to radiographically determine the external contour of the patellar component precisely. No methods have been established to date to track the dynamic in vivo trajectory of the patella component. In this study, we analyzed the in vivo three-dimensional kinematics of the patellar component in TKA by applying our image matching method with image correlations. Methods:. A computed tomography (CT) and an x-ray flat panel detector system (FPD) were used. FPD-derived post-TKA x-ray images of the residual patellar bone were matched by computer simulation with the virtual simulation images created using pre-TKA CT data. For the anatomic location of the patellar component, the positions of the holes drilled for the patellar component pegs were used. This study included three patients with a mean age of 68 years (three females with right knee replacement) who had undergone TKA with the Quest Knee System and achieved a mean passive ROM of 0 to ≥ 130° after 6 or more month post-TKA. We investigated three-dimensional movements of the patellar component in six degrees of freedom (6 DOF) during squatting and kneeling. Furthermore, we simulated the three-dimensional movement of the patellar component, and we estimated and visualized the contact points between the patellar and femoral components on a three-dimensional model. Results:. Average root mean square errors of this technique with the patellar bone of a fresh-frozen pig complete knee joint have been confirmed as 0.2 mm for the translations and 0.2 degrees for the rotation. The 6 DOF analysis results showed that patellar dynamics were similar for all subjects on squatting and kneeling. For the patellar rotation during squatting, only 1 to 2 additional degrees were noted for all subjects. During kneeling, the patellar rotation noted adduction for all subjects. The patellar contact point on the femoral component gradually showed superior shift, increasing the distance with knee flexion during squatting and kneeling (Fig, 1. 2). Discussions and Conclusions:. In this study, no patellar shifts were detected in rotation or tilt during squatting, suggesting that the patellar component remained in the positions designed for early stages of flexion. And the patellar component shifted towards the lateral side during squatting. This finding suggests the idea that the patellar movement reflected the design of the Quest Knee system. This study demonstrated that the analytical method is useful for evaluating the pathologies and post-surgical conditions of the knee and other joints


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm. 3. ). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis. Results. CT-aBMD was successfully measured in 976/978 hips (99.8%). A significant correlation was found between CT-aBMD and DXA-BMD (r = 0.941; p < 0.001). In the ROC analysis, the area under the curve to diagnose osteoporosis was 0.976. The diagnostic sensitivity and specificity were 88.9% and 96%, respectively, with the cutoff set at 0.625 g/cm. 2. . Conclusion. Accurate DXA-BMD measurements and diagnosis of osteoporosis were performed from CT images using the system developed herein. As the models are open-source, clinicians can use the proposed system to screen osteoporosis and determine the surgical strategy for hip surgery. Cite this article: Bone Joint Res 2023;12(9):590–597


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 30 - 31
1 Mar 2008
Narvani A Tsiridis E Ramachandran M Briggs T Cannon S Saifuddin A Mitchell R
Full Access

The aim of this study was to compare the accuracy of image guided (ultrasound or CT) percutaneous needle biopsy to percutaneous needle biopsy without image guidance in diagnosis of soft tissue tumours. Eighty-eight consecutive patients with soft tissue lesion who were referred to the soft tissue tumour unit underwent percutaneous needle biopsies of their lesion either with image guidance or without. Sixty-one out of these 88 patients subsequently underwent excision of their lesion and the excised specimen was then subjected to histological examination. The accuracy of image guided percutaneous needle biopsy and percutaneous needle biopsy without image was then calculated by comparing the histological results of the needle biopsy to that of excision biopsy. The diagnosis accuracy of image guided percutaneous needle biopsy was 92% (34 out 37) compared to 79% (22 out of 28) for percutaneous needle biopsy without image. In 3 out of the 28 patients who had percutaneous needle biopsy without image guidance, there was insufficient material obtained from the needle biopsy to allow a histological diagnosis. This was not the case with any of the patients who had image guided percutaneous needle biopsy. Conclusion: Using image guidance, either USS or CT scan, improves the diagnostic accuracy of percutaneous needle biopsy and should be the gold standard technique in management of soft tissue tumours. However, if the lesion is palpable and not mobile, the accuracy of percutaneous needle biopsy without image guidance can be up to 79%


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 17 - 17
14 Nov 2024
Kjærgaard K Ding M Mansourvar M
Full Access

Introduction. Experimental bone research often generates large amounts of histology and histomorphometry data, and the analysis of these data can be time-consuming and trivial. Machine learning offers a viable alternative to manual analysis for measuring e.g. bone volume versus total volume. The objective was to develop a neural network for image segmentation, and to assess the accuracy of this network when applied to ectopic bone formation samples compared to a ground truth. Method. Thirteen tissue slides totaling 114 megapixels of ectopic bone formation were selected for model building. Slides were split into training, validation, and test data, with the test data reserved and only used for the final model assessment. We developed a neural network resembling U-Net that takes 512×512 pixel tiles. To improve model robustness, images were augmented online during training. The network was trained for 3 days on a NVidia Tesla K80 provided by a free online learning platform against ground truth masks annotated by an experienced researcher. Result. During training, the validation accuracy improved and stabilised at approx. 95%. The test accuracy was 96.1 %. Conclusion. Most experiments using ectopic bone formation will yield an inter-observer or inter-method variance of far more than 5%, so the current approach may be a valid and feasible technique for automated image segmentation for large datasets. More data or a consensus-based ground truth may improve training stability and validation accuracy. The code and data of this project are available upon request and will be available online as part of our publication


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 190 - 190
1 Mar 2006
Narvani A Tsiridis E Mitchell R Saifuddin A Briggs T Cannon S
Full Access

We compared the accuracy of image guided (ultrasound or CT) percutaneous core needle biopsy to percutaneous core needle biopsy without image guidance in diagnosis of soft tissue tumours. 140 patients with soft tissue lesion who were referred to a London bone and soft tissue tumour unit underwent percutaneous core needle biopsies of their lesion either with or without image guidance.111 of these 140 patients subsequently had surgical excision. The accuracy of image guided percutaneous biopsy and percutaneous biopsy without image was then calculated by comparing the histological results of the needle biopsy to that of the resection. The diagnosis accuracy of unguided biopsy was 78% (36 out of 46) compared to 95% (62 out of 65) in image guided. In 6 out of the 46 patients who had unguided biopsy, there was insufficient material obtained from the needle biopsy to allow histological diagnosis. This was not the case with any of the patients who had image guided core needle biopsy. Using image guidance, either USS or CT scan, improves the diagnostic accuracy of percutaneous core needle biopsy and must be considered in management of patients with soft tissue tumours


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 43 - 43
1 Oct 2019
Zochowski K Cheung J Argentieri EC Lin BQ Kaushik SS Burge AJ Koff MF Potter HG
Full Access

Introduction. MAVRIC-SL (MVSL), a multi-spectral magnetic resonance imaging (MRI) sequence [1] used for visualization of tissues near hip arthroplasty, can be accelerated by a short calibration scan [2], permitting an isotropic acquisition in a clinically feasible scan time. Decreasing the repetition time (TR) can further reduce scan time. This study evaluated the feasibility of acquiring isotropic MAVRIC-SL images (MVISO) and reduced TR isotropic MAVRIC-SL images (TRMVISO) of hip arthroplasties to elucidate the added clinical benefit of such acquisitions. Methods. Following IRB approval, MVSL, MVISO and TRMVISO images were acquired for 93 hip arthroplasties (84 subjects). Images were reviewed by 2 radiologists to evaluate clinical and image quality features. Comparison of features between scanning sequences was assessed by mixed-effects ordinal logistic regression and odds ratios (OR). Inter/intra-rater agreement was determined using Gwet's agreement coefficient (AC). Results. A calibration scan permitted acquisition of isotropic image sets in under 8 minutes. MVISO and TRMVISO had decreased blurring and improved visualization of the synovium and periprosthetic bone as compared to MVSL (p<0.001, Fig. 1). MVISO and TRMVISO improved image quality features over MVSL, OR range: 1 to 968. MVISO acquisitions also had better image quality, visualization of synovium and bone, lesion conspicuity, and decreased blurring than TRMVISO (p<0.032). Substantial to perfect (0.61 ≥ AC ≥ 1.0) agreement was found for 86% of factors evaluated by the 2 readers. Conclusions. The isotropic acquisitions displayed clinically relevant features better than MVSL, with notable improvement of blurring and overall image quality. The TRMVISO altered the image contrast and contributed to poorer visualization of synovial reactions as compared to MVISO. The study demonstrated that isotropic MAVRIC scans are clinically feasible, and that MVISO scans added clinical value through improved visualization by reducing blurring. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_3 | Pages 1 - 1
1 Apr 2019
Batta V Batra V
Full Access

Background of Study. Identification of the exact make and model of an orthopaedic implant prior to a revision surgery can be challenging depending upon the surgeon's experience and available knowledge base about the available implants. The current identification procedure is manual and time consuming as the surgeon may have to do a comprehensive search within an online database of radiographs of an implant to make a visual match. There is further time lapse in contacting that particular implant manufacturer to confirm the make and model of the implant and then order the whole inventory for the revision surgery. This leads to delay in treatment thus requiring extra hospital bed occupancy. Materials and Methods. We have analysed image recognition techniques currently in use for image recognition to understand the underlying technologies based on an interface commonly known as Application Programming interface (API). These API's specifies how the software components of the proposed application interact with each other. The objective of this study is to leverage one or a combination of API's to design a fully functional application in the initial phase and that can help recognize the implant accurately from a large database of radiographs and then develop a specialized and advanced API/Technology in the implant identification application. Results. Our study takes into account the existent technologies such as Facebook, Pictoria, Imagga, Google images. We found that there is an API currently available that can be directly applied to build an implant recognition system. However, commonly known Facebook's image tagging algorithms to store unique information with each image is the starting point to help build an intelligent system that in combination with image processing and development of a custom implant recognition API. Conclusion. There is an urgent need to have a robust and accurate system for identification of orthopaedic implants. Revision surgeries may need to be carried out by hospitals without access to index surgery operating notes. Patients may approach the most convenient not necessarily the same surgeon for a revision surgery. The dependency upon surgeon's experience, hospitals facilities and archiving of records can be avoided with the use of a single application that allows multiple manufacturers to contribute to a database of catalogue of their products


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 113 - 113
1 Dec 2020
Kempfert M Schwarze M Angrisani N Welke B Willbold E Reifenrath J
Full Access

Chronic rotator cuff tears are a major problem especially in the elderly population. Refixation is associated with high re-rupture rates. Therefore new implants or healing methods are needed. For a control of success biomechanical characteristics of native as well as treated tendons are of particular importance. Currently, tensile tests with static material testing machines are the most common technique for the biomechanical characterization of tendons. Resulting values are the maximum force (Fmax), stiffness and the Young´s modulus. However, no information is given about the allocation of strains over the tendon area. In addition, the determination of Fmax results in tissue destruction thus foreclosing further evaluation like histology. The Digital Image Correlation (DIC) is a contact-free non-destructive optical measuring method which gives information about distribution of strains by tracking the areal shift of an applied speckle pattern. The needed speckle pattern has to have a high contrast, a homogeneous distribution and a good adhesion to the surface. The method is established for the characterization of construction materials [1] to detect e.g. weak points. The present study examined if DIC is applicable for the complementary biomechanical evaluation of the sheep infraspinatus tendon. Fine ground powder extracted from a printer cartridge was chosen as a starting point. Preliminary to the in vitro experiments, the powder was applied on sheets with different methods: brushing, blowing, sieving and stamping. Stamping showed best results and was used for further in vitro tests on cadaveric native tendons (n=5). First, the toner powder was transferred to coarse-grained abrasive paper using a brush and stamped on the tendon surface. Afterwards DIC analysis was performed. For the in vivo tests, the left infraspinatus tendon of two German black-headed Mutton Sheep was detached and then refixed with bone anchors, the right tendon was used as native control (authorization: AZ 33.19-42502-04-17/2739). 12 weeks after surgery the animals were euthanized, the shoulders were explanted and DIC measurement performed. The speckle pattern could be applied adequately on the smooth tendon surfaces of native tendons. All specimens could be analyzed by DIC with sufficient correlation coefficients. The highest displacements were measured in the peripheral areas, whereas the central part of the tendon showed a low displacement. Repaired left tendons showed obvious differences already macroscopically. The tendons were thicker and showed inhomogeneous surfaces. Application of the toner powder by stamping was distinctly more complicated, DIC analysis could not produce sufficient correlation coefficients. In summary, transfer of DIC to native infraspinatus tendons of sheep was successful and can be further transferred to other animal and human tendons. However, irregular surfaces in tendon scar tissues affect the application of an adequate speckle pattern with a stamp technique. Therefore, further modifications are necessary. This research project has been supported by the German Research Foundation “Graded Implants FOR 2180 – tendon- and bone junctions” WE 4262/6-1


Bone & Joint Open
Vol. 3, Issue 1 | Pages 12 - 19
3 Jan 2022
Salih S Grammatopoulos G Burns S Hall-Craggs M Witt J

Aims. The lateral centre-edge angle (LCEA) is a plain radiological measure of superolateral cover of the femoral head. This study aims to establish the correlation between 2D radiological and 3D CT measurements of acetabular morphology, and to describe the relationship between LCEA and femoral head cover (FHC). Methods. This retrospective study included 353 periacetabular osteotomies (PAOs) performed between January 2014 and December 2017. Overall, 97 hips in 75 patients had 3D analysis by Clinical Graphics, giving measurements for LCEA, acetabular index (AI), and FHC. Roentgenographical LCEA, AI, posterior wall index (PWI), and anterior wall index (AWI) were measured from supine AP pelvis radiographs. The correlation between CT and roentgenographical measurements was calculated. Sequential multiple linear regression was performed to determine the relationship between roentgenographical measurements and CT FHC. Results. CT-measured LCEA and AI correlated strongly with roentgenographical LCEA (r = 0.92; p < 0.001) and AI (r = 0.83; p < 0.001). Radiological LCEA correlated very strongly with CT FHC (r = 0.92; p < 0.001). The sum of AWI and PWI also correlated strongly with CTFHC (r = 0.73; p < 0.001). CT measurements of LCEA and AI were 3.4° less and 2.3° greater than radiological LCEA and AI measures. There was a linear relation between radiological LCEA and CT FHC. The linear regression model statistically significantly predicted FHC from LCEA, F(1,96) = 545.1 (p < 0.001), adjusted R. 2. = 85.0%, with the prediction equation: CT FHC(%) = 42.1 + 0.77(XRLCEA). Conclusion. CT and roentgenographical measurement of acetabular parameters are comparable. Currently, a radiological LCEA greater than 25° is considered normal. This study demonstrates that those with hip pain and normal radiological acetabular parameters may still have deficiencies in FHC. More sophisticated imaging techniques such as 3D CT should be considered for those with hip pain to identify deficiencies in FHC. Cite this article: Bone Jt Open 2022;3(1):12–19


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 14 - 14
1 Oct 2012
Wong K Kumta S Tse L Ng W Lee K
Full Access

CT and MRI scans are complementary preoperative imaging investigations for planning complex musculoskeletal bone tumours resection and reconstruction. Conventionally, tumour surgeons analyse two-dimensional (2-D) imaging information, mentally integrate and formulate a three-dimensional (3-D) surgical plan. Difficulties are anticipated with increase in case complexity and distorted surgical anatomy. Incorporating computer technology to aid in this surgical planning and executing the intended resection may improve precision. Although computer-assisted surgery has been widely used in cranial biopsies and tumour resection, only small case series using CT-based navigation are recently reported in the field of musculoskeletal tumor surgery. We investigated the results of CT/MRI image fusion for Computer Assisted Tumor Surgery (CATS) with the help of a navigation system. We studied 21 patients with 22 musculoskeletal tumours who underwent CATS from March 2006 to July 2009. A commercially available CT-based spine navigation system (Stryker Navigation; CT spine) was used. Of the 22 patients, 10 were males, 11 were females, and the mean age was 32 years at the time of surgery (range, 6–80 years). Five tumours were located in the pelvis, seven sacrum, eight femurs, and two tibia. The primary diagnosis was primary bone tumours in 16 (3 benign, 13 sarcoma) and metastatic carcinoma in four. The minimum follow-up was 17 months (average, 35.5 months; range, 17–52 months). Preoperative CT and MRI scan of each patient were performed. Axial CT slices of 0.0625mm or 1.25mm thickness and various sequences of MR images in Digital Imaging and Communications in Medicine (DICOM) format were obtained. CT and MR images for 22 cases were fused using the navigation software. All the reconstructed 2-D and 3-D images were used for preoperative surgical planning. The plane of tumour resection was defined and marked using multiple virtual screws sited along the margin of the planned resection. We also integrated the computer-aided design (CAD) data of custom-made prostheses in the final navigation resection planning for eight cases. All tumour resections could be carried out as planned under navigation guidance. Navigation software enabled surgeons to examine all fused image datasets (CT/MRI scans) together in two spatial and three spatial dimensions. It allowed easier understanding of the exact anatomical tumor location and relationship with surrounding structures. Intraoperatively, image guidance with the help of fusion images, provided precise visual orientation, easy identification of tumor extent, neural structures and intended resection planes in all cases. The mean time for preoperative navigation planning was 1.85 hours (1 to 3.8). The mean time for intraoperative navigation procedures was 29.6 minutes (13 to 60). The time increased with case complexity but lessened with practice. The mean registration error was 0.47mm (0.31 to 0.8). The virtual preoperative images matched well with the patients' operative anatomy. A postoperative superficial wound infection developed in one patient with sacral chordoma that resolved with antibiotic whereas a wound infection in another with sacral osteosarcoma required surgical debridement and antibiotic. After a mean follow-up of 35.5 months (17–52 months), five patients died of distant metastases. Three out of four patients with local recurrence had tumors at sacral region. Three of them were soft tissue tumour recurrence. The mean functional MSTS score in patients with limb salvage surgery was 28.3 (23 to 30). All patients (except one) with limb sparing surgery and prosthetic reconstruction could walk without aids. Multimodal image fusion yields hybrid images that combine the key characteristics of each image technique. Back conversion of custom prosthesis in CAD to DICOM format allowed fusion with navigation resection planning and prosthesis reconstruction in musculoskeletal tumours. CATS with image fusion offers advanced preoperative 3-D surgical planning and supports surgeons with precise intraoperative visualisation and identification of intended resection for pelvic, sacral tumors. It enables surgeons to reliably perform joint sparing intercalated tumor resection and accurately fit CAD custom-made prostheses for the resulting skeletal defect


Bone & Joint Research
Vol. 5, Issue 11 | Pages 577 - 585
1 Nov 2016
Hase E Sato K Yonekura D Minamikawa T Takahashi M Yasui T

Objectives. This study aimed to evaluate the histological and mechanical features of tendon healing in a rabbit model with second-harmonic-generation (SHG) imaging and tensile testing. Materials and Methods. A total of eight male Japanese white rabbits were used for this study. The flexor digitorum tendons in their right leg were sharply transected, and then were repaired by intratendinous stitching. At four weeks post-operatively, the rabbits were killed and the flexor digitorum tendons in both right and left legs were excised and used as specimens for tendon healing (n = 8) and control (n = 8), respectively. Each specimen was examined by SHG imaging, followed by tensile testing, and the results of the two testing modalities were assessed for correlation. Results. While the SHG light intensity of the healing tendon samples was significantly lower than that of the uninjured tendon samples, 2D Fourier transform SHG images showed a clear difference in collagen fibre structure between the uninjured and the healing samples, and among the healing samples. The mean intensity of the SHG image showed a moderate correlation (R. 2. = 0.37) with Young’s modulus obtained from the tensile testing. Conclusion. Our results indicate that SHG microscopy may be a potential indicator of tendon healing. Cite this article: E. Hase, K. Sato, D. Yonekura, T. Minamikawa, M. Takahashi, T. Yasui. Evaluation of the histological and mechanical features of tendon healing in a rabbit model with the use of second-harmonic-generation imaging and tensile testing. Bone Joint Res 2016;5:577–585. DOI: 10.1302/2046-3758.511.BJR-2016-0162.R1


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXII | Pages 10 - 10
1 May 2012
Veale D
Full Access

Body Image is defined as our internalised sense of what we look like. For most of us, there is a relatively good match between what we think we look like and how we appear to other people. Body image can also be studied in terms of what you look like in the eyes of an observer and the pressures that occur to look a certain way. Body Dysmorphic Disorder (BDD) is the most extreme type of body image problem and consists of a preoccupation with one or more features that is not noticeable to others or the person's concern is markedly excessive. The preoccupation is associated with many time consuming rituals such as mirror gazing or constant comparing. It is associated with a poor quality of life, social isolation, depression and a high risk of committing suicide. Any part of the body may be involved but the foot is an uncommon focus for people with BDD. Such individuals often have needless dermatological treatment and cosmetic surgery. Body image problems and especially BDD is easily trivialised and stigmatised. People with BDD can benefit from cognitive behaviour therapy and certain types of medication. Speaker. David Veale is Consultant Psychiatrist in Cognitive Behaviour Therapy at the South London and Maudsley Trust and The Priory Hospital North London and an Honorary Senior Lecturer at the Institute of Psychiatry, Kings College London. He runs a national specialist service for people with BDD and obsessive-compulsive disorder. He has published about 70 articles and co-authored five books including “Overcoming Body Image Problems (including Body Dysmorphic Disorder” published by Robinson and a treatment manual for BDD. He is a past President of The British Association of Behavioural and Cognitive Psychotherapies. His website is . www.veale.co.uk


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 66 - 66
1 Nov 2016
Tong H Hardisty M Whyne C
Full Access

Strain is a robust indicator of bone failure initiation. Previous work has demonstrated the measurement of vertebral trabecular bone strain by Digital Volume Correlation (DVC) of µCT scan in both a loaded and an unloaded configuration. This project aims to improve previous strain measurement methods relying on image registration, improving resolution to resolve trabecula level strain and to improve accuracy by applying feature based registration algorithms to µCT images of vertebral trabecular bone to quantify strain. It is hypothesised that extracting reliable corresponding feature points from loaded and unloaded µCT scans can be used to produce higher resolution strain fields compared to DVC techniques. The feature based strain calculation algorithm has two steps: 1) a displacement field is calculated by finding corresponding feature points identified in both the loaded and unloaded µCT scans 2) strain fields are calculated from the displacement fields. Two methods of feature point extraction, Scale Invariant Feature Transform (SIFT) and Skeletonisation, were applied to unloaded (fixed) and loaded (moving) µCT images of a rat tail vertebra. Spatially non-uniform displacement fields were generated by automatically matching corresponding feature points in the unloaded and loaded scans. The Thin Plate Spline method and a Moving Least Squares Meshless Method were both tested for calculating strain from the displacement fields. Verification of the algorithms was performed by testing against known artificial strain/displacement fields. A uniform and a linearly varying 2% compressive strain field were applied separately to an unloaded 2D sagittal µCT slice to simulate the moving image. SIFT was unable to reliably match identified feature points leading to large errors in displacement. Skeletonisation generated a more accurate and precise displacement field. TPS was not tolerant to small displacement field errors, which resulted in inaccurate strain fields. The Meshless Methods proved much more resilient to displacement field errors. The combination of Skeletonisation with the Meshless Method resulted in best performance with an accuracy of −405µstrain and a detection limit of 1210µstrain at a strain resolution of 221.5µm. The DVC algorithm verified using the same validation test yielded a similar detection limit (1190µstrain), but with a lower accuracy for the same test (2370µstrain) for a lower resolution strain field (770µm) (Hardisty, 2009). The Skeletonisation algorithm combined with the Meshless Method calculated strain at a higher resolution, but with a similar detection limit, to that of traditional DVC methods. Future improvements to this method include the implementation of subpixel feature point identification and adapting this method of strain measurement into a 3D domain. Ultimately, a hybrid DVC/feature registration algorithm may further improve the ability to measure trabecular bone strain using µCT based image registration


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 26 - 26
1 Jan 2011
Davis B Jani B Patel A
Full Access

Printed plain radiographs have traditionally been the method of image transfer between hospitals, but the advent of digital imaging has revolutionised modern day radiology. It is now commonplace for compact discs to be used as the transport media for digital images, the theoretical advantages being ease of transport and storage, integration with PACS systems and the ability to perform image manipulation. However, in our tertiary referral centre for pelvic and acetabular trauma, we noted problems with digital image transfer using this method. We examined the last 25 compact discs sent to our unit for functionality on 3 separate computers. Only 17/25 discs loaded on all computers, and 2 discs failed to load on any computer. 9 of the remaining 23 discs did not allow image manipulation, and 1 disc would not allow retrieval of all the contained images. 5 of the 23 discs took longer than 5 minutes to retrieve the contained images. In summary, we classed 10 of the 25 discs as acceptable. Patient transfer to our unit was not delayed, but 4 patients underwent repeat CT scans due to incomplete imaging. Digital technology has made great advances into medical imaging. Standardisation using the DICOM format for image creation has attempted to eliminate issues of compatibility, but variation in software used to produce and view images can still vary from these standards. Technical errors in the creation of discs should be eliminated at source, and it is mandatory that referring units check the functionality of discs before they are sent. In this way, the potential for delay to transfer and subsequent repeat exposure to ionising radiation can be avoided


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 8 - 8
1 Oct 2012
Kraus M Riepl C Jones A Gebhard F Schöll H
Full Access

Fractures of the femoral head are a challenging problem. The most often performed head preserving procedure worldwide is closed reduction and insertion of cannulated screws under fluoroscopic control. The use of navigation is still experimental in general trauma since rigid reference markers must be attached to all fragments. The examined system (Surgix®, Tel Aviv, Israel) is a fluoroscopy based image analysing system. It consists of a workstation and X-ray opaque markers in surgical tools. When the tool is visible in a C-arm shot a trajectory is displayed as additional layer in the image to serve as guidance for the surgeon. Forty synthetic femurs (Synbone®, Malans, Switzerland) were used and placed inside foam to simulate the soft tissue of the thigh. The models were equipped with 4.5mm radio-opaque markers at the fovea capitis femoris as target point. The aim was to bring the tip of a K-wire as close as possible to the target point entering the bone at the lateral base of the greater trochanter in a center-center position. Twenty were done under image guidance and 20 were operated the conventional way. Outcome measures included the accuracy (the distance between the tip of the wire and the target in a CT), the number of guide wire insertions, procedure duration, radiation exposure and learning curve. In the image guided group optimal guide wire placement was accomplished on first pass in 65% of the cases as compared to 5% in the conventional group (p = < 0.0001). The average number of trial and error was significantly lower in the guided group (1.7 vs. 5.8, p = < 0.0001). Consequently the average duration of the guided procedure was significantly shorter (p = 0.0008) along with radiation exposure time reduced by over 70% (p = 0.0002). The guidance system hit averaged 5.8 mm off target as compared to 5.3 mm for the freehand method (p = 0.3319). Image based guidance significantly shortened the procedure, reduced the radiation exposure and the number of trials without changing the surgeons workflow and can be used in trauma cases were reference marker based navigation is not applicable


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 19 - 19
1 Oct 2014
Venne G Pickell M Pichora D Bicknell R Ellis R
Full Access

Reverse shoulder arthroplasty has a high complication rate related to glenoid implant instability and screw loosening. Better radiographic post-operative evaluation may help in understanding complications causes. Medical radiographic imaging is the conventional technique for post-operative component placement analysis. Studies suggest that volumetric CT is better than use of CT slices or conventional radiographs. Currently, post-operative CT use is limited by metal-artifacts in images. This study evaluated inter-observer reliability of pre-operative and post-operative CT images registration to conventional approaches using radiographs and CT slices in measuring reverse shoulder arthroplasty glenoid implant and screw percentage in bone. Pre-operative and post-operative CT scans, and post-operative radiographs were obtained from six patients that had reverse shoulder arthroplasty. CT scans images were imported into a medical imaging processing software and each scapula, glenoid implant and inferior screw were reconstructed as 3D models. Post-operative 3D models were imported into the pre-operative reference frame and matched to the pre-operative scapula model using a paired-point and a surface registration. Measurements on registered CT models were done in reference to the pre-operative scapula model coordinate frame defined by a computer-assisted designed triad positioned in respect to the center of the glenoid fossa and trigonum scapulae (medial-lateral, z axis) and superior and inferior glenoid tubercle (superior-inferior, y axis). The orthogonal triad third axis defined the anterior-posterior axis (x axis). A duplicate triad was positioned along the central axis of the glenoid implant model. Using a virtual protractor, the glenoid implant inclination was measured from its central axis and the scapula transverse plane (x - z axes) and version from the coronal plane (y - z axes). Inferior screw percentage in bone was measured from a Boolean intersection operation between the pre-operative scapula model and the inferior screw model. For CT slices and radiographic measurements, a first 90-degree Cobb angle, from medical records software, was positioned from the trigonum scapulae to the centre of the central peg. Using the 90-degree line as reference, a second Cobb angle was drawn from the most superior to the most inferior point of the glenoid implant for inclination and from of the most anterior to the most posterior point for version. Version can only be measured using CT slices. Screw percentage in bone was calculated from screw length measures collected with a distance-measuring tool from the software. For testing the inter-observer reliability of the three methods, measures taken by three qualified observers were analysed using an intra-class correlation coefficient (ICC) method. The 3D registration method showed excellent reliability (ICC > 0.75) in glenoid implant inclination (0.97), version (0.98) and screw volume in bone (0.99). Conventional methods showed poor reliability (ICC < 0.4); CT-slice inclination (0.02), version (0.07), percentage of screw in bone (0.02) and for radiographic inclination (0.05) and percentage screw in bone (0.05). This CT registration of post-operative to pre-operative novel method for quantitatively assessing reverse shoulder arthroplasty glenoid implant positioning and screw percentage in bone, showed excellent inter-observer reliability compared to conventional 2D approaches. It overcomes metal-artifact limitations of post-operative CT evaluation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 595 - 595
1 Dec 2013
Choi D Wright T
Full Access

Retrieval analysis has been valuable in the assessment of in-vivo surface damage of orthopedic devices. Historically, subjective techniques were used to grade damage on the implant's surface. Microscopy improved the ability to localize and quantify damage, but cannot measure volumetric wear due to this damage. Laser scanning provides volumetric wear, but lacks image data. Recent techniques superimpose image data on laser scan data (photorendering) and combine the strengths of both methods. Our goal is to use such methods to improve our damage assessment and potentially correlate this assessment to volumetric wear. This project focused on two areas: image-stitching and photorendering. Image-stitching registers multiple images into large-scale high-resolution composites. Six total disc replacement components were imaged with a digital microscope (Moticam 2, Motic). Three sets were taken of each component: a single template at 10x zoom (1×1), a 4-image composite at 18x zoom (2×2), and a 9-image composite at 18x zoom (3×3). The 2×2 and 3×3 sets were image-stitched to resemble their template counterpart. Measurement error was defined using common pixels identified between the composite and template images for comparison with a semi-automated feature detection algorithm (Figure 1). For photorendering, a pilot study was performed on a single retrieved tibial bearing. The component was imaged with a digital microscope (VHX-2000, Keyence) under a 3D image-stitching setting, providing a high-resolution photo embedded with height values. MATLAB was used to convert the image into a photo-rendered point cloud approximating the surfaces. The component was then laser scanned, creating a 3D point cloud with resolution 0.127 mm. The photo-rendered point cloud data was registered to the laser scan data using an iterative closest point algorithm (Geomagic Studio, Geomagic). An analysis of all composite images showed a mean error of 0.221 mm. Figure 2 compares regions of images for the template, 2×2, and 3×3 composites. Zooming in shows the effect of the increased resolution contained in the composite. The 2×2 and 3×3 composites had mean errors of 0.231 mm and 0.209 mm, respectively; these were not significantly different. Comparisons among image types showed that components with less features exhibited larger errors during image-stitching. Figure 3 shows images resulting from each step of the photorendering process. The final image of the figure shows a qualitative result of our ability to photorender the tibial bearing surface of the component. While combining microscopy and laser scan data works anecdotally, further analyses must be performed to assure the robustness of the technique. The digital microscope's embedded image-stitching software is limited in its maximum field of view; we look to extend this by taking multiple scans and using in-house software to generate a composite of a whole implant. The improved resolution provided by microscopy offer an opportunity to automate damage assessment, yielding damage mapped images which can also be overlaid on laser scan data. This may provide a means to better quantify observed damage and yield meaningful correlations with volumetric loss due to wear


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 26 - 26
1 Oct 2016
Czerbak K Clift S Gheduzzi S
Full Access

Osteoarthritis is one of the most common musculoskeletal diseases. It involves degeneration and loss of articular cartilage, leading to a painful bone on bone articulation during movement. Numerical FEA models exist to predict the mechanical behaviour of degenerated cartilage. One of the limitations of these models arises from the poor validation that can be attained with traditional experimental data. This typically relies on comparison with global mechanical quantities such as total tissue strain, which mask the individual contributions originating from the different layers. In order to improve on this, an experimental method was developed to visualise the through-thickness behaviour of articular cartilage. Four experiments were performed on hemi-cylindrical cartilage plugs, harvested from a porcine femoral head, and immersed in a fluid solution. An Indian ink speckle pattern was applied to the flat surface of each hemi-cylinder. The specimens were equilibrated in 2.5M NaCl solution, transferred to a custom designed testing rig, and a reference image of the tissue cross-section was taken. The solution concentration was then decreased to 0.15M and, predictably, the tissue thickness changed. Images of the tissue cross section were taken every 60s for the duration of the experiment (3600s). All images were analysed using a DIC algorithm (Ncorr open-source 2D digital image correlation matlab program), and documented the strain changes through the tissue thickness as a function of time. The measured total strain in the tissue was consistent with that reported by Lai et al. (1991). However the present technique allows to quantify the strain contribution from any of the tissue layers or sublayer. This poses a significant advantage over traditional methods as resulting information can further the understanding of the factors contributing to the mechanical behaviour of the tissue and provides an ideal platform for validating more and more refined models of tissue behaviour