Advertisement for orthosearch.org.uk
Results 1 - 20 of 32
Results per page:
Bone & Joint Research
Vol. 1, Issue 4 | Pages 42 - 49
1 Apr 2012
Kwon Y Mellon SJ Monk P Murray DW Gill HS

Objectives

Pseudotumours (abnormal peri-prosthetic soft-tissue reactions) following metal-on-metal hip resurfacing arthroplasty (MoMHRA) have been associated with elevated metal ion levels, suggesting that excessive wear may occur due to edge-loading of these MoM implants. This study aimed to quantify in vivo edge-loading in MoMHRA patients with and without pseudotumours during functional activities.

Methods

The duration and magnitude of edge-loading in vivo was quantified during functional activities by combining the dynamic hip joint segment contact force calculated from the three-dimensional (3D) motion analysis system with the 3D reconstruction of orientation of the acetabular component and each patient’s specific hip joint centre, based on CT scans.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 24 - 24
1 Oct 2022
Tavana S Leong J Freedman B Newell N
Full Access

Background. In vivo evaluation of IVD strains is crucial to better understand normal and pathological IVD mechanics, and to evaluate the effectiveness of treatments. This study aimed to 1) develop a novel in vivo technique based on 3T MRI and digital volume correlation (DVC) to measure strains within IVDs and 2) to use this technique to resolve 3D strains within IVDs of healthy volunteers during extension. Methods. This study included 40 lumbar IVDs from eight healthy subjects. The optimal MR sequence to minimise DVC uncertainties was identified by scanning one subject with four different sequences: CISS, T1VIBE, T2SPACE, and T2TSE. To assess the repeatability of the strain measurements in spines with different anatomical and morphological variations four subjects were scanned with the optimal sequence, and uncertainties of the strain measurements were quantified. Additionally, to calculate 3D strains during extension, MRIs were acquired from six subjects in both the neutral position and after full extension. Results. Measurement errors were lowest when using the T2TSE sequence (precision=0.33 ± 0.10%, accuracy=0.48 ± 0.11%). The largest average maximum tensile and shear strains were seen at the L2-L3 level in all volunteers (7.2 ± 1.5% and 6.8 ± 1.1%, respectively), while the L5-S1 level experienced the lowest average tensile and shear strains (3.5 ± 1.0% and 3.9 ± 0.7%, respectively). Conclusion. The findings of this study establish clinical MRI-based DVC (MRI-DVC) as a new tool for in vivo strain measurement within human IVDs. MRI-DVC successfully provided internal strain distributions within IVDs and has great potential to be used for a wide range of clinical applications. Conflict of interest: No conflicts of interest. Source of funding: This work was supported by the EPSRC, New Investigator Award, EP/V029452/1


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 55 - 55
1 Jul 2020
Jalal MMK Wallace R Simpson H
Full Access

Many pre-clinical models of atrophic non-union do not reflect the clinical scenario, some create a critical size defect, or involve cauterization of the tissue which is uncommonly seen in patients. Atrophic non-union is usually developed following high energy trauma leading to periosteal stripping. The most recent reliable model with these aspects involves creating a non-critical gap of 1mm with periosteal and endosteal stripping. However, this method uses an external fixator for fracture fixation, whereas intramedullary nailing is the standard fixation device for long bone fractures. OBJECTIVES. To establish a clinically relevant model of atrophic non-union using intramedullary nail and (1) ex vivo and in vivo validation and characterization of this model, (2) establishing a standardized method for leg positioning for a reliable x-ray imaging. Ex vivo evaluation: 40 rat's cadavers (adult male 5–6 months old), were divided into five groups (n=8 in each): the first group was fixed with 20G intramedullary nail, the second group with 18G nail, the third group with 4-hole plate, the fourth group with 6-hole plate, and the fifth group with an external fixator. Tibiae were harvested by leg disarticulation from the knee and ankle joints. Each group was then subdivided into two subgroups for mechanical testing: one for axial loading (n=4) and one for 4-point bending (n=4) using Zwick/Roell® machine. Statistical analysis was carried out by ANOVA with a fisher post-hoc comparison between groups. A p-value less than 0.05 was considered statistically significant. To maintain the non-critical gap, a spacer was inserted in the gap, the design was refined to minimize the effect on the healing surface area. In vivo evaluation was done to validate and characterize the model. Here, a 1 mm gap was created with periosteal and endosteal stripping to induce non-union. The fracture was then fixed by a hypodermic needle. A proper x-ray technique must show fibula in both views. Therefore, a leg holder was used to hold the knee and ankle joints in 90º flexion and the foot was placed in a perpendicular direction with the x-ray film. Lateral view was taken with the foot parallel to the x-ray film. Ex vivo: axial load stiffness data revealed that intramedullary nails are significantly stronger and stiffer than other devices. Bending load to failure showed that 18G nails are significantly stronger than 20G, thus it is used for the in vivo experiments. In vivo: final iteration revealed 3/3 non-union, and in controls with the periosteum and endosteum intact but with the 1mm non-critical gap, it progressed to 3/3 union. X-ray positioning: A-P view in supine position, there was an unavoidable degree of external rotation in the lower limb, thus the lower part of the fibula appeared behind the tibia. To overcome this, a P-A view of the leg was performed with the body in prone rather, this arrangement allowed both upper and lower parts of the fibula to appear clearly in both views. We report a novel model of atrophic non-union, the surgical procedure is relatively simple and the model is reproducible


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 28 - 28
2 Jan 2024
Angrisani N Helmholz H Windhagen H von der Ahe C Scheper V Willumeit-Römer R Chathoth B Reifenrath J
Full Access

There are no efficient treatment options for osteoarthritis (OA) that delay further progression. Besides osteoinduction, there is growing evidence of also anti-inflammatory, angiogenetic and neuroprotective effects of biodegradable magnesium-based biomaterials. Their use for the treatment of cartilage lesions in contrast is not well-evaluated yet. Mg-cylinders were analysed in an in vitro and in vivo OA model. In vitro, SCP-1 stem cell line was analysed under inflammatory conditions and Mg-impact. In vivo, small Mg- and WE43 alloy-cylinders (1mm × 0,5mm) were implanted into the subchondral bone of the knee joint of 24 NZW rabbits after establishment of OA. As control, another 12 rabbits received only drill-holes. µCT-scan were performed and assessed for changes in bone volume and density. After euthanasia, cartilage was evaluated macroscopically and histologically after Safranin-O-staining. Furthermore, staining with CD271 directed antibody was performed to assess neuro-reactivity. In vitro, an increased gene expression of extracellular matrix proteins as collagen II or aggrecan even under inflammatory conditions was observed under Mg-impact. In vivo, µCT evaluation revealed twice-elevated values for bone volume in femoral condyles with Mg-cylinders compared to controls while density remained unchanged. Cartilage showed no significant differences between the groups. Mg- and WE-samples showed significantly lower levels of CD271+ cells in the cartilage and bone of the operated joints than in non-operated joints, which was not the case in the Drilling-group. Furthermore, bone in operated knees of Drilling-group showed a strong trend to an increase in CD271+ cells compared to both Cylinder-groups. Counting of CD271+ vessels revealed that this difference was attributable to a higher amount of these vessels. The in vitro results indicate a potential cartilage regenerative activity of the degradable Mg-based material. While so far there was no positive effect on the cartilage itself in vivo, implantation of Mg-cylinders seemed to reduce pain-mediating vessels. Acknowledgements: This work is funded by the German Research Foundation (DFG, project number 404534760). We thank Björn Wiese for production of the cylinders


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 114 - 114
2 Jan 2024
Fiordalisi M Sousa I Barbosa M Gonçalves R Caldeira J
Full Access

Intervertebral disc (IVD) degeneration is the most frequent cause of Low Back Pain (LBP) affecting nearly 80% of the population [1]. Current treatments fail to restore a functional IVD or to provide a long-term solution, so, there is an urgent need for novel therapeutic strategies. We have defined the IVD extracellular matrix (ECM) profile, showing that the pro-regenerative molecules Collagen type XII and XIV, are uniquely expressed during fetal stages [2]. Now we propose the first fetal injectable biomaterial to regenerate the IVD. Fetal decellularized IVD scaffolds were recellularized with adult IVD cells and further implanted in vivo to evaluate their anti-angiogenic potential. Young decellularized IVD scaffolds were used as controls. Finally, a large scale protocol to produce a stable, biocompatible and easily injectable fetal IVD-based hydrogel was developed. Fetal scaffolds were more effective at promoting Aggrecan and Collagen type II expression by IVD cells. In a Chorioallantoid membrane assay, only fetal matrices showed an anti-angiogenic potential. The same was observed in vivo when the angiogenesis was induced by human NP cells. In this context, human NP cells were more effective in GAG synthesis within a fetal microenvironment. Vaccum-assisted perfusion decellularized IVDs were obtained, with high DNA removal and sGAG retention. Hydrogel pre-solution passed through 21-30G needles. IVD cells seeded on the hydrogels initially decreased metabolic activity, but increased up to 70% at day 7, while LDH assay revealed cytotoxicity always below 30%. This study will open new avenues for the establishment of a disruptive treatment for IVD degeneration with a positive impact on the angiogenesis associated with LBP, and on the improvement of patients’ quality of life. Acknowledgements: Financial support was obtained from EUROSPINE, ON Foundation and FCT (Fundação para a Ciência e a Tecnologia)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 44 - 44
1 Aug 2020
Li Z Geng Z Cui Z Wu S Zhu S Liang Y Yang X
Full Access

Surgical failure, mainly caused by loosening implants, causes great mental and physical trauma to patients. Improving the physicochemical properties of implants to achieve favourable osseointegration will continue to be the focus of future research. Strontium (Sr), a trace element, is often incorporated into hydroxyapatite (HA) to improve its osteogenic activity. Our previous studies have shown that miR-21 can promote the osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway. The aim of this study is to fabricate a SrHA and miR-21 composite coating and it is expected to have a favorable bone healing capability. Ti discs (20 mm diameter and one mm thickness for the in vitro section) and rods (four mm diameter and seven mm length for the in vivo section) were prepared by machining pure Ti. The Ti cylinders were placed in a Teflon-lined stainless-steel autoclave for treating at 150°C for 24 h to form SrHA layer. The miR-21 was encapsulated in nanocapsules. The miR-21 nanocapsules were mixed with CMCS powder to form a gel-like sample and uniformly coated on the SrHA modifed Ti. Osteoblast-like MG63 cells were cultured on SrHA and miR-21 modified Ti, Cell proliferation activity and osteogenesis-related gene expression were evaluated. A bone defect model was established with mature New Zealand to evaluate the osseointegration. Cylindrical holes (four mm in diameter) were created at the distal femur and tibial plateau. Each rabbit was implanted with four of the aforementioned rods (distal femur and tibial plateau of the hind legs). After implantation for one, two and three months, the rabbits were observed by X-ray and scanned using u-CT. Histological and Immunohistochemical analysis were performed to examine the osteogenic markers. A biomechanical push-in test was used to assess the bone-implant bonding strength. Both SrHA nanoparticles with good superhydrophilicity and miR-21 nanocapsules with uniform sizes were distributed evenly on the surface of the Ti. In vitro experiments revealed that the composite coating was beneficial to osteoblast proliferation, differentiation and mineralization. In vivo evaluations demonstrated that this coating could not only promote the expression of angiogenic factor CD31 but also enhance the expression of osteoblastic genes to facilitate angio-osteogenesis. In addition, the composite coating also showed a decreased RANKL expression compared with the miR-21 coating. As a result, the SrHA/miR-21 composite coating promoted new bone formation and mineralization and thus enhanced osseointegration and bone-implant bonding strength. A homogeneous SrHA and miR-21 composite coating was fabricated by generating pure Ti through a hydrothermal process, followed by adhering miR-21 nanocapsules. This coating combined the favorable physicochemical properties of SrHA and miR-21 that synergistically promoted angiogenesis, osteogenesis, osseointegration, bone mineralization and thus bone-implant bonding strength. This study provided a new strategy for surface modification of biomedical implants


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 35 - 35
1 Aug 2020
Kendal J Singla A Al-Ani A Affan A Hildebrand K Itani D Ungrin M Monument M
Full Access

Impaired bone healing biology secondary to soft tissue deficits and chemotherapy contribute to non-union, fracture and infection following limb salvage surgery in Osteosarcoma patients. Approved bone healing augments such as recombinant human bone morphogenetic protein-2 (rhBMP-2) have great potential to mitigate these complications. rhBMP-2 use in sarcoma surgery is limited, however, due to concerns of pro-oncogenic signalling within the tumour resection bed. To the contrary, recent pre-clinical studies demonstrate that BMP-2 may induce Osteosarcoma differentiation and limit tumour growth. Further pre-clinical studies evaluating the oncologic influences of BMP-2 in Osteosarcoma are needed. The purpose of this study is to evaluate how BMP-2 signalling affects Osteosarcoma cell proliferation and metastasis in an active tumour bed. Two Osteosarcoma cell lines (143b and SaOS-2) were assessed for proliferative capacity and invasion. 143b and SaOS-2 cells were engineered to upregulate BMP-2. In vitro proliferation was assessed using a cell viability assay, motility was assessed with a scratch wound healing assay, and degree of osteoblastic differentiation was assessed using qRT-PCR of Osteoblastic markers (CTGF, ALP, Runx-2 and Osx). For in vivo evaluation, Osteosarcoma cells were injected into the intramedullary proximal tibia of immunocompromised (NOD-SCID) mice and local tumour growth and metastases were assessed using weekly bioluminescence imaging (BLI) and tumour volume measurements for 4–6 weeks. At the experimental end point we assessed radiographic tumour burden using ex-vivo micro-CT, as well as tibial and pulmonary gross and histologic pathology. SaOS-2 was more differentiated than 143b, with increased expression of Runx-2 (p = 0.009), Osx (p = 0.004) and ALP (p = 0.035). BMP-2 upregulation did not stimulate an osteoblast differentiation response in 143b, but stimulated an increase in Osx expression in SaOS-2 (p = 0.002). BMP-2 upregulation in 143b cells resulted in increased proliferation in vitro (p = 0.014), faster in vitro wound healing (p = 0.03), significantly increased tumour volume (p = 0.001) with enhanced osteolysis detected on micro-CT, but did not affect rates of lung metastasis (67% vs. 71%, BMP-2 vs. Control). BMP-2 over-expression in SaOS-2 cells reduced in vitro proliferation when grown in partial osteogenic-differentiation media (p < 0.001), had no effect on in vitro wound healing (p = 0.28), reduced in vivo SaOS-2 tumour burden at 6 weeks (photon counts, p < 0.0001), decreased tumour-associated matrix deposition as assessed by trabecular thickness (p = 0.02), and did not affect rates of lung metastasis (0% vs. 0%). Our results indicate BMP-2 signalling incites a proliferative effect on a poorly differentiated Osteosarcoma cell line (143b), but conditionally reduces proliferative capacity and induces a partial differentiation response in a moderately-differentiated Osteosarcoma cell line (SaOS-2). This dichotomous effect may be due to the inherent ability for Osteosarcoma cells to undergo BMP-2 mediated terminal differentiation. Importantly, these results do not support the clinical application of BMP-2 in Osteosarcoma limb salvage surgery due to the potential for stimulating growth of poorly differentiated Osteosarcoma cells within the tumour bed. Additional studies assessing the effects of BMP-2 in an immune-competent mouse model are ongoing


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 30 - 30
1 Jul 2020
Kendal J Singla A Affan A Hildebrand K Al-Ani A Itani D Ungrin M
Full Access

Impaired bone healing biology secondary to soft tissue deficits and chemotherapy contribute to non-union, fracture and infection following limb salvage surgery in Osteosarcoma patients. Approved bone healing augments such as recombinant human bone morphogenetic protein-2 (rhBMP-2) have great potential to mitigate these complications. rhBMP-2 use in sarcoma surgery is limited, however, due to concerns of pro-oncogenic signalling within the tumour resection bed. To the contrary, recent pre-clinical studies demonstrate that BMP-2 may induce Osteosarcoma differentiation and limit tumour growth. Further pre-clinical studies evaluating the oncologic influences of BMP-2 in Osteosarcoma are needed. The purpose of this study is to evaluate how BMP-2 signalling affects Osteosarcoma cell proliferation and metastasis in an active tumour bed. Two Osteosarcoma cell lines (143b and SaOS-2) were assessed for proliferative capacity and invasion. 143b and SaOS-2 cells were engineered to upregulate BMP-2. In vitro proliferation was assessed using a cell viability assay, motility was assessed with a scratch wound healing assay, and degree of osteoblastic differentiation was assessed using qRT-PCR of Osteoblastic markers (CTGF, ALP, Runx-2 and Osx). For in vivo evaluation, Osteosarcoma cells were injected into the intramedullary proximal tibia of immunocompromised (NOD-SCID) mice and local tumour growth and metastases were assessed using weekly bioluminescence imaging and tumour volume measurements for 4–6 weeks. At the experimental end point we assessed radiographic tumour burden using ex-vivo micro-CT, as well as tibial and pulmonary gross and histologic pathology. SaOS-2 was more differentiated than 143b, with significantly increased expression of the Osteoblast markers Osx (p = 0.004) and ALP (p = 0.035). BMP-2 upregulation did not stimulate an osteoblast differentiation response in 143b, but stimulated an increase in Osx expression in SaOS-2 (p = 0.002). BMP-2 upregulation in 143b cells resulted in increased proliferation in vitro (p = 0.014), faster in vitro wound healing (p = 0.03), significantly increased tumour volume (p = 0.001) with enhanced osteolysis detected on micro-CT, but did not affect rates of lung metastasis (67% vs. 71%, BMP-2 vs. Control). BMP-2 over-expression in SaOS-2 cells reduced in vitro proliferation when grown in osteogenic-differentiation media (p < 0.001), had no effect on in vitro wound healing (p = 0.28), reduced in vivo SaOS-2 tumour burden at 6 weeks (photon counts, p < 0.0001), decreased tumour-associated matrix deposition as assessed by trabecular thickness (p = 0.02), but did not affect rates of lung metastasis (0% vs. 0%). Our results indicate BMP-2 signalling incites a proliferative effect on a poorly differentiated Osteosarcoma cell line (143b), but conditionally reduces proliferative capacity and induces a partial differentiation response in a moderately-differentiated Osteosarcoma cell line (SaOS-2). This dichotomous effect may be due to the inherent ability for Osteosarcoma cells to undergo BMP-2 mediated terminal differentiation. Importantly, these results do not support the clinical application of BMP-2 in Osteosarcoma limb salvage surgery due to the potential for stimulating growth of poorly differentiated Osteosarcoma cells within the tumour bed. Additional studies assessing the effects of BMP-2 in an immune-competent mouse model are ongoing


Introduction and Objective. Achilles tendon defect is difficult problem for orthopedic surgeon, and therefore the development of new treatments is desirable. Platelet-rich fibrin (PRF), dense fibrin scaffold composed of a fibrin matrix containing many growth factors, is recently used as regenerative medicine preparation. However, few data are available on the usefulness of PRF on Achilles tendon healing after injury. The objective of this study is to examine whether PRF promotes the healing of Achilles tendon defect in vivo and evaluated the effects of PRF on tenocytes in vitro. Materials and Methods. PRF were prepared from rats according to international guidelines on the literature. To create rat model for Achilles tendon defect, a 4-mm portion of the right Achilles tendon was completely resected, and PRF was placed into the gap in PRF group before sewing the gap with nylon sutures. To assess the histological healing of Achilles tendon defect, Bonar score was calculated using HE, Alcian-blue, and Picosirius-red staining section. Basso, Beattie, Bresnahan (BBB) score was used for the evaluation of motor functional recovery. Biomechanical properties including failure tensile load, ultimate tensile stress, breaking elongation, and elastic modulus were measured. We examined the effects of PRF on tenocytes isolated from rat Achilles tendon in vitro. The number of viable cells were measured by MTS assay, and immunostaining of ki-67 was used for detection of proliferative cells. Migration of tenocytes was evaluated by wound closure assay. Protein or gene expression level of extracellular matrix protein, such as collagen, were evaluated by immunoblotting, immunofluorescence, or PCR. Phosphorylation level of AKT, FGF receptor, or SMAD3 was determined by western blotting. Inhibitory experiments were performed using MK-2206 (AKT inhibitor), FIIN-2 (FGFR inhibitor), SB-431542 (TGF-B receptor inhibitor), or SIS3 (SMAD3 inhibitor). All p values presented are two-sided and p values < 0.05 were considered statistically significant. Results. In rat Achilles tendon defects, Bonar score was significantly improved in PRF group compared to control group. Collagen deposition at the site of Achilles tendon defect was observed earlier in PRF group. Consistent with the histological findings, BBB score was significantly improved in PRF group. PRF also significantly improved the biomechanical properties of injured Achilles tendon. Furthermore, proliferating tenocytes, labelled by ki-67 were significantly increased in PRF group. These data suggested PRF prompted the healing of Achilles tendon defect. Thus, we further examined the effects of PRF on tenocytes in vitro. PRF significantly increased the number of viable cells, the proliferative cells labelled by ki-67, and migratory ability. Furthermore, PRF significantly increased the protein expression levels of collagen-I, collagen-III, α-SMA, and tenascin-C in tenocytes. Next, we examined the signalling pathway associated with PRF-induced proliferation of tenocytes. PRF increased the phosphorylation level and induced nuclear translocation of AKT, known as key regulator of cell survival. PRF also induced the phosphorylation of FGF receptor. Inhibition of AKT or FGF-receptor completely suppressed the positive effects of PRF on tenocytes. Furthermore, we found that inhibition of FGF receptor partially suppressed the phosphorylation of AKT by PRF. Thus, PRF induced the proliferation of tenocytes via FGFR/AKT axis. We further evaluated the signalling pathway associated with PRF-induced expression of extracellular matrix. PRF increased the phosphorylation levels of SMAD3 and induced nuclear translocation of SMAD3. Furthermore, inhibition of TGF-B receptor or SMAD3 suppressed increased expression level of extracellular matrix by PRF. Thus, PRF increased expression level of extracellular matrix protein via TGF-BR/SMAD3 axis. Conclusions. PRF promotes tendon healing of the Achilles tendon defect and recovery of exercise performance and biomechanical properties. PRF increases the proliferation ability or protein expression level of extracellular matrix protein in tenocytes via FGFR/AKT or TGF-βR/SMAD3 axis, respectively


Bone & Joint Research
Vol. 13, Issue 10 | Pages 546 - 558
4 Oct 2024
Li Y Wuermanbieke S Wang F Mu W Ji B Guo X Zou C Chen Y Zhang X Cao L

Aims

The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty.

Methods

A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated.


Bone & Joint Research
Vol. 13, Issue 3 | Pages 110 - 123
7 Mar 2024
Xu J Ruan Z Guo Z Hou L Wang G Zheng Z Zhang X Liu H Sun K Guo F

Aims

Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear.

Methods

In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression.


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 61 - 61
1 Apr 2018
Tuleubaev B Akhmetova S Saginova D Koshanova A Tashmetov E Arutyunyan M
Full Access

Background. The different biodegradable local antibiotic delivery systems are widely used in recent years. The aim of this study was to evaluate the bactericidal activity antibiotic loaded PerOssal pellet in vitro and its effectiveness in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Material and methods. MALDI-TOF have been applied to microbiological diagnosis in patient with osteomyelitis. In most cases, Staphylococcus aureus was isolated. In vitro Ceftriaxone-Loaded PerOssal pellet were placed in middle agar plate containing a stock strain of Staphylococcus aureus. Plates were incubated at 37ºC for 24 hours. The zones of bacterial inhibition were recorded after 24, 48 and 72 hours of incubation. In vivo evaluation was performed by prospectively studying of 21 patients with a clinically and bacteriologically diagnosed Staphylococcus aureus induced osteomyelitis. Mean age was 38±4,2(26 to 53)). After radical surgical debridement and ultrasound cavitation, the bone cavity was full filled with Perosal pellets loaded with different antibiotics depending from the antibiotic sensitivity test. Endpoints were the absence of clinical manifestation of infection or disease recurrence, no need for further surgery. Results. In vitro showed after 24 hrs inhibition zone was 4,2 х 4,9 cm, after 72 hrs the inhibition zone was increased till 7,6 х 8,4 cm. During the subsequent time, there were no changes. Results of the clinical study evidenced no signs of infection in 18 patients (86% (CI 69,8;100)) (p<0,05) at the follow up, while 3 (14%(CI 0;30,2)) (p<0,05) subjects showed infection recurrence at 6 months from operation and 2 of them needed further surgical procedures. Conclusion. PerOssal as an antibiotic carrier stabilizes the action of the antibiotic. This antibiotic carrier system allows to choose an antibiotic individually for each patient according to the antibiotic sensitivity test and can be successfully used in clinical cases of osteomyelitis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 81 - 81
1 Apr 2018
Ripmeester E Caron MMJ van Rhijn LW Welting TJM
Full Access

Osteoarthritis (OA) is the most common degenerative joint disease causing joint immobility and chronic pain. Treatment is mainly based on alleviating pain and reducing disease progression. During OA progression the chondrocyte undergoes a hypertrophic switch in which extracellular matrix (ECM) -degrading enzymes are released, actively degrading the ECM. However, cell biological based therapies to slow down or reverse this katabolic phenotype are still to be developed. Bone morphogenetic protein 7 (BMP-7) has been shown to have OA disease-modifying properties. BMP-7 suppresses the chondrocyte hypertrophic and katabolic phenotype and may be the first biological treatment to target the chondrocyte phenotype in OA. However, intra-articular use of BMP-7 is at risk in the proteolytic and hydrolytic joint-environment. Weekly intra-articular injections are necessary to maintain biological activity, a frequency unacceptable for clinical use. Additionally, production of GMP-grade BMP-7 is challenging and expensive. To enable its clinical use, we sought for BMP-7 mimicking peptides better compatible with the joint-environment while still biologically active and which potentially can be incorporated in a drug-delivery system. We hypothesized that human BMP-7 derived peptides are able to mimic the disease modifying properties of the full-length human BMP-7 protein on the OA chondrocyte phenotype. A BMP-7 peptide library was synthesized consisting of overlapping 20-mer peptides with 18 amino-acids overlap between sequential peptides. OA human articular chondrocytes (HACs) were isolated from OA cartilage from total knee arthroplasty (n=18 donors). HACs were exposed to BMP-7 (1 nM) or BMP-7 library peptides at different concentrations (1, 10, 100 or 1000 nM). Gene-expression levels of important chondrogenic-, hypertrophic-, cartilage degrading- and inflammatory mediators were determined by RT-qPCR. GAG and ALP activity were determined using a colorimetric assay and PGE levels were measured by EIA. During the BMP-7 peptide library screening human BMP-7 derived peptides were screened for their full-length human BMP-7 mimicking properties at different concentrations (1, 10, 100 or 1000nM) on a pool of human chondrocytes. Gene expression as well as GAG, ALP and PGE2 level analysis revealed two distinct peptide regions in the BMP-7 protein based on their pro-chondrogenic and anti-OA phenotype actions on human OA chondrocytes. The two most promising peptides were further analysed for their OA chondrocyte disease modifying properties in the presence of OA synovial fluid, showing similar OA phenotype suppressive activity. Conclusively, we successfully identified two peptide regions in the BMP-7 protein with in vitro OA suppressive actions. Further biochemical fine-tuning of the peptides, and in vivo evaluation, will potentially result in the first peptide-based experimental OA treatment, addressing the hypertrophic and katabolic chondrocyte phenotype in OA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 93 - 93
1 Dec 2017
Mills R Schindeler A Little D
Full Access

Aim. Implant-associated infection remains one of the biggest challenges facing orthopaedics and there is an urgent clinical need to develop new prophylactic strategies. We have previously shown that CSA-90, a broad-spectrum antimicrobial, prevented infection in an infected open fracture model. In this study we developed a novel model of implant-associated infection, in which to further test the potential of CSA-90 as a prophylactic agent. Method. All studies were approved by the local animal ethics committee. 3D-printed porous titanium implants were implanted into the distal femora of 18 week-old male Wistar rats under general anaesthesia. The treatment groups' (n=10) implants were pre-coated with 500μg CSA-90 in saline. Staphylococcus aureus* was inoculated either directly around the implant (1×104 CFU) or injected intravenously immediately post-operatively (1×105 CFU). No systemic antibiotic prophylaxis was used. The study ran for six weeks and animals were reviewed daily for signs of infection. An independent, blinded veterinarian reviewed twice-weekly radiographs, and rats demonstrating osteolysis and/or declining overall health were culled early at their instruction. The primary outcome was implant infection, incorporating survival, microbiological, radiological, and histological measures. Results. All untreated animals inoculated with S. aureus developed clinical and radiographic evidence of implant infection and were culled within 14 days of surgery (Figure 1A). CSA-90 treatment significantly increased median survival in groups inoculated with S. aureus (p<0.001). Swab culture demonstrated that CSA-90 treated implants had a significantly reduced rate of infection compared to untreated implants in both the local (p< 0.01) and systemic (p<0.001) groups (Figure 1B). Conclusions. This study demonstrates clinical potential for CSA-90 as a novel prophylactic antimicrobial for orthopaedics. Further in vivo evaluation is required in conjunction with existing systemic antibiotic prophylaxis. Acknowledgements. This work was funded by NHMRC grant 1106982. Implants and CSA-90 were donated in kind support from Stryker and N8 Medical respectively. For any figures and tables, please contact authors directly (click on ‘Info & Metrics’ tab above for contact details)


Bone & Joint Research
Vol. 11, Issue 10 | Pages 739 - 750
4 Oct 2022
Shu L Abe N Li S Sugita N

Aims

To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle.

Methods

In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle.


Aims

Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model.

Methods

Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 40 - 40
1 Sep 2014
Hardcastle P de Jongh H du Preez G
Full Access

Purpose Of Study. The in vivo evaluation of patellofemoral contact pressures in a posterior stabilized compared to posterior cruciate sacrificing total knee arthroplasty (TKA). Methods. A prospective descriptive non randomized study was performed on 8 patients. A standard approach to a TKA was performed using a balanced gap technique, while the patella was prepared for a resurfacing. The trial components for the posterior stabilized (PS) TKA where inserted including the gas sterilized pressure transducer (a patella button). Soft tissue was approximated and the knee was taken through full range of movement. Patellofemoral pressure was measured and captured continuously through the full range of movement. The posterior cruciate sacrificing (CS) components were inserted into the same patient and the procedure repeated. In addition, anterior translation of the tibia relative to the femur was measured at 90 degrees. The transducer was removed and final components, including a patella resurfacing were inserted. Results. Significantly lower patella femoral pressures were found for PS TKA compared to CS TKA in full flexion [129.0 ± 21.7 N vs. 109.9 ± 32.1 (p = 0.038173)]. The change in patellofemoral pressure between flexion and extension was significantly lower in PS TKA compared to CS TKA [109.0 ± 21.6 N vs. 90.5 ± 32.0 (p = 0.0037690)]. In addition mean anterior translation at 90° flexion in the CS TKA (6.4 ± 3.2 mm) was significantly less than in PS TKA (17.0 ± 2.6) (p = 0.000072). Conclusion. Significantly lower patellofemoral pressures were found in full flexion with PS TKA compared to CS TKA. The change in patellofemoral pressure in a PS TKA compared to CS TKA was also significantly lower. This study provides possible clinical data when considering patella resurfacing. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 306 - 306
1 Jul 2014
Vadalà G Russo F Pattappa G Peroglio M Grad S Stadelmann V Alini M Denaro V
Full Access

Summary Statement. To test regenerative therapies for the intervertebral disc it is necessary to create a cavity in the nucleus polposus mantaining the annulus fibrosus intact. The transpedicular mechanical nucleotomy represents the best method for this purpose. Introduction. New cells/hydrogel based treatments for intervertebral disc (IVD) regeneration need to be tested on animal models before clinical translation. Ovine IVD represents a good model but doesn't allow the injection of a significant volume into intact IVD. The objective of the study was to compare different methods to create a cavity into ovine nucleus pulposus (NP) by enzymatic digestion (E), mechanical discectomy (M) and a combination of both (E+M), as a model to study IVD regeneration strategies with intact anulus fibrosus (AF). Methods. Ovine lumbar functional spinal units (FSU) were used. The transpedicular approach via the endplate route (2mm tunnel) was performed to access the NP with AF intact. FSUs were treated through M (Arthroscopic shaver), E (Trypsin/Collagenase) and E+M. The cavity was macro- and micro-scopically evaluated. The degradation of GAG (gel chromatography) around the cavity (inner AF) was assessed. The cavity volume was quantified through µCT after injection of Agarose gel/Contrast agent. Results. The cavity has been successfully created using all methods. The M group showed high reproducibility, low GAG degradation and no endplate thinning compared to other groups. The histology analysis demonstrated NP matrix degradation in E groups while the proteoglycan content was still homogenous in the M. The percentage of the cavity volume normalised to the total IVD volume was 5.2% ± 1.6 in E, 5% ±1.4 in E+M and 4, 2% ± 0.1in M. Discussion. M represents the best method to create a reproducible and less destructive cavity in the NP. Indeed, E-based methods perform better in terms of cavity volume but the GAG of the surrounding tissue may be affected. While a lesion of the end-plate might lead to further IVD degeneration, this approach is minimal invasive (2mm) and can be easily sealed using bone cylinder, cements or scaffolds. The biomechanical characterization and in vivo evaluation are on going


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims

The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration.

Methods

IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively.