Objectives. Orthopaedic surgeons use stems in revision knee surgery to obtain
stability when metaphyseal bone is missing. No consensus exists
regarding stem size or method of fixation. This in vitro study
investigated the
There have been many attempts to reduce the risk of femoral component loosening. Using a tapered stem having a highly polished stem surface results in stem stabilization subsequent to debonding and stem-cement taper-lock and is consistent with force-closed fixation design. In this study, we assessed the subsidence of two different polished triple tapered stems and two different cements in primary THA.Introduction
Purpose
Excellent long-term survival rates associated with the absence of stem subsidence have been achieved with total hip arthroplasty (THA) using femoral components cemented line-to-line (“French Paradox”). Recently, short stems have been introduced in order to preserve diaphyseal bone and to accommodate to minimal invasive THA and a variety of clinical situations. The aim of the current study was to quantify the rotational and tilting stability of a Kerboull stem of varying length after line-to-line cementation using a validated in-vitro model. The femoral component made of M30NW stainless steel was derived from the original Kerboull stem. It had a double taper, a highly polished surface, and a quadrangular cross-section. Four stem lengths were designed from the original length with a distal reduction of 6, 12, 17 and 22%, whereas the proximal body geometry of the implant remained unaffected. For each stem length, five specimens were implanted into a non-canal synthetic femoral model. The femoral preparation was performed in order to obtain rotational and tilting stability of the stem prior to the line-to-line cementation. Spatial micro-motions of the specimens were investigated using a validated rotational measuring set-up. In addition, in a second separate step, the specimens were exposed to a ventro-dorsal moment to mimic varus-valgus moment. Statistical analysis was performed using ANOVA with Fisher PLSD.Introduction
Materials & methods
The current decade has seen a marked rise in popularity of minimally invasive hip replacement, done through a variety of surgical approaches. A specific downside to the direct anterior approach includes the significant difficulty getting a “straight shot” down the femoral canal for either straight, nonflexible reaming or broaching as with standard approaches. Improper alignment in the femoral canal can lead to sub-optimal load transfer and thus compromised fixation. The femoral broach and stem insertion path for this approach is best described as a curved one, rather than the typical straight path. Some femoral components appear to be more suitable to this technique due to their geometries. The purpose of the study was to describe the effects that the single geometric parameter, stem length, has on its insertion path into the femoral canal. Due to the potential introduction of human error associated with repetitively performing a specific motion, both a physical study and a computer generated analysis were conducted. For the physical portion of the study, a femoral implant body of generic fit and fill geometry was designed and manufactured. The length of the stem was varied from 40 mm to 100 mm in 10 mm increments. A medium sized synthetic femur (Sawbones, Pacific Labs, Seattle, WA) was machined to match the volume of the full length stem. The insertion path constraints were defined such that the stem had to maintain the greatest allowable insertion angle while still making contact on both the medial and lateral side of the canal during translation in the X direction. To reduce the variability in applying the constraints, a single author conducted the insertion procedure for each length stem while the path was videotaped from a fixed position directly in front of the setup. The most proximal lateral point of the stem was tracked through the insertion path and the X, Y coordinates were recorded at a frequency of 2 FPS. The area under this curve, referred to as the minimum insertion area (MIA), was calculated. For the computer generated portion of the study, a CAD model of the standard length Omnifit® (Stryker Orthopaedics) was utilized. The stem was modified to create 5 additional models where the length was progressively shortened to 65%, 55%, 45%, 35%, and 25% of original length or 91mm, 77mm, 63mm, 49mm, and 35mm respectively. The femur was created from a solidified mesh of a computed tomography (CT) scan with the canal virtually broached for a full length stem. The models were each virtually assembled within the femoral canal with the similar constraints as the physical study. Again, the most proximal lateral point of the stem was tracked through the insertion path with the coordinates recorded and the MIA was calculated. There was a non-linear relationship between stem length and the MIA with the rate of change decreasing as the stem length decreased. That is, the greatest decrease in MIA was between the standard length and next longest length in the computer simulation. It was noted that marked change in MIA began to subside between the 77mm and 63mm stems and continued this trend of having less influence onward through to the shorter lengths. Although the results of the physical study showed a higher variability than the computer generated portion, it does confirm the results of the computer generated study. Minimizing the trauma associated with THR has led most of the above authors to the direct anterior approach. However, the femoral broach and stem insertion path is best described as a curved one, rather than the typical straight path used in other approaches. This curved insertion path also has benefits for other approaches since the broaches and stem can be kept away from the abductors, minimizing the potential injury to them. Shorter stem length makes this curved insertion path easier to perform. This is the first study to describe the effect that stem length has on its insertion path into the femoral canal. As expected, the physical portion of the study showed more variability than the computer generated portion. However, the physical and computer studies correlated well, with shorter stem lengths clearly allowing a more curved insertion path. The improvement tapered off in stem lengths below 63mm. This length correlates well with the other attempts at a shorter stem. This study provides quantitative data to help with shorter stem design and possible computer navigated insertion paths.
Extensive bone defects of the proximal femur e.g. due to aseptic loosening might require the implantation of megaprostheses. In the literature high loosening rates of such megaprostheses have been reported. However, different fixation methods have been developed to achieve adequate implant stability, which is reflected by differing design characteristics of the commonly used implants. Yet, a biomechanical comparison of these designs has not been reported. The aim of our study was to analyse potential differences in the biomechanical behaviour of three megaprostheses with different designs by measuring the primary rotational stability in vitro. Four different stem designs [Group A: Megasystem-C® (Link), Group B: MUTARS®(Implantcast), Group C: GMRS™ (Stryker) and Group D: Segmental System (Zimmer); see Fig. 1] were implanted into 16 Sawbones® after generating a segmental AAOS Typ 2 defect. Using an established method to analyse the rotational stability, a cyclic axial torque of ± 7.0 Nm along the longitudinal stem axis was applied. Micromotions were measured at defined levels of the bone and the implant [Fig. 2]. The calculation of relative micromotions at the bone-implant interface allowed classifying the rotational implant stability.Introduction:
Methods:
The Exeter cemented polished tapered stem design was introduced into clinical practice in the early 1970's. [i] Design and cement visco-elastic properties define clinical results [ii]; a recent study by Carrington et al. reported the Exeter stem has 100% survivorship at 7 years. [iii] Exeter stems with offsets 37.5–56 mm have length 150 mm (shoulder to tip). Shorter stems, lengths 95–125 mm, exist in offsets 30–35.5 mm. The Australian National Joint Replacement Registry recently published that at 7 years the shorter stems are performing as well as longer stems on the registry [iv]. Clinical observation indicates in some cases of shorter, narrower femora that fully seating a 150 mm stem's rasp in the canal can be difficult, which may affect procedural efficiency. This study investigates the comparative risk of rasp distal contact for the Exeter 150 mm stem or a 125 mm stem. Rasps for 37.5, 44, 50 mm offset, No.1, 150 mm length stems (Exeter, Stryker Orthopaedics, Mahwah NJ) were compared with shortened length models using SOMA™ (Stryker Orthopaedics Modeling and Analytics technology). 637 patients' CT scanned femora were filtered for appropriate offset and size by measuring femoral-head to femoral-axis distance and midsection cancellous bone width (AP view). These femora were analyzed for distal contact (rasp to cortices) for 150 mm and 125 mm models (Figure 1). The widths of the rasp's distal tip and the cancellous bone boundary were compared to assess contact for each femur in the AP and ML views; the rasp was aligned along an ideal axis and flexed in order to pass through the femoral neck (ML view only).Introduction
Materials and Methods
PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived stem cells (ASCs) incubated with each type of MINP were cultured under or without the application of cyclical magnetomechanical stimulation. Downstream effects of PIEZO1 actuation on cell mechanotransduction signaling and stem cell fate were screened by analyzing gene expression profiles.Introduction
Method
Resorptive bone remodeling secondary to stress shielding has been a concern associated with cementless total hip arthroplasty (THA). At present, various types of cementless implants are commercially available. The difference in femoral stem design may affect the degree of postoperative stress shielding. In the present study, we aimed to compare the difference in bone mineral density (BMD) change postoperatively in femurs after the use of 1 of the 3 types of cementless stems. Ninety hips of 90 patients who underwent primary cementless THA for the treatment of osteoarthritis were included in this study. A fit-and-fill type stem was used for 28 hips, a tapered-rectangular Zweymüller type stem was used for 32 hips, and a tapered-wedge type stem was used for 30 hips. The male/female ratio of the patients was 7/21 in the fit-and-fill type stem group, 6/26 in the tapered-rectangular Zweymüller type stem group, and 6/24 in the tapered-wedge type stem group. The mean age at surgery was 59.9 (39–80) in the fit-and-fill type stem group, 61.7 (48–84) in the tapered-rectangular Zweymüller type stem group and 59.6 (33–89) in the tapered-wedge type stem group. To assess BMD change after THA, we obtained dual-energy X-ray absorptiometry scans preoperatively and at 6, 12, 24, and 36 months postoperatively.Introduction
Methods
The early revision rate in elective Total Hip Arthroplasty (THA) three years after surgery in elderly patients over 80 years is significantly lower for cemented stems in the German Arthroplasty Register (EPRD): cemented 3,1% (3.0 – 3.2) vs. uncemented 4.2% (4.1 – 4.3; p < 0.001). However, the mortality rate in elderly patients is elevated for cemented fixation. This study presents a detailed analysis of the
Shoulder arthroplasty humeral stem design has evolved to accommodate patient anatomy characteristics. As a result, stems are available in numerous shapes, coatings, lengths, sizes, and vary by fixation method. This abundance of stem options creates a surgical paradox of choice. Metrics describing stem stability, including a stem's resistance to subsidence and micromotion, are important factors that should
Introduction. Porous metaphyseal cones are increasingly used for fixation in revision total knee arthroplasty (RTKA). Both cemented shorter length stems and longer diaphyseal engaging stems are currently utilized with metaphyseal cones with no clear evidence of superiority. The purpose of this study was to evaluate our experience with 3D printed titanium metaphyseal cones with both short cemented and longer cementless stems from a clinical and radiographic perspective. Methods. In total 136 3D printed titanium metaphyseal cones were implanted. The mean patient age was 63 and 48% were female. The mean BMI was 33 and the mean ASA class was 2.5. There were 42 femoral cones in which 28 cemented and 14 cementless stems were utilized. There were 94 tibial cones in which 67 cemented and 27 cementless stems were utilized. The choice for stem fixation was surgeon dependent and in general cones were utilized for AORI type 2 and 3 bone defects on the femur and tibia. The most common fixation scenario was short cemented stems on both the femur and tibia followed by cemented stem fixation on the tibia and cementless fixation on the femur. Clinical data such as revision, complication, and PRO was collected at last follow-up (minimum follow-up 1 year). Radiographic analysis included cone bony ingrowth and coronal and sagittal alignment on long-standing radiographs. Descriptive statistics were used to compare demographics between patients who had malalignment (HKA beyond +/− 3 degrees and flexion/extension beyond +/− 3 degrees). Adjusted logistic regression models were run to assess malalignment risk by stem type. Results. Patient reported outcomes demonstrated modest improvements with Pre-op KOOS improving from 44 pre-op to 59 post -op and PF-CAT improving from 33 to 37 post-op. PROMIS pain scores decreased significantly from 54 to 44 post-op. 36% of patients had malalignment in either the coronal or sagittal plane. Patients with malalignment were more likely to be female (66.7% vs 40.4%, p-value=0.02). After adjusting for age, sex and BMI, there was a significantly increased risk for coronal plane malalignment when both the femur and tibia had cementless compared to cemented stems (odds ratio=5.54, 95%CI=1.15, 26.80). There was no significantly increased risk when comparing patients with mixed stems to patients with cemented stems. Sagittal plane malalignment was more common with short cemented stems although both coronal plane and sagittal plane malalignment with either stem type was not associated with inferior clinical outcome. Overall cone survivorship was excellent with only two cones removed for infection. Conclusion. Metaphyseal titanium cones provide reliable fixation in revision TKA. However, PROs in this complex patient population show only modest improvement consistent with other variables such as co-morbidities and poor baseline physical function. Small cone inner diameter may adversely
Tendon and ligament tissues are fascinating in their simplistic appearance of tissue architecture coupled with outstanding biomechanical properties. In the last decade, the mechanisms governing their development, degenerative disease progression and step-wise repair process are becoming better understood. In this talk, I will present an overview of our basic research work on these following points. (i) Tendon generation: I will discuss our finding on the role of growth and biomechanical factors
Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. Previous work has focussed on the influence of femoral neck profile on impingement without consideration of neck-shaft angle. This study assessed the occurrence of impingement with two different stem designs (Corail standard [135°] and coxa vara [125°]) under different activities with varying acetabular cup orientation (30° to 70° inclination; 0° to 50° anteversion) using a geometric modelling tool. The tool was created in a computer aided design software programme, and incorporated an individual's hemi-pelvis and femur geometry[3] with a THR (DePuy Synthes Pinnacle. ®. shell and neutral liner; size 12 Corail. ®. standard or coxa vara and 32mm head). Kinematic data of activities associated with dislocation[2], such as stooping to pick an object from the floor was applied and incidences of impingement were recorded. Predicted implant impingement was
Introduction. Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can
Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can
Despite higher rates of revision after total hip arthroplasty (THA) being reported for uncemented stems in patients aged > 75 years, they are frequently used in this age group. Increased mortality after cemented fixation is often used as a justification, but recent data do not confirm this association. The aim of this study was to investigate the influence of the design of the stem and the type of fixation on the rate of revision and immediate postoperative mortality, focusing on the age and sex of the patients. A total of 333,144 patients with primary osteoarthritis (OA) of the hip who underwent elective THA between November 2012 and September 2022, using uncemented acetabular components without reconstruction shells, from the German arthroplasty registry were included in the study. The revision rates three years postoperatively for four types of stem (uncemented, uncemented with collar, uncemented short, and cemented) were compared within four age groups: < 60 years (Young), between 61 and 70 years (Mid-I), between 71 and 80 years (Mid-II), and aged > 80 years (Old). A noninferiority analysis was performed on the most frequently used designs of stem.Aims
Methods
Introduction. Malalignment of some designs of stem is associated with an increased risk of aseptic loosening and revision. We investigated whether the alignment of the cemented polished, double-taper design adversely affected outcome, in a multicentre prospective study. Methods. A multicentre prospective study of 1189 total hip replacements was undertaken to investigate whether there is an association between surgical outcome and femoral stem alignment. All patients underwent a primary THR with the Exeter femoral stem (Stryker Howmedica Osteonics, Mahwah, NJ) and a variety of acetabular components. The primary outcome measure was the Oxford hip score (OHS) and change in OHS at five years. Secondary outcomes included rate of dislocation and revision. Radiographic evaluation of the femoral component was also undertaken. The long axis of the Exeter femoral component and the long axis of the femoral canal were located, and the angle at the point of intersection measured. The cementing quality was determined as defined by Barrack et al. Radiolucent lines at the cement-stem and cement-bone interface in the five year radiographs were defined using the zones described by Gruen et al. Subsidence was measured as the vertical dimension of the radiolucency craniolateral to the shoulder of the stem in Gruen zone 1 as described by Fowler et al. Cement fractures were recorded. Results. The incidence of varus (>5 ° to the femoral axis), and valgus (>5 °) malignment were 3.7% and 0.8% respectively. Pre-operative demographics and OHS were similar in all groups (p > 0.4). There was no significant difference in OHS or change in OHS between neutral and malaligned groups at 5 years (neutral, mean=40.1, change=23.1; varus, mean=40.1, change=23.7; valgus, mean=42.0, change=26.6; p=0.46 and p=0.45 respectively). There was no significant difference in dislocation rate between the groups (p=0.66). There was also no significant difference in revision rate (p=0.34). There were no statistically significant differences in the incidence of femoral radiolucency, stem subsidence or cement fracture (p > 0.1). Conclusion. This study provides evidence that both varus and valgus implantation does not compromise the short to medium term clinical results of the cemented, polished, double-taper stems. Longer follow-up is required to establish the
Aim: To investigate whether cement mantle thickness influence early migration of the stem after impaction grafting. Methods: Twelve artificial femora were prepared to mimic cavitary defects. After compacting morselized bone into the cavities, Exeter stems were cemented in place. By using all combinations of three sizes tamps and stems (0, 1 and 2), we created cement mantles of 0, 1, 2, 3 and 4 mm thickness. Bones with stems were placed in a testing machine and loaded cyclically to 2,500 N while measuring stem migration. Statistical analysis was by regression analysis. Outcomes were stem subsidence and retroversion, predictors were mantle thickness, tamp size and stem size. Results: Average stem subsidence after 2500 cycles when using size 1 tamp and stem (2 mm mantle) was 0.94 mm. For a 0 mm mantle, subsidence was 0.59 mm and for a 4 mm mantle it was 2.54 mm. Cement mantle thickness significantly
We followed 66 total hip arthroplasties using a cement-less Omniflex femoral component with different surface morphology in 51 patients for a mean of 98 months (72 to 138). There were 57 women and nine men, and the mean age of the patient at the time of operation was 55.4 years (39 to 70). Preoperative diagnosis was osteoarthritis secondary to congenital hip dislocation and dysplasia in 64 hips, rheumatoid arthritis in two hips. This series was divided into three groups according to the extent of surface treatment in the proximal part of the femoral component. A circumferential Hydroxyapatite or titanium plasma-spray coated Omniflex stem was used in 33 hips (Group A). A patchy titanium-beads coated stem and a smooth surfaced stem of the same design were used in 25 hips (Group B) and eight hips (Group C), respectively. Clinically, the mean Harris Hip Score was 54 points preoperatively, which improved to 89 points at the latest follow-up. Incidence of thigh pain was the lowest in Group A ( 6%) in comparison with in Group B (28%) and Group C (25%). Radiographically, the aseptic loosening rate of the femoral component was none in Group A, 16% in Group B and 75% in Group C. Incidence of femoral osteolysis was almost the same rate among the three groups; 38% in Group A, 40% in Group B, and 50% in Group C. However only in Group A, no Osteolysis was found distal to the lesser trochanter level. The femoral revision was performed in two hips of Group C. This study elucidated that the extent of surface treatment would be one of the important factors to
The site of initiation of failure of a cemented femoral component is usually the prosthesis-cement interface. Strengthening this interface with porosity reduction may improve survivorship. Cement pores which propagate crack formation can be reduced by vacuum mixing or centrifugation, but this does not effect interface porosity. Utilising simulated stems cemented into a “Sawbones” femur in a manner replicating surgery, we determined the effect of stem warming on various parameters. Maximum temperature and time of polymerisation, mechanical strength, porosity reduction and pore distribution in the cement mantle were measured with stems at room temperature (RT), 37, 44, and 50 degrees Celcius. Mechanical testing included initial “push-out” tests, tests after agiing in 37 degrees Celcius saline for two weeks,and fatigue testing (3 HZ at 90% initial failure load). Porosity distribution was measured by the percentage area of pores on the interface surfaces and the transverse plane. Polymerisation time decreased as the stems were heated. The time decreased from 8.1 minutes at RT to 5.9 minutes at 50 degrees Celcius. The maximum temperature in the cement mantle rose from 50.2 to 56.4 degrees Celcius comparing stems at RT to those at 37 degrees Celcius, and did not elevate further as stems were preheated to 44 and 50 degrees Celcius. Similarly, static and fatigue interface strength improved by preheating stems, but no significant gain compared to RT stems was realised by heating above 37 degrees Celcius. A dramatic reduction in porosity at the prosthesis-cement region was found with the heated stems, with no additional benefit to heating beyond 37 degrees Celcius. An increase in porosity at the cement-bone interface was noted as stems were heated. This may be due to the direction of polymerisation shrinkage in the cement mantle as