Pseudotumours (abnormal peri-prosthetic soft-tissue reactions)
following metal-on-metal hip resurfacing arthroplasty (MoMHRA) have
been associated with elevated metal ion levels, suggesting that
excessive wear may occur due to edge-loading of these MoM implants.
This study aimed to quantify The duration and magnitude of edge-loading Objectives
Methods
Background. In
Many pre-clinical models of atrophic non-union do not reflect the clinical scenario, some create a critical size defect, or involve cauterization of the tissue which is uncommonly seen in patients. Atrophic non-union is usually developed following high energy trauma leading to periosteal stripping. The most recent reliable model with these aspects involves creating a non-critical gap of 1mm with periosteal and endosteal stripping. However, this method uses an external fixator for fracture fixation, whereas intramedullary nailing is the standard fixation device for long bone fractures. OBJECTIVES. To establish a clinically relevant model of atrophic non-union using intramedullary nail and (1) ex vivo and in vivo validation and characterization of this model, (2) establishing a standardized method for leg positioning for a reliable x-ray imaging. Ex
There are no efficient treatment options for osteoarthritis (OA) that delay further progression. Besides osteoinduction, there is growing evidence of also anti-inflammatory, angiogenetic and neuroprotective effects of biodegradable magnesium-based biomaterials. Their use for the treatment of cartilage lesions in contrast is not well-evaluated yet. Mg-cylinders were analysed in an in vitro and in vivo OA model. In vitro, SCP-1 stem cell line was analysed under inflammatory conditions and Mg-impact. In vivo, small Mg- and WE43 alloy-cylinders (1mm × 0,5mm) were implanted into the subchondral bone of the knee joint of 24 NZW rabbits after establishment of OA. As control, another 12 rabbits received only drill-holes. µCT-scan were performed and assessed for changes in bone volume and density. After euthanasia, cartilage was evaluated macroscopically and histologically after Safranin-O-staining. Furthermore, staining with CD271 directed antibody was performed to assess neuro-reactivity. In vitro, an increased gene expression of extracellular matrix proteins as collagen II or aggrecan even under inflammatory conditions was observed under Mg-impact. In
Intervertebral disc (IVD) degeneration is the most frequent cause of Low Back Pain (LBP) affecting nearly 80% of the population [1]. Current treatments fail to restore a functional IVD or to provide a long-term solution, so, there is an urgent need for novel therapeutic strategies. We have defined the IVD extracellular matrix (ECM) profile, showing that the pro-regenerative molecules Collagen type XII and XIV, are uniquely expressed during fetal stages [2]. Now we propose the first fetal injectable biomaterial to regenerate the IVD. Fetal decellularized IVD scaffolds were recellularized with adult IVD cells and further implanted in
Surgical failure, mainly caused by loosening implants, causes great mental and physical trauma to patients. Improving the physicochemical properties of implants to achieve favourable osseointegration will continue to be the focus of future research. Strontium (Sr), a trace element, is often incorporated into hydroxyapatite (HA) to improve its osteogenic activity. Our previous studies have shown that miR-21 can promote the osteogenic differentiation of mesenchymal stem cells by the PI3K/β-catenin pathway. The aim of this study is to fabricate a SrHA and miR-21 composite coating and it is expected to have a favorable bone healing capability. Ti discs (20 mm diameter and one mm thickness for the in vitro section) and rods (four mm diameter and seven mm length for the in vivo section) were prepared by machining pure Ti. The Ti cylinders were placed in a Teflon-lined stainless-steel autoclave for treating at 150°C for 24 h to form SrHA layer. The miR-21 was encapsulated in nanocapsules. The miR-21 nanocapsules were mixed with CMCS powder to form a gel-like sample and uniformly coated on the SrHA modifed Ti. Osteoblast-like MG63 cells were cultured on SrHA and miR-21 modified Ti, Cell proliferation activity and osteogenesis-related gene expression were evaluated. A bone defect model was established with mature New Zealand to evaluate the osseointegration. Cylindrical holes (four mm in diameter) were created at the distal femur and tibial plateau. Each rabbit was implanted with four of the aforementioned rods (distal femur and tibial plateau of the hind legs). After implantation for one, two and three months, the rabbits were observed by X-ray and scanned using u-CT. Histological and Immunohistochemical analysis were performed to examine the osteogenic markers. A biomechanical push-in test was used to assess the bone-implant bonding strength. Both SrHA nanoparticles with good superhydrophilicity and miR-21 nanocapsules with uniform sizes were distributed evenly on the surface of the Ti. In vitro experiments revealed that the composite coating was beneficial to osteoblast proliferation, differentiation and mineralization. In
Impaired bone healing biology secondary to soft tissue deficits and chemotherapy contribute to non-union, fracture and infection following limb salvage surgery in Osteosarcoma patients. Approved bone healing augments such as recombinant human bone morphogenetic protein-2 (rhBMP-2) have great potential to mitigate these complications. rhBMP-2 use in sarcoma surgery is limited, however, due to concerns of pro-oncogenic signalling within the tumour resection bed. To the contrary, recent pre-clinical studies demonstrate that BMP-2 may induce Osteosarcoma differentiation and limit tumour growth. Further pre-clinical studies evaluating the oncologic influences of BMP-2 in Osteosarcoma are needed. The purpose of this study is to evaluate how BMP-2 signalling affects Osteosarcoma cell proliferation and metastasis in an active tumour bed. Two Osteosarcoma cell lines (143b and SaOS-2) were assessed for proliferative capacity and invasion. 143b and SaOS-2 cells were engineered to upregulate BMP-2. In vitro proliferation was assessed using a cell viability assay, motility was assessed with a scratch wound healing assay, and degree of osteoblastic differentiation was assessed using qRT-PCR of Osteoblastic markers (CTGF, ALP, Runx-2 and Osx). For in
Impaired bone healing biology secondary to soft tissue deficits and chemotherapy contribute to non-union, fracture and infection following limb salvage surgery in Osteosarcoma patients. Approved bone healing augments such as recombinant human bone morphogenetic protein-2 (rhBMP-2) have great potential to mitigate these complications. rhBMP-2 use in sarcoma surgery is limited, however, due to concerns of pro-oncogenic signalling within the tumour resection bed. To the contrary, recent pre-clinical studies demonstrate that BMP-2 may induce Osteosarcoma differentiation and limit tumour growth. Further pre-clinical studies evaluating the oncologic influences of BMP-2 in Osteosarcoma are needed. The purpose of this study is to evaluate how BMP-2 signalling affects Osteosarcoma cell proliferation and metastasis in an active tumour bed. Two Osteosarcoma cell lines (143b and SaOS-2) were assessed for proliferative capacity and invasion. 143b and SaOS-2 cells were engineered to upregulate BMP-2. In vitro proliferation was assessed using a cell viability assay, motility was assessed with a scratch wound healing assay, and degree of osteoblastic differentiation was assessed using qRT-PCR of Osteoblastic markers (CTGF, ALP, Runx-2 and Osx). For in
Introduction and Objective. Achilles tendon defect is difficult problem for orthopedic surgeon, and therefore the development of new treatments is desirable. Platelet-rich fibrin (PRF), dense fibrin scaffold composed of a fibrin matrix containing many growth factors, is recently used as regenerative medicine preparation. However, few data are available on the usefulness of PRF on Achilles tendon healing after injury. The objective of this study is to examine whether PRF promotes the healing of Achilles tendon defect in
The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty. A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated.Aims
Methods
Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression.Aims
Methods
In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.Aims
Methods
Background. The different biodegradable local antibiotic delivery systems are widely used in recent years. The aim of this study was to evaluate the bactericidal activity antibiotic loaded PerOssal pellet in vitro and its effectiveness in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Material and methods. MALDI-TOF have been applied to microbiological diagnosis in patient with osteomyelitis. In most cases, Staphylococcus aureus was isolated. In vitro Ceftriaxone-Loaded PerOssal pellet were placed in middle agar plate containing a stock strain of Staphylococcus aureus. Plates were incubated at 37ºC for 24 hours. The zones of bacterial inhibition were recorded after 24, 48 and 72 hours of incubation. In
Osteoarthritis (OA) is the most common degenerative joint disease causing joint immobility and chronic pain. Treatment is mainly based on alleviating pain and reducing disease progression. During OA progression the chondrocyte undergoes a hypertrophic switch in which extracellular matrix (ECM) -degrading enzymes are released, actively degrading the ECM. However, cell biological based therapies to slow down or reverse this katabolic phenotype are still to be developed. Bone morphogenetic protein 7 (BMP-7) has been shown to have OA disease-modifying properties. BMP-7 suppresses the chondrocyte hypertrophic and katabolic phenotype and may be the first biological treatment to target the chondrocyte phenotype in OA. However, intra-articular use of BMP-7 is at risk in the proteolytic and hydrolytic joint-environment. Weekly intra-articular injections are necessary to maintain biological activity, a frequency unacceptable for clinical use. Additionally, production of GMP-grade BMP-7 is challenging and expensive. To enable its clinical use, we sought for BMP-7 mimicking peptides better compatible with the joint-environment while still biologically active and which potentially can be incorporated in a drug-delivery system. We hypothesized that human BMP-7 derived peptides are able to mimic the disease modifying properties of the full-length human BMP-7 protein on the OA chondrocyte phenotype. A BMP-7 peptide library was synthesized consisting of overlapping 20-mer peptides with 18 amino-acids overlap between sequential peptides. OA human articular chondrocytes (HACs) were isolated from OA cartilage from total knee arthroplasty (n=18 donors). HACs were exposed to BMP-7 (1 nM) or BMP-7 library peptides at different concentrations (1, 10, 100 or 1000 nM). Gene-expression levels of important chondrogenic-, hypertrophic-, cartilage degrading- and inflammatory mediators were determined by RT-qPCR. GAG and ALP activity were determined using a colorimetric assay and PGE levels were measured by EIA. During the BMP-7 peptide library screening human BMP-7 derived peptides were screened for their full-length human BMP-7 mimicking properties at different concentrations (1, 10, 100 or 1000nM) on a pool of human chondrocytes. Gene expression as well as GAG, ALP and PGE2 level analysis revealed two distinct peptide regions in the BMP-7 protein based on their pro-chondrogenic and anti-OA phenotype actions on human OA chondrocytes. The two most promising peptides were further analysed for their OA chondrocyte disease modifying properties in the presence of OA synovial fluid, showing similar OA phenotype suppressive activity. Conclusively, we successfully identified two peptide regions in the BMP-7 protein with in vitro OA suppressive actions. Further biochemical fine-tuning of the peptides, and in
Aim. Implant-associated infection remains one of the biggest challenges facing orthopaedics and there is an urgent clinical need to develop new prophylactic strategies. We have previously shown that CSA-90, a broad-spectrum antimicrobial, prevented infection in an infected open fracture model. In this study we developed a novel model of implant-associated infection, in which to further test the potential of CSA-90 as a prophylactic agent. Method. All studies were approved by the local animal ethics committee. 3D-printed porous titanium implants were implanted into the distal femora of 18 week-old male Wistar rats under general anaesthesia. The treatment groups' (n=10) implants were pre-coated with 500μg CSA-90 in saline. Staphylococcus aureus* was inoculated either directly around the implant (1×104 CFU) or injected intravenously immediately post-operatively (1×105 CFU). No systemic antibiotic prophylaxis was used. The study ran for six weeks and animals were reviewed daily for signs of infection. An independent, blinded veterinarian reviewed twice-weekly radiographs, and rats demonstrating osteolysis and/or declining overall health were culled early at their instruction. The primary outcome was implant infection, incorporating survival, microbiological, radiological, and histological measures. Results. All untreated animals inoculated with S. aureus developed clinical and radiographic evidence of implant infection and were culled within 14 days of surgery (Figure 1A). CSA-90 treatment significantly increased median survival in groups inoculated with S. aureus (p<0.001). Swab culture demonstrated that CSA-90 treated implants had a significantly reduced rate of infection compared to untreated implants in both the local (p< 0.01) and systemic (p<0.001) groups (Figure 1B). Conclusions. This study demonstrates clinical potential for CSA-90 as a novel prophylactic antimicrobial for orthopaedics. Further in
To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle. In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle.Aims
Methods
Treatment outcomes for methicillin-resistant Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation.Aims
Methods
Purpose Of Study. The in
Summary Statement. To test regenerative therapies for the intervertebral disc it is necessary to create a cavity in the nucleus polposus mantaining the annulus fibrosus intact. The transpedicular mechanical nucleotomy represents the best method for this purpose. Introduction. New cells/hydrogel based treatments for intervertebral disc (IVD) regeneration need to be tested on animal models before clinical translation. Ovine IVD represents a good model but doesn't allow the injection of a significant volume into intact IVD. The objective of the study was to compare different methods to create a cavity into ovine nucleus pulposus (NP) by enzymatic digestion (E), mechanical discectomy (M) and a combination of both (E+M), as a model to study IVD regeneration strategies with intact anulus fibrosus (AF). Methods. Ovine lumbar functional spinal units (FSU) were used. The transpedicular approach via the endplate route (2mm tunnel) was performed to access the NP with AF intact. FSUs were treated through M (Arthroscopic shaver), E (Trypsin/Collagenase) and E+M. The cavity was macro- and micro-scopically evaluated. The degradation of GAG (gel chromatography) around the cavity (inner AF) was assessed. The cavity volume was quantified through µCT after injection of Agarose gel/Contrast agent. Results. The cavity has been successfully created using all methods. The M group showed high reproducibility, low GAG degradation and no endplate thinning compared to other groups. The histology analysis demonstrated NP matrix degradation in E groups while the proteoglycan content was still homogenous in the M. The percentage of the cavity volume normalised to the total IVD volume was 5.2% ± 1.6 in E, 5% ±1.4 in E+M and 4, 2% ± 0.1in M. Discussion. M represents the best method to create a reproducible and less destructive cavity in the NP. Indeed, E-based methods perform better in terms of cavity volume but the GAG of the surrounding tissue may be affected. While a lesion of the end-plate might lead to further IVD degeneration, this approach is minimal invasive (2mm) and can be easily sealed using bone cylinder, cements or scaffolds. The biomechanical characterization and in
The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively.Aims
Methods