Aims. Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA. Methods. We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point. Results. The median proximal, 2D, and 3D wear rates calculated between one and ten years were all less than 0.005 mm/year, with no patient recording a proximal wear rate of more than 0.021 mm/year. Importantly, there was no increase in the wear rate between five and ten years. Conclusion. The very low wear rate of X3 XLPE liners with
Abstract. Objectives. Hip instability following total hip arthroplasty in treatment of intracapsular neck of femur fractures is reported at 8–11%. Utilising the principle of a small articulation to minimize the problems of wear coupled with a
Early revision is an important risk factor for repeated revision and poor results after primary total hip replacement and instability is a major cause of early revision. Larger articulations with cross-linked polyethylene are proposed as a solution, but these are not without risk, including fracture of the thin polyethylene rim of the liner. The aim of our study was to examine implant-related revisions among primary total hip replacement patients with up to six year follow-up in a randomized controlled trial which compared 28 mm and 36 mm metal on highly cross-linked polyethylene articulations in total hip replacement. 557 patients undergoing primary total hip replacement were included in this study. Risk factors for dislocation and wear were controlled by stratification and patients were then randomized intra-operatively to either a 28 or 36 mm articulation. To date, 10 hips have been revised for implant-related problems following primary total hip replacement. Seven hips with a 28 mm articulation were revised to a
The selection of an acetabular component for primary hip arthroplasty has narrowed significantly over the past 10 years. Although monoblock components demonstrated excellent long-term success the difficulty with insertion and failure to fully appreciate full coaptation of contact with the acetabular floor has led to almost complete elimination of its utilization. Modular acetabular components usually with titanium shells and highly crosslinked polyethylene are by far the most utilised today. This is particularly true with mid-term results demonstrating excellent wear rates and extremely low failure rates and the concern of possible mechanical failure of highly crosslinked polyethylene not being a clinical problem. Ceramic liners are also used but problems with squeaking articulations and liner chipping have made highly crosslinked polyethylene the preferred liner material. Metal-on-metal except in surface replacement arthroplasty is rarely used in primary hip arthroplasty. With instability in total hip replacement still being a significant and the leading cause of revision hip replacement the dual mobility articulation has emerged as an increasingly used acetabular component. This is composed of either a monoblock cobalt chrome socket articulating with a large polyethylene liner into which the femoral head is constrained. The polyethylene liner becomes essentially a
Surface arthroplasty or resurfacing represents a significant development in the evolution of hip replacement. A hip resurfacing arthroplasty (HRA) is a bone conserving alternative to total hip arthroplasty (THA) that restores normal joint biomechanics and load transfer and ensures joint stability. Metal-on-metal (MoM) bearings have been preferred for these
Background:. Dual mobility components in total hip arthroplasty have been successfully in use in Europe for greater than 25 years. However, these implants have only recently obtained FDA approval and acceptance among North American arthroplasty surgeons. Both decreased dislocation rate and decreased wear rates have been proposed benefits of dual mobility components. These components have been used for primary total hip arthroplasty in patients at high risk for dislocation, total hip arthroplasty in the setting of femoral neck fracture, revision for hip instability, and revision for large metal-on-metal (MoM) hip articulation. The literature for the North American experience is lacking. Purpose:. We report indications, short term outcomes, and complications of a series of subjects who received dual mobility outcomes at one institution. Study Design:. Consecutive subjects who received dual mobility total hip arthroplasty components from February 2010 and April 2013 were identified. Charts were retrospectively reviewed for surgical indications, comorbidities, component sizes, and perioperative complications including infection, dislocation, mechanical failure, and reoperation. Results:. 86 hips in 83 subjects underwent total hip arthroplasty or revision total hip arthroplasty using dual mobility components. There were 56 primary total hips and 30 revision total hips. Indications included small acetabular components in the setting of AVN (13 hips), DDH (12 hips) or severe inflammatory arthritis (5 hips), femoral neck fracture (5 hips), intraoperative instability (6 hips), recurrent postoperative instability (5 hips), and revision of
Tribological studies of hip arthroplasty suggest that larger diameter metal-on-metal (MOM) articulations would produce less wear than smaller diameter articulations. Other advantages using these large femoral heads implants include better stability with lower dislocation rates and improved range of motion. The aim of the present study was to compare chromium (Cr), cobalt (Co) and titanium (Ti) ion concentrations up to 1-year after implantation of different large diameter MOM total hip arthroplasty (THA). Methods: Cr, Co and Ti concentrations were measured using a high resolution mass spectrometer (HR-ICP-MS) by an independent laboratory in 110 patients, randomized to receive a
Purpose: Tribological studies suggest that
Purpose: In 1988, metal-on-metal bearing surfaces were reintroduced in hip replacement surgery with a 28 mm diameter femoral head. These bearings have potential advantages such as improved durability, absence of polyethylene particles and no secondary periprosthetic osteolysis. Tribological studies suggest that
Purpose. Total disc replacement (TDR) devices have been restricted to designs with