Advertisement for orthosearch.org.uk
Results 1 - 20 of 39
Results per page:
Bone & Joint Open
Vol. 5, Issue 2 | Pages 109 - 116
8 Feb 2024
Corban LE van de Graaf VA Chen DB Wood JA Diwan AD MacDessi SJ

Aims. While mechanical alignment (MA) is the traditional technique in total knee arthroplasty (TKA), its potential for altering constitutional alignment remains poorly understood. This study aimed to quantify unintentional changes to constitutional coronal alignment and joint line obliquity (JLO) resulting from MA. Methods. A retrospective cohort study was undertaken of 700 primary MA TKAs (643 patients) performed between 2014 and 2017. Lateral distal femoral and medial proximal tibial angles were measured pre- and postoperatively to calculate the arithmetic hip-knee-ankle angle (aHKA), JLO, and Coronal Plane Alignment of the Knee (CPAK) phenotypes. The primary outcome was the magnitude and direction of aHKA, JLO, and CPAK alterations. Results. The mean aHKA and JLO increased by 0.1° (SD 3.4°) and 5.8° (SD 3.5°), respectively, from pre- to postoperatively. The most common phenotypes shifted from 76.3% CPAK Types I, II, or III (apex distal JLO) preoperatively to 85.0% IV, V, or VI (apex horizontal JLO) postoperatively. The proportion of knees with apex proximal JLO increased from 0.7% preoperatively to 11.1% postoperatively. Among all MA TKAs, 60.0% (420 knees) were changed from their constitutional alignments into CPAK Type V, while 40.0% (280 knees) either remained in constitutional Type V (5.0%, 35 knees) or were unintentionally aligned into other CPAK types (35.0%; 245 knees). Conclusion. Fixed MA targets in TKA lead to substantial changes from constitutional alignment, primarily a significant increase in JLO. These findings enhance our understanding of alignment alterations resulting from both unintended changes to knee phenotypes and surgical resection imprecision. Cite this article: Bone Jt Open 2024;5(2):109–116


Aims. Functional alignment (FA) in total knee arthroplasty (TKA) aims to achieve balanced gaps by adjusting implant positioning while minimizing changes to constitutional joint line obliquity (JLO). Although FA uses kinematic alignment (KA) as a starting point, the final implant positions can vary significantly between these two approaches. This study used the Coronal Plane Alignment of the Knee (CPAK) classification to compare differences between KA and final FA positions. Methods. A retrospective analysis compared pre-resection and post-implantation alignments in 2,116 robotic-assisted FA TKAs. The lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) were measured to determine the arithmetic hip-knee-ankle angle (aHKA = MPTA – LDFA), JLO (JLO = MPTA + LDFA), and CPAK type. The primary outcome was the proportion of knees that varied ≤ 2° for aHKA and ≤ 3° for JLO from their KA to FA positions, and direction and magnitude of those changes per CPAK phenotype. Secondary outcomes included proportion of knees that maintained their CPAK phenotype, and differences between sexes. Results. Overall, 71.6% had an aHKA change ≤ 2°, and 87.0% a JLO change ≤ 3°. Mean aHKA changed from -1.1° (SD 2.8°) in KA to -1.9° (SD 2.3°) in FA (mean difference (MD) -0.83 (SD 2.0); p < 0.001). Mean JLO changed from 173.9° (SD 3.0°) in KA to 174.2° (SD 2.6°) in FA (MD 0.38 (SD 2.3); p < 0.001). CPAK type was maintained in 58.1% of knees, with the proportion highest for Types I (73.9%), II (61.1%), and IV (51.2%). In valgus knees, 67.5% of Type III and 71.7% of Type VI were shifted to neutral phenotypes. There was minimal change to constitutional JLO across all CPAK types (MDs -2.0° to 1.2°). Conclusion. Functional alignment may alter CPAK type, but does not significantly change JLO. A kinematic starting point minimizes changes to native anatomy, while final position with FA provides an optimally balanced TKA. Cite this article: Bone Jt Open 2024;5(12):1081–1091


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). Methods. A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type. Results. There was similar frequency distribution between healthy and arthritic groups across all CPAK types. The most common categories were Type II (39.2% healthy vs 32.2% OA), Type I (26.4% healthy vs 19.4% OA) and Type V (15.4% healthy vs 14.6% OA). CPAK Types VII, VIII, and IX were rare in both populations. Across all CPAK types, a greater proportion of KA TKAs achieved optimal balance compared to MA. This effect was largest, and statistically significant, in CPAK Types I (100% KA vs 15% MA; p < 0.001), Type II (78% KA vs 46% MA; p = 0.018). and Type IV (89% KA vs 0% MA; p < 0.001). Conclusion. CPAK is a pragmatic, comprehensive classification for coronal knee alignment, based on constitutional alignment and JLO, that can be used in healthy and arthritic knees. CPAK identifies which knee phenotypes may benefit most from KA when optimization of soft tissue balance is prioritized. Further, it will allow for consistency of reporting in future studies. Cite this article: Bone Joint J 2021;103-B(2):329–337


Bone & Joint Open
Vol. 3, Issue 3 | Pages 211 - 217
1 Mar 2022
Hsu C Chen C Wang S Huang J Tong K Huang K

Aims. The Coronal Plane Alignment of the Knee (CPAK) classification is a simple and comprehensive system for predicting pre-arthritic knee alignment. However, when the CPAK classification is applied in the Asian population, which is characterized by more varus and wider distribution in lower limb alignment, modifications in the boundaries of arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) should be considered. The purposes of this study were as follows: first, to propose a modified CPAK classification based on the actual joint line obliquity (aJLO) and wider range of aHKA in the Asian population; second, to test this classification in a cohort of Asians with healthy knees; third, to propose individualized alignment targets for different CPAK types in kinematically aligned (KA) total knee arthroplasty (TKA). Methods. The CPAK classification was modified by changing the neutral boundaries of aHKA to 0° ± 3° and using aJLO as a new variable. Radiological analysis of 214 healthy knees in 214 Asian individuals was used to assess the distribution and mean value of alignment angles of each phenotype among different classifications based on the coronal plane. Individualized alignment targets were set according to the mean lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) of different knee types. Results. A very high concentration, 191 from 214 individuals (89.3%), were found in knee types with apex distal JLO when the CPAK classification was applied in the Asian population. By using aJLO as a new variable, the high distribution percentage in knee types with apex distal JLO decreased to 125 from 214 individuals (58.4%). The most common types in order were Type II (n = 70; 32.7%), Type V (n = 55; 25.7%), and Type I (n = 46; 21.5%) in the modified CPAK classification. Conclusion. The modified CPAK classification corrected the uneven distribution when applying the CPAK classification in the Asian population. Setting individualized TKA alignment targets according to CPAK type may be a practical method to recreate optimal LDFA and MPTA in KA-TKA. Cite this article: Bone Jt Open 2022;3(3):211–217


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 87 - 87
1 Jul 2022
Rajput V Fontalis A Plastow R Kayani B Giebaly D Hansejee S Magan A Haddad F
Full Access

Abstract. Introduction. Coronal plane alignment of the knee (CPAK) classification utilises the native arithmetic hip-knee alignment to calculate the constitutional limb alignment and joint line obliquity which is important in pre-operative planning. The objective of this study was to compare the accuracy and reproducibility of measuring the lower limb constitutional alignment with the traditional long leg radiographs versus computed tomography (CT) used for pre-operative planning in robotic-arm assisted TKA. Methods. Digital long leg radiographs and pre-operative CT scan plans of 42 patients (46 knees) with osteoarthritis undergoing robotic-arm assisted total knee replacement were analysed. The constitutional alignment was established by measuring the medial proximal tibial angle (mPTA), lateral distal femoral angle (LDFA), weight bearing hip knee alignment (WBHKA), arithmetic hip knee alignment (aHKA) and joint line obliquity (JLO). Furthermore, the Coronal Plane Alignment of the Knee (CPAK) classification was utilised to classify the patients based on their coronal knee alignment phenotype. Results. Mean age of the patients was 66 years (SD 9) and mean BMI 31.2 (SD 3.9). There were 27 left and 19 right sided surgeries. The Pearson's corelation coefficient was 0.722 (p=0.008) for WBHKA; 0.729 (p<0.001) for MPTA; 0.618 (p=0.14) for aHKA; 0.502 (p= 0.04) for LDFA and 0.305 (p=0.234) for JLO. CPAK classification was concordant for 53% study participants between the two groups. Conclusion. Three-dimensional CT-based modelling with computer software more accurately predicts constitutional limb alignment and JLO as defined by the CPAK classification compared to plain long-leg radiographs in pre-operative planning of total knee arthroplasty


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1059 - 1066
1 Oct 2024
Konishi T Hamai S Tsushima H Kawahara S Akasaki Y Yamate S Ayukawa S Nakashima Y

Aims. The Coronal Plane Alignment of the Knee (CPAK) classification has been developed to predict individual variations in inherent knee alignment. The impact of preoperative and postoperative CPAK classification phenotype on the postoperative clinical outcomes of total knee arthroplasty (TKA) remains elusive. This study aimed to examine the effect of postoperative CPAK classification phenotypes (I to IX), and their pre- to postoperative changes on patient-reported outcome measures (PROMs). Methods. A questionnaire was administered to 340 patients (422 knees) who underwent primary TKA for osteoarthritis (OA) between September 2013 and June 2019. A total of 231 patients (284 knees) responded. The ­Knee Society Score 2011 (KSS 2011), Knee injury and Osteoarthritis Outcome Score-12 (KOOS-12), and Forgotten Joint Score-12 (FJS-12) were used to assess clinical outcomes. Using preoperative and postoperative anteroposterior full-leg radiographs, the arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) were calculated and classified based on the CPAK classification. To investigate the impact on PROMs, multivariable regression analyses using stepwise selection were conducted, considering factors such as age at surgery, time since surgery, BMI, sex, implant use, postoperative aHKA classification, JLO classification, and changes in aHKA and JLO classifications from preoperative to postoperative. Results. The preoperative and postoperative CPAK classifications were predominantly phenotype I (155 knees; 55%) and phenotype V (73 knees; 26%), respectively. The change in the preoperative to postoperative aHKA classification was a significant negative predictive factor for KOOS-12 and FJS-12, while postoperative apex proximal JLO was a significant negative predictive factor for KSS 2011 and KOOS-12. Conclusion. In primary TKA for OA, preoperative and postoperative CPAK phenotypes were associated with PROMs. Alteration in varus/valgus alignment from preoperative to postoperative was recognized as a negative predictive factor for both KOOS-12 and FJS-12. Moreover, the postoperative apex proximal JLO was identified as a negative factor for KSS 2011 and KOOS-12. Determining the target alignment for each preoperative phenotype with reproducibility could improve PROMs. Cite this article: Bone Joint J 2024;106-B(10):1059–1066


Bone & Joint Open
Vol. 5, Issue 10 | Pages 879 - 885
14 Oct 2024
Moore J van de Graaf VA Wood JA Humburg P Colyn W Bellemans J Chen DB MacDessi SJ

Aims. This study examined windswept deformity (WSD) of the knee, comparing prevalence and contributing factors in healthy and osteoarthritic (OA) cohorts. Methods. A case-control radiological study was undertaken comparing 500 healthy knees (250 adults) with a consecutive sample of 710 OA knees (355 adults) undergoing bilateral total knee arthroplasty. The mechanical hip-knee-ankle angle (mHKA), medial proximal tibial angle (MPTA), and lateral distal femoral angle (LDFA) were determined for each knee, and the arithmetic hip-knee-ankle angle (aHKA), joint line obliquity, and Coronal Plane Alignment of the Knee (CPAK) types were calculated. WSD was defined as a varus mHKA of < -2° in one limb and a valgus mHKA of > 2° in the contralateral limb. The primary outcome was the proportional difference in WSD prevalence between healthy and OA groups. Secondary outcomes were the proportional difference in WSD prevalence between constitutional varus and valgus CPAK types, and to explore associations between predefined variables and WSD within the OA group. Results. WSD was more prevalent in the OA group compared to the healthy group (7.9% vs 0.4%; p < 0.001, relative risk (RR) 19.8). There was a significant difference in means and variance between the mHKA of the healthy and OA groups (mean -1.3° (SD 2.3°) vs mean -3.8°(SD 6.6°) respectively; p < 0.001). No significant differences existed in MPTA and LDFA between the groups, with a minimal difference in aHKA (mean -0.9° healthy vs -0.5° OA; p < 0.001). Backwards logistic regression identified meniscectomy, rheumatoid arthritis, and osteotomy as predictors of WSD (odds ratio (OR) 4.1 (95% CI 1.7 to 10.0), p = 0.002; OR 11.9 (95% CI 1.3 to 89.3); p = 0.016; OR 41.6 (95% CI 5.4 to 432.9), p ≤ 0.001, respectively). Conclusion. This study found a 20-fold greater prevalence of WSD in OA populations. The development of WSD is associated with meniscectomy, rheumatoid arthritis, and osteotomy. These findings support WSD being mostly an acquired condition following skeletal maturity. Cite this article: Bone Jt Open 2024;5(10):879–885


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims. The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?. Methods. A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship. Results. The postoperative HKA distribution varied from 9° varus to 11° valgus. All PROMs showed statistical improvements at one year (p < 0.001), with further improvements at five years for Knee Osteoarthritis Outcome Score symptoms (p = 0.041) and Forgotten Joint Score (p = 0.011). Correlation analysis showed no difference (p = 0.610) between the hip-knee-ankle and joint line congruence angle at one and five years. Sub-group analysis showed no difference in PROMs for patients placed within 3° of neutral compared to those placed > 3°. There were no revisions for tibial loosening; however, there were reports of a higher incidence of poor patella tracking and patellofemoral stiffness. Conclusion. PROMs were not impacted by postoperative alignment category. Ligamentous stability was maintained at five years with joint line obliquity. There were no revisions for tibial loosening despite a significant portion of tibiae placed in varus; however, KA executed with IDI resulted in a higher than anticipated rate of patella complications. Cite this article: Bone Jt Open 2022;3(8):656–665


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 55 - 55
7 Aug 2023
Wright E Andrews N Thakrar R Chatoo M
Full Access

Abstract. Introduction. Osteotomy is recognised treatment for osteoarthritis of the knee. Evidence suggests favourable outcomes when compared to arthroplasty, for younger and more active individuals[1]. Double level osteotomy (DLO) is considered when a single level is insufficient to restore both joint line obliquity and adequate realignment[2]. This paper aims to establish the functional outcomes up to two years post operatively for patients undergoing DLO, using patient reported outcome measures (PROMs). Methodology. All patients who underwent a DLO at either Lister Hospital, Stevenage, or One Hatfield Hospital, Hertfordshire, between 1st January 2018 and 1st October 2020 were identified. DLO were performed by two specialist consultants, independently or in combination. PROMs including pain scores, health score, Oxford knee score (OKS) and knee injury and osteoarthritis outcome score (KOOS) were recorded pre-operatively and at six month, one and two year post operative intervals. Results. 24 patients underwent DLO; a medial opening wedge high tibial osteotomy and lateral closing wedge distal femoral osteotomy. The cohort comprised 21 males, 3 females with an average age of 54.09 (38–77) years. Preoperative pain scores graded from 0–10 improved from 6.86 to 2.0 at 2 years. OKS improved from 23.94 to 47.88, as did KOOS 43.55 to 87.51, over the same duration. Conclusion. DLO was associated with improvements in pain and functional outcomes, compared to pre-operative levels. In patients for whom arthroplasty may be unfavourable, this provides an alternative to non-operative management, the options for which are frequently exhausted early in the disease process


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 10 - 10
7 Aug 2023
Mabrouk A Ollivier M Pioer C
Full Access

Abstract. Introduction. Double-level knee osteotomy (DLO) is a challenging procedure that requires precision in preoperative planning and intraoperative execution to achieve the desired correction. It is indicated in cases of severe varus or valgus deformities where a single-level osteotomy would yield significantly tilted joint line obliquity (JLO). Methods. A single-centre, retrospective analysis of prospectively collected data for 26 patients, who underwent DLO by PSCGs for valgus malaligned knees. Post-operative alignment was evaluated and the delta for different lower limb alignment parameters were calculated; HKA, MPTA, and LDFA. At the two-year follow-up, changes in KOOS sub-scores, UCLA scores, lower limb discrepancy, and mean time to return to work and sport were recorded. All intraoperative and postoperative complications were recorded. Results. The postoperative mean ΔHKA was 0.9 ± 0.9°, the mean ΔMPTA was 0.7 ± 0.7°, and the mean ΔLDFA was 0.7 ± 0.8° (all values with p > 0.05). All KOOS subscores’ mean values were improved to an extent two-fold superior to the reported MCID (all with p < 0.0001). There was a significant increase in the UCLA score at the final follow-up (5.4 ± 1.5 preoperatively versus 7.7 ± 1.4, p < 0.01). The mean time to return to sport and work was 4.7 ± 1.1 and 4.3 ± 2.1 months, respectively. There was an improvement in Lower-limb discrepancy preoperative (LLD = 1.3+/−2cm) to postoperative measures (LLD= 0.3 +/− 0.4 cm) p=0.02. Conclusion. DLO is effective and safe in achieving accurate correction in bifocal valgus malaligned knees with maintained lower limb length and low complication rate with no compromise of JLO


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 27 - 27
1 May 2016
Carroll K Patel A Carli A Cross M Jerabek S Mayman D
Full Access

Introduction. While implant designs and surgical techniques have improved in total knee arthroplasty (TKA), approximately 20% of patients remain dissatisfied. The purpose of this study was to determine if reproduction of anatomic preoperative measurements correlated to improved clinical outcomes in TKA. Methods. We retrospectively reviewed95 patients (106 knees) who underwent a TKA between 2012 −2013 with a minimum of one year follow-up. All patients had a pre and post-operative SF-12 and WOMAC scores. Pre and 6 week post-operative radiographs were reviewed to compare restoration of coronal plane alignment, maintenance of joint line obliquity, and maintenance of tibial varus. Coronal alignment was defined as the angle formed between the mechanical axis of the femur and the the tibia. Joint line obliquity was defined as the angle between the mechanical axis of the limb and the line which best parallels the joint space at the knee. Tibial varus was compared between the preoperative proximal lateral tibial angle and the angle formed by the mechanical axis of the tibia and tibial component postoperatively. Results. In 106 patients, postoperative coronal alignment, maintenance of tibia varus, or restoration of joint line obliquity did not correlate to improved outcomes. Patients with residual varus coronal alignment of more than 2° had increased pain and total WOMAC scores (p=0.013 and p = 0.036). Patients who had under-correction of the native tibial angle, had an increase in overall WOMAC score (p=0.007) with increased pain (p=0.012), stiffness (p=0.038), and function (p = 0.001). Furthermore, over-correction of tibial angle resulted in increased WOMAC functional scores (p=0.019), but was not significant to the overall WOMAC. Conclusions. In this study, restoration of a patient's native tibial varus correlated to improved WOMAC scores at 1 year postoperatively. Undercorrection of varus resulted in worse total WOMAC scores whereas overcorrection resulted in worse WOMAC functional scores


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 71 - 71
23 Feb 2023
Gupta S Wakelin E Putman S Plaskos C
Full Access

The Coronal Plane Alignment of the Knee (CPAK) is a recent method for classifying knees using the hip-knee-ankle angle and joint line obliquity to assist surgeons in selection of an optimal alignment philosophy in total knee arthroplasty (TKA)1. It is unclear, however, how CPAK classification impacts pre-operative joint balance. Our objective was to characterise joint balance differences between CPAK categories. A retrospective review of TKA's using the OMNIBotics platform and BalanceBot (Corin, UK) using a tibia first workflow was performed. Lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) were landmarked intra-operatively and corrected for wear. Joint gaps were measured under a load of 70–90N after the tibial resection. Resection thicknesses were validated to recreate the pre-tibial resection joint balance. Knees were subdivided into 9 categories as described by MacDessi et al.1 Differences in balance at 10°, 40° and 90° were determined using a one-way 2-tailed ANOVA test with a critical p-value of 0.05. 1124 knees satisfied inclusion criteria. The highest proportion of knees (60.7%) are CPAK I with a varus aHKA and Distal Apex JLO, 79.8% report a Distal Apex JLO and 69.3% report a varus aHKA. Greater medial gaps are observed in varus (I, IV, VII) compared to neutral (II, V, VIII) and valgus knees (III, VI, IX) (p<0.05 in all cases) as well as in the Distal Apex (I, II, III) compared to Neutral groups (IV, V, VI) (p<0.05 in all cases). Comparisons could not be made with the Proximal Apex groups due to low frequency (≤2.5%). Significant differences in joint balance were observed between and within CPAK groups. Although both hip-knee-ankle angle and joint line orientation are associated with joint balance, boney anatomy alone is not sufficient to fully characterize the knee


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 26 - 26
1 Feb 2017
Leong A Iranpour F Cobb J
Full Access

Background. Surgical planning of long bone surgery often takes place using outdated 2D axes on 2D images such as long leg standing X-rays. This leads to errors and great variation between intra- and inter- observers due to differing frames of reference. With the advent of 3D planning software, researchers developed 3D axes of the knee such as the Flexion Facet Axis (FFAx) and Trochlear Axis (TrAx), and these proved easy to derive and reliable. Unlike 2D axes, clinicians and scientists can use a single 3D axis to obtain measurements relative to other 3D axes, in all three planes Deriving a 3D axis also does not require an initial frame of reference, such as in trying to derive the 2D Posterior Condylar Axis (PCAx), whereby a slight change in slice orientation will affect its position. However, there is no 3D axis derived for the tibial plateau yet. Measurements of tibial joint line obliquity are with a 2D axis drawn on AP long leg standing X-rays. The same applies to tibial plateau rotation, as measured by 2D axes drawn on axial CT/MRI slices. this study aimed to to develop a novel new 3D axis for the tibial plateau to quantify both tibial plateau joint line obliquity and axial rotation. Methods. Materialise software version 8.0 (Materialise Inc., Belgium) handled segmentation of CT data and for analysis of bony morphology. A line joining the centroids of the medial and lateral tibial plateaus formed the TCAx (Fig1). A line joining the middle coordinate of the TCAx, to the centre of the best-fit sphere between the medial and lateral malleolus formed the Tibial Mechanical Axis (TMAx). A standard frame of reference aligned 72 tibias with the TCAx horizontal in the axial view, and the TMAx aligned parallel to the global reference coordinate system vertical axis. Tibial joint line obliquity was the angle between the TCAx and TMAx on the medial side, also known as the Medial Tibial Plateau Angle (MPTA)(Fig2). The authors compared reliability and accuracy of the TCAx against three other rotational axes of the tibia as described in the literature. Results. Our methods showed excellent reproducibility using Bland-Altman analysis between intra- and inter-observers. The tibial joint line as defined by the TCAx is oblique (varus) in the majority of knees (MPTA = 85 ± 2°), and becomes perpendicular (MPTA = 90 ± 2°) in constitutional valgus. The TCAx is also parallel to the Anatomical Tibial Axis (ATAx), (SD = 2°), which is currently the gold standard and most reliable axis in defining tibial axial rotation. Conclusions. The TCAx is a reliable axis for referencing both coronal and rotational alignment of the tibial plateau. it can be used for planning and postoperative analysis of knee replacement. (Fig 3). The variable obliqueness of the joint line suggests that neutral alignment in knee arthroplasty may not be suitable for all knees


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 16 - 16
1 Feb 2020
Dagneaux L Karl G Michel E Canovas F Rivière C
Full Access

Introduction. The constitutional knee anatomy in the coronal plane includes the distal femoral joint line obliquity (DFJLO) which in most patients is in slight valgus positioning. Despite this native anatomy, the mechanical positioning of the femoral component during primary total knee arthroplasty (TKA) often ignores the native DFJLO opting to place the femur in a set degree of valgus that varies upon the practitioner's practice and experience. Unfortunately, this technique is likely to generate high rate of distal lateral femoral overstuffing. This anatomical mismatch might be a cause of anterior knee pain and therefore partly explain the adverse functional outcomes of mechanically aligned (MA) TKA. Our study aims at assessing the relationship between constitutional knee anatomy and clinical outcomes of MA TKA. We hypothesized that a negative relationship would be found between the constitutional frontal knee deformity, the distal femoral joint line obliquity, and functional outcomes of MA TKA with a special emphasize on patellofemoral (PF) specific outcomes. Methods. One hundred and thirteen patients underwent MA TKA (posterior-stabilized design) for primary end-stage knee osteoarthritis. They were prospectively followed for one year using the New KSS 2011 and HSS Patella score. Residual anterior knee pain was also assessed. Knee phenotypes using anatomical parameters (such as HKA, HKS, DFJLO and LDFA (Lateral distal femoral angle)) were measured from preoperative and postoperative lower-limb EOS® images (Biospace, Paris, France). We assessed the relationship between the knee anatomical parameters and the functional outcome scores at 1 year postoperatively. Results. We investigated four groups according to the preoperative obliquity of the distal femur and HKA. The group with high DFJLO and varus knee deformity demonstrated lower HSS scores (drop>10%, p=0.03) and higher rate of anterior knee pain (p=0.03). Higher postoperative variation of LDFA was associated with lower HSS scores (r = −0.2367, p=0.03) and with higher preoperative DFJLO (p=0.0001) due to the MA technique. Knee phenotypes with LDFA<87° presented higher risk of variation of LDFA. No correlation was found using New KSS 2011 outcomes at one-year follow-up. Discussion/Conclusion. Disregard of the constitutional knee anatomy (LDFA and DFJLO) when performing a MA TKA may generate a non-physiologic knee kinematics that impact patellofemoral outcomes and resulting in residual anterior knee pain. While these results are restricted to modern posterior-stabilized TKA design, recent in silico and in vitro studies supported the negative effect of the lateral overstuffing of the femoral component in the coronal plane during knee flexion. This study provides further evidence that suggest patient-specific anatomical considerations are needed to optimize component position and subsequent outcomes following primary TKA. Additional studies are needed to integrate the rotational status of the femoral component in this analysis. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 61 - 61
1 Jul 2022
Wang D Willinger L Athwal K Williams A Amis A
Full Access

Abstract. Background. Little scientific evidence is available regarding the effect of knee joint line obliquity (JLO). Methods. 10 fresh-frozen human cadaveric knees were axially loaded to 1500 N in a materials testing machine with the joint line tilted 0, 4, 8, and 12 degrees varus and valgus, at 0, and 20 degrees of knee flexion. The mechanical compression axis was aligned to the centre of the tibial plateau. Contact pressures / areas were recorded by sensors inserted between the tibia and femur below the menisci. Changes in relative femoral and tibial position in the coronal plane were obtained by an optical tracking system. Results. medial and lateral JLO caused significant tibiofemoral subluxation and pressure distribution changes. Medial (varus) JLO caused the femur to sublux medially down the coronal slope of the tibial plateau, and vice versa for lateral (valgus) downslopes (P=0.01). Areas of peak pressure moved 12 mm and 8 mm across the medial and lateral condyles, onto the ‘downhill’ meniscus and the ‘uphill’ tibial spine. Changes in JLO had only small effects on maximum contact pressures. Conclusion. A change of JLO during load bearing caused significant mediolateral tibiofemoral subluxation. The femur slid down the slope of the tibial plateau to abut the tibial eminence and also to rest on the downhill meniscus. Clinical Relevance. These results provide important information for understanding the consequences of creating coronal JLO and for clinical practice in terms of osteotomy planning regarding the effect on JLO


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 38 - 38
1 Mar 2017
Mullaji A
Full Access

Aims. Medial unicompartmental knee arthroplasty (UKA) is undertaken in patients with a passively correctable varus deformity. Our hypothesis was that restoration of natural soft tissue tension would result in a comparable lower limb alignment with the contralateral normal lower limb after mobile-bearing medial UKA. Patients and Methods. In this retrospective study, hip-knee-ankle (HKA) angle, position of the weight-bearing axis (WBA) and knee joint line obliquity (KJLO) after mobile-bearing medial UKA was compared with the normal (clinically and radiologically) contralateral lower limb in 123 patients. Results. Postoperatively, HKA angle was restored to within ±3° of the contralateral lower limb in 87% of patients andWBA passed within ±1 Kennedy and White's tibial zone of the contralateral normal lower limb in 95% of patients. The difference in the mean KJLO between the two groups was not significant (p=0.05) and the KJLO was within ±3° of the contralateral normal lower limb in 96% of patients. Conclusion. Lower limb alignment & knee joint line obliquity after mobile-bearing medial UKA were comparable to the unaffected contralateral limb in most patients. Clinical Relevance. Comparison with the contralateral normal lower limb is a reliable method to evaluate and validate limb mechanical alignment after mobile-bearing medial UKA


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims. The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. Methods. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups. Results. The pre- to postoperative changes in joint anatomy were significantly less in patients undergoing bi-UKA in all three planes in both the femur and tibia, except for femoral sagittal component orientation in which there was no difference. Overall, for the six parameters of alignment (three femoral and three tibial), 47% of bi-UKAs and 24% TKAs had a change of < 2° (p = 0.045). The change in HKAA towards neutral in varus and valgus knees was significantly less in patients undergoing bi-UKA compared with those undergoing TKA (p < 0.001). Alignment was neutral in those undergoing TKA (mean 179.5° (SD 3.2°)) while those undergoing bi-UKA had mild residual varus or valgus alignment (mean 177.8° (SD 3.4°)) (p < 0.001). Conclusion. Robotic-assisted, cruciate-sparing bi-UKA maintains the natural anatomy of the knee in the coronal, sagittal, and axial planes better, and may therefore preserve normal joint kinematics, compared with a mechanically aligned TKA. This includes preservation of coronal joint line obliquity. HKAA alignment was corrected towards neutral significantly less in patients undergoing bi-UKA, which may represent restoration of the pre-disease constitutional alignment (p < 0.001). Cite this article: Bone Joint J 2020;102-B(11):1511–1518


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 79 - 79
1 Jun 2018
Mullaji A
Full Access

Since 2005, the author has performed nearly 1000 Oxford medial unicompartmental arthroplasties (UKA) using a mobile bearing. The indications are 1) Isolated medial compartment osteoarthritis with ‘bone-on-bone’ contact, which has failed prior conservative treatment, 2) Medial femoral condyle avascular necrosis or spontaneous osteonecrosis, which has failed prior conservative treatment. Patients are recommended for UKA only if the following anatomic requirements are met: 1) Intact ACL, 2) Full thickness articular cartilage wear limited to the anterior half of the medial tibial plateau, 3) Unaffected lateral compartment cartilage, 4) Unaffected patellar cartilage on the lateral facet, 5) Less than 10 degrees of flexion deformity, 6) Over 100 degrees of knee flexion, and 7) Varus deformity not exceeding 15 degrees. Exclusion criteria for surgery are BMI of more than 30, prior high tibial osteotomy, and inflammatory arthritis. All cases were performed with a tourniquet inflated using a minimally-invasive incision with a quadriceps-sparing approach. Both femoral and tibial components were cemented. Most patients were discharged home the next morning; bilaterals usually stayed a day longer. We have previously described our results and the factors determining alignment. In a more recent study, we have compared the coronal post-operative limb alignment and knee joint line obliquity after medial UKA with a clinically and radiologically (less than Grade 2 medial OA) normal contralateral lower limb. In our series, we have had 1 revision for aseptic loosening of both components, conversion to TKRs in a patient with bilateral UKAs who developed rheumatoid arthritis 3 years later, and 9 meniscal dislocations. There have been no cases of wound infections and thromboembolism. We have reviewed our patients with a minimum 10-year follow-up which will be presented. The vast majority of our patients have been generally very satisfied with the results. Our study shows that most patients (who have no disease in the contralateral knee) regain their ‘natural’ alignment and joint line obliquity comparable to their contralateral limb. Over the past few years our percentage of UKAs has been steadily rising to about a third of our knee cases. UKA serves as a definitive procedure in the elderly. We see it as a suitable procedure in middle-aged patients who want an operation that provides a quick recovery, full function and range of motion, and near-normal kinematics, with the understanding that they have a small chance of conversion to a total knee arthroplasty in the future


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 71 - 71
1 Dec 2016
Mullaji A
Full Access

Since 2005, the author has performed 422 Oxford medial unicompartmental arthroplasties (UKA) using a mobile bearing. There were 263 females and 119 males, (40 patients had bilateral UKAs) with a mean age of 62 years. The indications were: Isolated medial compartment osteoarthritis with ‘bone-on-bone’ contact, which had failed prior conservative treatment; Medial femoral condyle avascular necrosis or spontaneous osteonecrosis, which had failed prior conservative treatment. Patients were recommended UKA only if the following anatomic requirements were met: Intact ACL, Full thickness articular cartilage wear limited to the anterior half of the medial tibial plateau, Unaffected lateral compartment cartilage, Unaffected patellar cartilage on the lateral facet, Less than 10 degrees of flexion deformity, Over 100 degrees of knee flexion, Varus deformity not exceeding 15 degrees. Exclusion criteria for surgery were BMI of more than 30, prior high tibial osteotomy, and inflammatory arthritis. All cases were performed with a tourniquet inflated using a minimally-invasive incision with a quadriceps-sparing approach. Both femoral and tibial components were cemented. Rehabilitation consisted of teaching the patients 6 exercises to regain strength and range of motion, and weight-bearing as tolerated with a cane began from the evening of surgery. Most patients were discharged home the next morning; bilaterals usually stayed a day longer. We have previously described our results and the factors determining alignment. In a more recent study we have compared the coronal postoperative limb alignment and knee joint line obliquity after medial UKA with a clinically and radiologically (less than Grade 2 medial OA) normal contralateral lower limb. In our series of 423 cases, we have had 1 revision for aseptic loosening of both components, and 4 meniscal dislocations. There have been no cases of wound infections and thromboembolism. We are currently undertaking a review of the 2–10 year follow-up of our cases. The vast majority of our patients have been generally very satisfied with the results. Our study shows that most patients (who have no disease in the contralateral knee) regain their ‘natural’ alignment and joint line obliquity comparable to their contralateral limb. Over the past few years our percentage of UKAs has been steadily rising. UKA serves as a definitive procedure in the elderly. We see it as a suitable procedure in middle-aged patients who want an operation that provides a quick recovery, full function and range of motion, and near-normal kinematics, with the understanding that they have a small chance of conversion to a total knee arthroplasty in the future


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 117 - 117
1 Dec 2016
Cobb J
Full Access

Patients presenting with arthrosis following high tibial osteotomy (HTO) pose a technical challenge to the surgeon. Slight overcorrection during osteotomy sometimes results in persisting medial unicompartmental arthrosis, but with a valgus knee. A medial UKA is desirable, but will result in further valgus deformity, while a TKA in someone with deformity but intact cruciates may be a disappointment as it is technically challenging. The problem is similar to that of patients with a femoral malunion and arthrosis. The surgeon has to choose where to make the correction. An ‘all inside’ approach is perhaps the simplest. However, this often means extensive release of ligaments to enable ‘balancing’ of the joint, with significant compromise of the soft tissues and reduced range of motion as a consequence. As patients having HTO in the first place are relatively high demand, we have explored a more conservative option, based upon our experience with patient matched guides. We have been performing combined deformity correction and conservative arthroplasty for 5 years, using PSI developed in the MSk Lab. We have now adapted this approach to the failed HTO. By reversing the osteotomy, closing the opening wedge, or opening the closing wedge, we can restore the obliquity of the joint, and preserve the cruciate ligaments. Technique: CT based plans are used, combined with static imaging and on occasion gait data. Planning software is then used to undertake the arthroplasty, and corrective osteotomy. In the planning software, both tibial and femoral sides of the UKA are performed with minimal bone resection. The tibial osteotomy is then reversed to restore joint line obliquity. The placing of osteotomy, and the angling and positioning in relation to the tibial component are crucial. This is more important in the opening of a closing wedge, where the bone but is close to the keel cut. The tibial component is then readjusted to the final ‘Cartier’ angle. Patient guides are then made. These include a tibial cutting guide which locates both the osteotomy and the arthroplasty. At operation, the bone cuts for the arthroplasty are made first, so that these cuts are not performed on stressed bone. The cuts are not in the classical alignment as they are based upon deformed bone so the use of patient specific guides is a real help. The corrective osteotomy is then performed. If a closing wedge is being opened, then a further fibular osteotomy is needed, while the closing of an opening wedge is an easier undertaking. Six cases of corrective osteotomy and partial knee replacement are presented. In all cases, the cruciates have been preserved, together with normal patello-femoral joints. Patient satisfaction is high, because the deformity has been addressed, restoring body image. Gait characteristics are those of UKA, as the ACL has been preserved and joint line obliquity restored