Aim. Diagnostics of orthopedic implant infection remains challenging and often shows false negative or inadequate results. Several methods have been described to improve diagnostic methods but most of them are expensive (PCR) or not accessible for all hospitals (sonication). Aim of this study was to evaluate the results of
Accurate identification of pathogens is a crucial step for successful treatment of implant-associated infections. Sonication of explanted foreign material and subsequent sonicate-fluid culture is regarded to be more sensitive than conventional tissue culture. However, the duration of
Aim. Periprosthetic joint infection (PJI) is one of the most devastating complications after joint replacement. It is associated with high morbidity and economic burden when misdiagnosed as an aseptic failure. Among all cases of PJI, up to 25% could yield negative cultures. Conversely, among cases of aseptic failures, up to 30% may actually be undiagnosed PJIs. In PJIs microbiological diagnosis is a key step for successful treatment. Sonication of the removed prosthesis is more sensitive than conventional periprosthetic-tissue culture, especially in patients who received antimicrobial therapy before surgery. This study aimed to compare the diagnostic value of classic sonication fluid cultures (SF-C) and sonication fluid
Introduction. A timely isolation of the causative bacterial species is of paramount importance in the treatment of periprosthetic joint infection (PJI). Sonication of the explanted endoprosthesis and the microbiological culture of sonicate fluid (SFC) has been proven to increase the rate of bacterial isolations in comparison to the conventional microbiological methods. The cultivation of aspired synovial fluid in blood culture bottles (BCB) has been shown to yield a higher rate of bacterial isolations and produce a lower rate of contaminants than cultivation on conventional agar plates. The primary aim of this study was to investigate whether the inoculation of BCB with sonicate fluid leads to a higher rate of bacterial isolations than the culture on agar plates. Secondly, we wanted to investigate whether the utilization of BCB leads to an earlier identification of the causative bacterial species. To our knowledge this is the first study to investigate the effects of BCB use on SFC. Methods. We performed a retrospective analysis comparing the results of the two different culture methods. To detect slow growing species all microbiological cultures, regardless of the culture method, were incubated for 14 days. Results. Of the 206 patients included in our study 112 showed a positive bacterial isolation. 50 patients showed a positive bacterial growth in the intraoperative tissue cultures, 45 patients showed a positive bacterial isolation in the synovial aspiration and 104 patients showed a positive bacterial growth in the SFC. From these 45 positive isolations in synovial cultures 24 were achieved through agar plate culture and 37 were achieved through
The first death in the UK caused by COVID-19 occurred on 5 March 2020. We aim to describe the clinical characteristics and outcomes of major trauma and orthopaedic patients admitted in the early COVID-19 era. A prospective trauma registry was reviewed at a Level 1 Major Trauma Centre. We divided patients into Group A, 40 days prior to 5 March 2020, and into Group B, 40 days after.Aims
Methods
Introduction and Objective. The rupture of the anterior cruciate ligament is a common sports injury and surgical reconstruction is often required to restore full function of the knee. Hamstring tendons are usually used as autografts. In addition to knee pain and stiffness, infections are feared complications after surgery.
Aim. Diagnosis of prosthetic joint infection are often complicated by the presence of biofilm, which hampers bacteria dislodging from the implants, thus affecting sensitivity of cultures. In the last 20 years several studies have evidenced the usefulness of implant sonication to improve microbial recovery from biofilm formed on inert substrates. More recently, treatment of prosthetic joints and tissues with Dithiothreitol, a sulphur compound already used in routine diagnostic workflow for fluidification of respiratory samples, has proved to be not inferior to sonication in microbiological diagnosis of prosthetic joint infections. This study aimed to evaluate if the combination of the two treatments could further improve microbial retrieval from biofilm in an in vitro model. Method. Three isolates of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Eschericha coli and Pseudomonas aeruginosa responsible of prosthetic joint infections were used. They were grown onto 3 titanium discs (20 mm diameter) and incubated in 3 sterile plastic containers with 15 mL of Triptyc Soy Broth. After overnight
This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. Our hypothesis was that irisin would improve hNPC metabolism and proliferation. hNPCs were isolated from intervertebral discs and cultured in alginate beads. hNPCs were exposed to phosphate-buffered saline (PBS) or recombinant irisin (r-irisin) at 5, 10 and 25 ng/mL (n=4). Each experiment was performed in triplicate. Cell proliferation was assessed with trypan blue staining-automated cell counting and PicoGreen assay. Glycosaminoglycan (GAG) content was measured using the DMMB assay. Metabolic activity was assessed with the MTT assay and the Griess Reagent System. Gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and −3, aggrecan, interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was measured by RT-PCR. MTT assay and ADAMTS-5, COL2, TIMP-1 and IL-1β gene expression were evaluated following
Aim. In trauma surgery, the development of biomaterial-associated infections (BAI) is one of the most common complications affecting trauma patients, requiring prolonged hospitalization and the intensive use of antibiotics. Following the attachment of bacteria on the surface of the biomaterial, the biofilm-forming bacteria could initiate a chronic implant-related infection. Despite the use of conventional local and systemic antibiotic therapies, persistent biofilms involve various resistance mechanisms that contribute to therapeutic failures. The development of in vivo chronic BAI models to optimize antibiofilm treatments is a major challenge. Indeed, the biofilm pathogenicity and the host response need to be finely regulated, and compatible with the animal lifestyle. Previously, a Galleria mellonella larvae model for the formation of an early-stage biofilm on the surface of a Kirschner (K)-wire was established. In the present study, two models of mature biofilm using clinical Staphylococcus aureus strains were assessed: one related to contaminated K-wires (in vitro biofilm maturation) and the second to hematogenous infections (in vivo biofilm maturation). Rifampicin was used as a standard drug for antibiofilm treatment. Method. In the first model, biofilms were formed following an
Aim. Local antibiotics released through a carrier is a commonly used technique to prevent infection in orthopaedic procedures. An interesting carrier in aseptic bone reconstructive surgery are bone chips impregnated with AB solution. Systemically administered Cefazolin (CFZ) is used for surgical site infection prophylaxis however in vitro study showed that fresh frozen and processed bone chips impregnated with CFZ solution completely release the CFZ within a few hours. On the other hand irradiated freeze-dried bone chips, treated with supercritical CO2 (scCO2) have been shown to be an efficient carrier for the antibiotics vancomycine or tobramycine. With this pilot study we wanted to investigate if CFZ solution impregnation of bone chips treated with scCO2 shows a more favorable release pattern of CFZ. Method. The bone chips were prepared using the standard scCO2 protocol and were impregnated with 100 mg/ml cefazolin at different timepoints during the process: before freeze drying (BC type A), after freeze drying (BC type B) and after gamma-irradiation. 0.5g of the impregnated bone grafts were incubated with 5ml of fetal calf serum (FCS) at 37°C. At 2, 4, 6, 8 and 24h of
Aim. Periprosthetic joint infections (PJI) are a rare, but devastating complication. Diagnostic approaches to PJI vary greatly between different centers. Most commonly tissue biopsies and synovial fluid sampling are recommended for identification pathogens causing PJI. However, sensitivity and specificity of those techniques have been shown to be highly dependent on preanalytical factors like time and conditions of transportation, location of sampling, as well as analytical approaches and prolonged
Nitric oxide is a free radical which in vivo is solely produced during the conversion of the amino acid arginine into citrulline by nitric oxide synthase enzymes. Recently, the importance of nitric oxide on inflammation and bone metabolism has been investigated. However, the knowledge regarding possible in vitro effects of arginine supplementation on chondrogenic differentiation is limited. ATDC5, a cell line which is derived from mouse teratocarcinoma cells and which is characterized as chondrogenic cell line, were proliferated in Dulbecco's Modified Eagle Medium (DMEM)/F12 and subsequently differentiated in proliferation medium supplemented with insulin, transferrin and sodium-selenite and where arginine was added in four different concentrations (0, 7.5, 15 and 30 mM). Samples were harvested after 7 or 10 days and were stored at −80 °C for subsequent RNA isolation for qPCR analysis. To determine chondrogenic differentiation, Alcian Blue staining was performed to stain the proteoglycan aggrecan, which is secreted by differentiated ATDC5 cells. All measurements were performed in triplo. Alcian Blue staining showed a qualitative increase of proteoglycan aggrecan secretion in differentiated ATDC5 cells after treatment with 7 and 15 mM arginine, with additional increased expression of ColII, ColX, Bmp4 and Bmp6. Treatment with 30 mM arginine inhibited chondrogenic differentiation and expression of aforementioned genes, however, Cox-2 and Vegfa gene expression were increased in these samples. Bmp7 was not significantly expressed in any experimental condition. The obtained results are suggestive for a dose-dependent effect of arginine supplementation on chondrogenic differentiation and associated gene expression, with 7.5 and 15 mM as most optimal concentrations and implications for apoptosis after
Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room temperature (26˚C) with a Viability/Cytotoxicity Kit containing Calcein AM and Ethidium Ethidium homodimer-1 for 2 hr, followed by flash freezing in liquid nitrogen. Thirty µm sections were placed in glass slides and sealed with nail varnish or Antifade Mounting Medium. The IVD tissue was imaged within the next 4h after freezing using an inverted confocal laser-scanning microscope equipped with 488 and 543 nm laser lines. Cell viability at day 0 (NP: 92±9.6 % and AF:80±14.0%) and day 7 (NP: 91±7.9% and AF:76±20%) was successfully maintained and evaluated. The
Matrix metalloproteinase enzymes (MMPs) play a crucial role in the remodeling of articular cartilage, contributing also to osteoarthritis (OA) progression. The pericellular matrix (PCM) is a specialized space surrounding each chondrocyte, containing collagen type VI and perlecan. It acts as a transducer of biomechanical and biochemical signals for the chondrocyte. This study investigates the impact of MMP-2, -3, and -7 on the integrity and biomechanical characteristics of the PCM. Human articular cartilage explants (n=10 patients, ethical-nr.:674/2016BO2) were incubated with activated MMP-2, -3, or -7 as well as combinations of these enzymes. The structural degradative effect on the PCM was assessed by immunolabelling of the PCM's main components: collagen type VI and perlecan. Biomechanical properties of the PCM in form of the elastic moduli (EM) were determined by means of atomic force microscopy (AFM), using a spherical cantilever tip (2.5µm). MMPs disrupted the PCM-integrity, resulting in altered collagen type VI and perlecan structure and dispersed pericellular arrangement. A total of 3600 AFM-measurements revealed that
Introduction. Bone and joint infection (BJI) is often characterized by severe inflammation and progressive bone destruction. Osteocytes are the most numerous and long-lived bone cell type, and therefore represent a potentially important long-term reservoir of bacterial infection. Staphylococcus aureus is known to establish stable intracellular osteocytic infections, however, little is known about the less virulent yet second most prevalent BJI pathogen, S. epidermidis, associated with late-diagnosed, chronic BJI. Thus, this study sought to establish an in vitro model to study the infection characteristics of S. epidermidis in human osteocyte-like cells. Methods. SaOS2 cells (1 ×10. 4. cells/cm. 2. ) were grown to confluence either without differentiation, representing an osteoblast-like (OB) state (SaOS2-OB) or differentiated to an osteocyte-like stage (SaOS2-OY), using established methods. Four S. epidermidis strains used (ATCC-12228, ATCC-14990, ATCC-35984 and a clinical osteomyelitis strain RAH-SE1) were tested to be Lysostaphin-resistant, necessitating antibiotic (Levofloxacin) control of extracellular bacteria. Infection of host cells (OB or OY) was tested at three multiplicities of infection (MOI: 10, 100 and 1000). Extracellular bacteria were controlled by overnight
Aim. To provide proof of concept in an in vivo animal model for the prevention of prosthetic joint infection prevention using electric fields along with conventional antibiotic prophylaxis. Corresponding Author: Marti Bernaus. Method. First, we standardized the animal model to simulate implant contamination during the surgical procedure. We then implanted cobalt-chrome prostheses adapted to both knees of two New Zealand White rabbits, under standard aseptic measures and antibiotic prophylaxis with cefazolin. Prior to implantation, we immersed the prostheses in a 0.3 McFarland inoculum of S. aureus (ATCC 25923) for 30 seconds. In the first animal (control), the joint was directly closed after washing with saline. In the second animal (case), both prostheses were treated with electric current pulses for 30 seconds, washed with saline, and the joint was closed. After 72 hours, both animals were reoperated for the collection of periprosthetic tissue and bone samples, and prosthesis removal. In all samples, we performed quantitative cultures prior to vortexing and sonication, as well as prolonged cultures of the sonication broth. We confirmed the absence of contamination by identification with MALDI-TOF (VITEK-MS) and automated antibiotic susceptibility testing of the isolated colonies (VITEK-2). Results. In the “control” animal, we isolated S. aureus in all studied samples. The bacterial count expressed as log10 (cfu/cm2) in the prostheses of the right and left legs was 9.38 and 8.86, respectively. The bacterial count expressed as log10 (cfu/mL) in bone and periprosthetic tissue biopsies was 2.70 and 2.72 in the right leg and 3.24 and 3.87 in the left leg, respectively. In the “case” animal, where an electric field was applied to the implant after placement in addition to cefazolin prophylaxis, all samples (prosthesis, bone, and periprosthetic tissue) were negative, and no isolation of the inoculated strain of S. aureus was obtained after
Retained polymethylmethacrylate (PMMA) debris in surgical instrument trays is a rare, but disquieting situation for the arthroplasty surgeon. Although retained debris could be considered to be sterile after autoclaving, there is no peer-reviewed literature to support this assumption. This uncertainty and subsequent fear of contamination from this bioburden often leads to operating room personnel turning over entire surgical tables and opening new surgical instruments, which consumes time and burdens a hospital's sterilization infrastructure. Consequently, the purpose of the current study was to determine if retained, heavily contaminated PMMA in surgical trays could be effectively sterilized through clinically utilized autoclave protocols. MSSA (Xen36, Perkin Elmer) biofilm was grown on identically sized PMMA (Palacos R) coupons for 72-hour duration. Following
Aim. Orthopedic implants play a tremendous role in fixing bone damages due to aging as well as fractures. However, these implants tend to get colonized by bacteria on the surface, leading to infections and subsequently prevention of healing and osteointegration. Recently, Roupie et al. showed that a nisin layer-by-layer based coating applied on biomaterials has both osteogenic and antibacterial properties. The Galleria mellonella larva is a well-known insect infection model that has been used to test the virulence of bacterial and fungal strains as well as for the high throughput screening of antimicrobial compounds against infections. Recently, we have developed an insect infection model with G. mellonella larvae to study implant-associated biofilm infections using Kirschner (K)-wires as implant material. Here, we would like to test the antibacterial capacity of nisin layer-by-layer based coatings on K-wires against Staphylococcus aureus in the G. mellonella larva implant infection model. Method. Prior to the implantation procedure, G. mellonella larvae are maintained at room temperature on wheat germ in an incubator. The larvae received bare titanium K-wires (uncoated), or either control-coated or nisin-coated K-wires. After one hour, the larvae were injected with 5×10. 5. S. aureus bacteria per larva (i.e., hematogenous implant infection model). Next, the larvae were incubated at 37. o. C in an incubator and the survival of the larvae was monitored for five days. Moreover, the number of bacteria on the implant surface and in the surrounding tissue was determined after 24h of
Aim. This study aimed to evaluate the impact of intraoperative direct sonication on the yield of traditional culture and the time to positivity (TTP) of cultures obtained for periprosthetic joint infection (PJI), thereby assessing its potential to improve diagnostic efficiency and reduce contamination risk. Method. A prospective cohort study was conducted at a tertiary care center, involving 190 patients undergoing revision surgery for PJI from August 2021 to January 2024. Patients were included based on the 2018 International Consensus Meeting definition of PJI. The study utilized a novel sonication protocol, which involved direct intraoperative sonication of the implant and tissue, followed by
Aim. Fast and accurate identification of pathogens causing periprosthetic joint infections (PJI) is essential to initiate effective antimicrobial treatment. Culture-based approaches frequently yield false negative results, despite clear signs of infection. This may be due to the use of general growth media, which do not mimic the conditions at site of infection. Possible alternative approaches include DNA-based techniques, the use of in vivo-like media and isothermal microcalorimetry (ITC). We developed a synthetic synovial fluid (SSF) medium that closely resembles the in vivo microenvironment and allows to grow and study PJI pathogens in physiologically relevant conditions. In this study we investigated whether the use of ITC in combination with the SSF medium can improve accuracy and time to detection in the context of PJI. Methods. In this study, 120 synovial fluid samples were included, aspirated from patients with clinical signs of PJI. For these samples microbiology data (obtained in the clinical microbiology lab using standard procedures) and next generation sequencing (NGS) data, were available. The samples were incubated in the SSF medium at different oxygen levels (21% O. 2. , 3% O. 2. and 0% O. 2. ) for 10 days. Every 24h, the presence of growth was checked. From positive samples, cultures were purified on Columbia blood agar and identified using MALDI-TOF. In parallel, heat produced by metabolically active microorganisms present in the samples was measured using ITC (calScreener, Symcel), (96h at 37°C, in SSF, BHI and thioglycolate). From the resulting thermograms the ‘time to activity’ could be derived. The accuracy and time to detection were compared between the different detection methods. Results. So far, seven samples were investigated. Using conventional culture-based techniques only 14.3% of the samples resulted in positive cultures, whereas NGS indicated the presence of microorganisms in 57.1% of the samples (with 3/7 samples being polymicrobial). Strikingly, 100% of the samples resulted in positive cultures after