Advertisement for orthosearch.org.uk
Results 1 - 20 of 158
Results per page:
Bone & Joint Open
Vol. 4, Issue 9 | Pages 668 - 675
3 Sep 2023
Aubert T Gerard P Auberger G Rigoulot G Riouallon G

Aims. The risk factors for abnormal spinopelvic mobility (SPM), defined as an anterior rotation of the spinopelvic tilt (∆SPT) ≥ 20° in a flexed-seated position, have been described. The implication of pelvic incidence (PI) is unclear, and the concept of lumbar lordosis (LL) based on anatomical limits may be erroneous. The distribution of LL, including a unusual shape in patients with a high lordosis, a low pelvic incidence, and an anteverted pelvis seems more relevant. Methods. The clinical data of 311 consecutive patients who underwent total hip arthroplasty was retrospectively analyzed. We analyzed the different types of lumbar shapes that can present in patients to identify their potential associations with abnormal pelvic mobility, and we analyzed the potential risk factors associated with a ∆SPT ≥ 20° in the overall population. Results. ΔSPT ≥ 20° rates were 28.3%, 11.8%, and 14.3% for patients whose spine shape was low PI/low lordosis (group 1), low PI anteverted (group 2), and high PI/high lordosis (group 3), respectively (p = 0.034). There was no association between ΔSPT ≥ 20° and PI ≤ 41° (odds ratio (OR) 2.01 (95% confidence interval (CI)0.88 to 4.62), p = 0.136). In the multivariate analysis, the following independent predictors of ΔSPT ≥ 20° were identified: SPT ≤ -10° (OR 3.49 (95% CI 1.59 to 7.66), p = 0.002), IP-LL ≥ 20 (OR 4.38 (95% CI 1.16 to 16.48), p = 0.029), and group 1 (OR 2.47 (95% CI 1.19; to 5.09), p = 0.0148). Conclusion. If the PI value alone is not indicative of SPM, patients with a low PI, low lordosis and a lumbar apex at L4-L5 or below will have higher rates of abnormal SPM than patients with a low PI anteverted and high lordosis. Cite this article: Bone Jt Open 2023;4(9):668–675


Bone & Joint Research
Vol. 12, Issue 4 | Pages 231 - 244
1 Apr 2023
Lukas KJ Verhaegen JCF Livock H Kowalski E Phan P Grammatopoulos G

Aims. Spinopelvic characteristics influence the hip’s biomechanical behaviour. However, to date there is little knowledge defining what ‘normal’ spinopelvic characteristics are. This study aims to determine how static spinopelvic characteristics change with age and ethnicity among asymptomatic, healthy individuals. Methods. This systematic review followed the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to identify English studies, including ≥ 18-year-old participants, without evidence of hip or spine pathology or a history of previous surgery or interventional treatment, documenting lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI). From a total of 2,543 articles retrieved after the initial database search, 61 articles were eventually selected for data extraction. Results. When all ethnicities were combined the mean values for LL, SS, PT, and PI were: 47.4° (SD 11.0°), 35.8° (SD 7.8°), 14.0° (SD 7.2°), and 48.8° (SD 10°), respectively. LL, SS, and PT had statistically significant (p < 0.001) changes per decade at: −1.5° (SD 0.3°), −1.3° (SD 0.3°), and 1.4° (SD 0.1°). Asian populations had the largest age-dependent change in LL, SS, and PT compared to any other ethnicity per decade at: −1.3° (SD 0.3°) to −0.5° (SD 1.3°), –1.2° (SD 0.2°) to −0.3° (SD 0.3°), and 1.7° (SD 0.2°) versus 1.1° (SD 0.1°), respectively. Conclusion. Ageing alters the orientation between the spine and pelvis, causing LL, SS, and PT to modify their orientations in a compensatory mechanism to maintain sagittal alignment for balance when standing. Asian populations have the largest degree of age-dependent change to their spinopelvic parameters compared to any other ethnicity, likely due to their lower PI. Cite this article: Bone Joint Res 2023;12(4):231–244


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 19 - 27
1 Jan 2024
Tang H Guo S Ma Z Wang S Zhou Y

Aims. The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in sagittal pelvic tilt after total hip arthroplasty (THA). Methods. This retrospective study included 143 patients who underwent 171 THAs between April 2019 and October 2020 and had full-body lateral radiographs preoperatively and at one year postoperatively. We measured the pelvic incidence (PI), the sagittal vertical axis (SVA), pelvic tilt, sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis to classify patients into types A, B1, B2, B3, and C. The change of pelvic tilt was predicted according to the normal range of SVA (0 mm to 50 mm) for types A, B1, B2, and B3, and based on the absolute value of one-third of the PI-LL mismatch for type C patients. The reliability of the classification of the patients and the prediction of the change of pelvic tilt were assessed using kappa values and intraclass correlation coefficients (ICCs), respectively. Validity was assessed using the overall mean error and mean absolute error (MAE) for the prediction of the change of pelvic tilt. Results. The kappa values were 0.927 (95% confidence interval (CI) 0.861 to 0.992) and 0.945 (95% CI 0.903 to 0.988) for the inter- and intraobserver reliabilities, respectively, and the ICCs ranged from 0.919 to 0.997. The overall mean error and MAE for the prediction of the change of pelvic tilt were -0.3° (SD 3.6°) and 2.8° (SD 2.4°), respectively. The overall absolute change of pelvic tilt was 5.0° (SD 4.1°). Pre- and postoperative values and changes in pelvic tilt, SVA, SS, and LL varied significantly among the five types of patient. Conclusion. We found that the proposed algorithm was reliable and valid for predicting the standing pelvic tilt after THA. Cite this article: Bone Joint J 2024;106-B(1):19–27


Bone & Joint Open
Vol. 3, Issue 1 | Pages 77 - 84
24 Jan 2022
Onishi E Ota S Fujita S Tsukamoto Y Yamashita S Hashimura T Matsunaga K Yasuda T

Aims. This study aimed to evaluate sagittal spinopelvic alignment (SSPA) in the early stage of rapidly destructive coxopathy (RDC) compared with hip osteoarthritis (HOA), and to identify risk factors of SSPA for destruction of the femoral head within 12 months after the disease onset. Methods. This study enrolled 34 RDC patients with joint space narrowing > 2 mm within 12 months after the onset of hip pain and 25 HOA patients showing femoral head destruction. Sharp angle was measured for acetabular coverage evaluation. Femoral head collapse ratio was calculated for assessment of the extent of femoral head collapse by RDC. The following parameters of SSPA were evaluated using the whole spinopelvic radiograph: pelvic tilt (PT), sacral slope (SS), pelvic incidence (PI), sagittal vertical axis (SVA), thoracic kyphosis angle (TK), lumbar lordosis angle (LL), and PI-LL. Results. The HOA group showed higher Sharp angles compared with the RDC group. PT and PI-LL were higher in the RDC group than the HOA group. SS and LL were lower in the RDC group than the HOA group. No difference was found in PI, SVA, or TK between the groups. Femoral head collapse ratio was associated with PT, SS, SVA, LL, and PI-LL. A PI-LL > 20° and a PT > 30° correlated with greater extent of femoral head destruction by RDC. From regression analysis, SS and SVA were significantly associated with the femoral head collapse ratio within 12 months after disease onset. Conclusion. Compared with HOA, RDC in the early stage correlated with sagittal spinopelvic malalignment. SS and SVA may partially contribute to the extent of femoral head destruction by RDC within 12 months after the onset of hip pain. The present study indicates a potential role of SSPA assessment in identification of RDC patients at risk for subsequent bone destruction. Cite this article: Bone Jt Open 2022;3(1):77–84


Bone & Joint Research
Vol. 5, Issue 5 | Pages 198 - 205
1 May 2016
Wang WJ Liu F Zhu Y Sun M Qiu Y Weng WJ

Objectives. Normal sagittal spine-pelvis-lower extremity alignment is crucial in humans for maintaining an ergonomic upright standing posture, and pathogenesis in any segment leads to poor balance. The present study aimed to investigate how this sagittal alignment can be affected by severe knee osteoarthritis (KOA), and whether associated changes corresponded with symptoms of lower back pain (LBP) in this patient population. Methods. Lateral radiograph films in an upright standing position were obtained from 59 patients with severe KOA and 58 asymptomatic controls free from KOA. Sagittal alignment of the spine, pelvis, hip and proximal femur was quantified by measuring several radiographic parameters. Global balance was accessed according to the relative position of the C7 plumb line to the sacrum and femoral heads. The presence of chronic LBP was documented. Comparisons between the two groups were carried by independent samples t-tests or chi-squared test. Results. Patients with severe KOA showed significant backward femoral inclination (FI), hip flexion, forward spinal inclination, and higher prevalence of global imbalance (27.1% versus 3.4%, p < 0.001) compared with controls. In addition, patients with FI of 10° (n = 23) showed reduced lumbar lordosis and significant forward spinal inclination compared with controls, whereas those with FI > 10° (n = 36) presented with significant pelvic anteversion and hip flexion. A total of 39 patients with KOA (66.1%) suffered from LBP. There was no significant difference in sagittal alignment between KOA patients with and without LBP. Conclusions. The sagittal alignment of spine-pelvis-lower extremity axis was significantly influenced by severe KOA. The lumbar spine served as the primary source of compensation, while hip flexion and pelvic anteversion increased for further compensation. Changes in sagittal alignment may not be involved in the pathogenesis of LBP in this patient population. Cite this article: W. J. Wang, F. Liu, Y.W. Zhu, M.H. Sun, Y. Qiu, W. J. Weng. Sagittal alignment of the spine-pelvis-lower extremity axis in patients with severe knee osteoarthritis: A radiographic study. Bone Joint Res 2016;5:198–205. DOI:10.1302/2046-3758.55.2000538


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 25 - 25
4 Apr 2023
Amirouche F Dolan M Mikhael M Bou Monsef J
Full Access

The pelvic girdle and spine vertebral column work as a long chain influenced by pelvic tilt. Spinal deformities or other musculoskeletal conditions may cause patients to compensate with excessive pelvic tilt, producing alterations in the degree of lumbar lordosis and subsequently causing pain. The objective of this study is to assess the effect of open and closed chain anterior or posterior pelvic tilt on lumbar spine kinematics using an in vitro cadaveric spine model. Three human cadaveric spines with intact pelvis were suspended with the skull fixed in a metal frame. Optotrak 3D motion system tracked real-time coordinates of pin markers on the lumbar spine. A force-torque digital gage applied consistent force to standardize the acetabular or sacral axis’ anterior and posterior pelvic tilt during simulated open and closed chain movements, respectively. In closed chain PPT, significant differences in relative intervertebral compression existed between L1/L2 [-2.54 mm] and L5/S1 [-11.84 mm], and between L3/L4 [-2.78 mm] and L5/S1 [-11.84 mm] [p <.05]. In closed chain APT, significant differences in relative intervertebral decompression existed between spinal levels L1/L2 [2.87mm] and L5/S1[24.48 mm] and between L3/L4 [2.94 mm] and L5/S1 [24.48 mm] [p <.05]. In open chain APT, significant differences in relative intervertebral decompression existed between spinal levels L4/L5 [1.53mm] and L5/S1 [25.14 mm] and between L2/L3 [1.68 mm] and L5/S1 [25.14 mm] [p<.05 for both]. Displacement during closed chain PPT was significantly greater than during open chain PPT, whereas APT showed no significant differences. In PPT, open chain pelvic tilts did not produce as much lumbar intervertebral displacement compared to closed chain. In contrast, APT saw no significant differences between open and closed chain. Additionally, results illustrate the increase in lumbar lordosis during APT and the loss of lordosis during PPT


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 3 - 3
1 Aug 2022
Tailor P Sewell M Jones M Spilsbury J Marks D Gardner A Mehta J
Full Access

The lordosis distribution index (LDI) describes distribution of lumbar lordosis, measured as the % of lower lumbar lordosis (L4-S1) compared to global lordosis (L1-S1) with normal value 50–50%. Maldistributed LDI is associated with higher revision in short lumbar fusions, 4 vertebrae1. We hypothesise maldistributed LDI is also associated with mechanical failure in longer fusions. Retrospective review of 29 consecutive ASD patients, aged 55+, undergoing long lumbar fusion, 4 levels, with >3-years follow-up. LDI, pelvic incidence (PI) and sagittal vertical axis (SVA) were measured on pre- and post-op whole spine standing X-rays (Fig A and B). Patients were categorized according to their pelvic incidence (PI) and postoperative LDI: Normal (LDI 50 80), Hypolordotic (LDI < 50), or Hyperlordotic (LDI > 80) and assessed for failure rate compared to normal LDI and PI <60. Mean follow-up 4.5 years. 19 patients had mechanical failures including junctional failure and metalware fracture. PI >60o was associated with higher mechanical failure rates (Chi^2 p<0.05). Hypolordotic LDI was associated with 82% mechanical failure (Chi^2 p<0.001), Hyperlordotic 88% mechanical failure (Chi^2 p<0.001) and Normal 8% mechanical failure (Table 1). Maldistributed LDI, whether Hyperlordotic or Hypolordotic, correlated with 10× greater mechanical failure rate compared to Normal LDI in long fusions. LDI is a useful measurement that should be considered, especially in high PI patients


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 454 - 455
1 Oct 2006
Le Heuc J Aunoble S Basso Y
Full Access

Introduction The main objective of this study is to describe the morphology and the mechanism of organization of the lumbar lordosis regarding the both position and shape of the pelvis. According to the orientation of the sacral plate, a classification of the lumbar lordosis is proposed. A symptomatic cohort of patient suffering of low back pain is analysed according to this new classification. Methods 160 asymptomatic, young adult volunteers and 51 symptomatic low back patients were x-rayed in a standardized standing position. Analysis of the spine and pelvis was performed with the SagittalSpine® software. The pelvic parameters were: pelvic incidence, sacral slope, pelvic tilt. Thoracic kyphosis and lumbar lordosis were divided by the inflexion point. The lumbar lordosis was bounded by the sacral plate and the inflexion point. At the apex, the lumbar curve was divided in two tangent arcs of circle, quantified by an angle and a number of vertebrae. The upper one was geometrically equal to the sacral slope. Regarding the vertical line, a lordosis tilt angle was designed between the inflexion point and the anterior limit of the sacral end. The second group was operated with a disc prosthesis at the degenerated level. Results The value of the lumbar lordosis was very variable. The best correlation was between lumbar lordosis and sacral slope, then between sacral slope and pelvic incidence in both groups. The upper arc of a circle remained constant, when the lower one changed with the sacral slope. There were good correlations of the sacral slope with the position of the apex, and with the lordosis tilt angle. When restoring the disc height at level L4L5 or L5S1 by a prosthesis insertion the local balance is modified but the global balance is unchanged. The prosthesis insertion at level L5S1 modifies significantly the balance at L4L5 which seems to be the most important level to restore a good lumbar lordosis. Discussion Regarding the sacral slope, the lumbar lordosis can be classified in four types. When the sacral slope is low, the lumbar lordosis can be short and curved with a low apex and a backward tilt (type 1), either both long and flat with a higher position of apex (type 2). When the sacral slope increases, lumbar lordosis increases in angle and number of vertebrae with an upper apex, and it tilts progressively forward (type 3and 4). Depending of the both shape and position of the pelvis, the morphology of the lumbar lordosis could be the main mechanical cause of lumbar degenerative diseases. Total disc arthroplasty at one level L4L5 or L5S1 can significantly restore a good balance in the lumbar without modification on the global balance of the spine. When two levels are involved in the DDD process, the fusion at L5S1 and a prosthesis at L4L5 do not modify the global balance and the clinical results are similar to one level disc arthroplasty. This has to be underlined because all studies with two levels arthroplasties showed worst clinical outcomes than one level


Bone & Joint Open
Vol. 2, Issue 3 | Pages 163 - 173
1 Mar 2021
Schlösser TPC Garrido E Tsirikos AI McMaster MJ

Aims. High-grade dysplastic spondylolisthesis is a disabling disorder for which many different operative techniques have been described. The aim of this study is to evaluate Scoliosis Research Society 22-item (SRS-22r) scores, global balance, and regional spino-pelvic alignment from two to 25 years after surgery for high-grade dysplastic spondylolisthesis using an all-posterior partial reduction, transfixation technique. Methods. SRS-22r and full-spine lateral radiographs were collected for the 28 young patients (age 13.4 years (SD 2.6) who underwent surgery for high-grade dysplastic spondylolisthesis in our centre (Scottish National Spinal Deformity Service) between 1995 and 2018. The mean follow-up was nine years (2 to 25), and one patient was lost to follow-up. The standard surgical technique was an all-posterior, partial reduction, and S1 to L5 transfixation screw technique without direct decompression. Parameters for segmental (slip percentage, Dubousset’s lumbosacral angle) and regional alignment (pelvic tilt, sacral slope, L5 incidence, lumbar lordosis, and thoracic kyphosis) and global balance (T1 spino-pelvic inclination) were measured. SRS-22r scores were compared between patients with a balanced and unbalanced pelvis at final follow-up. Results. SRS-22r domain and total scores improved significantly from preoperative to final follow-up, except for the mental health domain that remained the same. Slip percentage improved from 75% (SD 15) to 48% (SD 19) and lumbosacral angle from 70° (SD 11) to 101° (SD 11). Preoperatively, 35% had global imbalance, and at follow-up all were balanced. Preoperatively, 63% had an unbalanced pelvis, and at final follow-up this was 32%. SRS-22r scores were not different in patients with a balanced or unbalanced pelvis. However, postoperative pelvic imbalance as measured by L5 incidence was associated with lower SRS-22r self-image and total scores (p = 0.029). Conclusion. In young patients with HGDS, partial reduction and transfixation improves local lumbosacral alignment, restores pelvic, and global balance and provides satisfactory long-term clinical outcomes. Higher SRS-22r self-image and total scores were observed in the patients that had a balanced pelvis (L5I < 60°) at two to 25 years follow-up. Cite this article: Bone Jt Open 2021;2(3):163–173


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 55 - 55
1 Feb 2020
Oshima Y Watanabe N Takeoka T Iizawa N Majima T Takai S
Full Access

Introduction. Upright body posture is maintained with the alignment of the spine, pelvis, and lower extremities, and the muscle strength of the body trunk and lower extremities. Conversely, the posture is known to undergo changes with age, and muscle weakness of lower extremities and the restriction of knee extension in osteoarthritis of the knee (knee OA) have been considered to be associated with loss of natural lumbar lordosis and abnormal posture. As total knee arthroplasty (TKA) is aimed to correct malalignment of lower extremities and limited range of motion of knee, particularly in extension, we hypothesized that TKA positively affects the preoperative abnormal posture. To clarify this, the variation in the alignment of the spine, pelvis, and lower extremities before and after TKA was evaluated in this study. Patients and methods. Patients suffering from primary knee OA who were scheduled to receive primary TKA were enrolled in this study. However, patients with arthritis secondary to another etiology, i.e. rheumatoid arthritis, trauma, or previous surgical interventions to the knee, were excluded. Moreover, patients who suffered from hip and ankle OA, cranial nerve diseases, or severe spinal deformity were also excluded. The sagittal vertical axis (SVA), the horizontal distance between the posterosuperior aspect of the S1 endplate surface and a vertical plumb line drawn from the center of the C7 vertebral body, is an important index of sagittal balance of the trunk. Thus, patients were classified into two groups based on the preoperative SVA with preoperative standing lateral digital radiographs: normal (< 40mm) and abnormal (≥ 40mm) groups. The variations in the sagittal alignment of the spine, pelvis and lower extremities were evaluated preoperatively, and at 1 and 3 months postoperatively. This study was approved by an institutional review board, and informed consent for participation was obtained from the patients. Results. Forty-nine knees in 49 patients were enrolled. Three different patterns of postural changes as well as hip and knee angles following TKA were observed. After TKA, the preoperatively normal SVA patients (26.5%) showed extension of the hip and knee joints and decrease of lumbar lordosis, while the SVA remained almost within the normal range. In the preoperatively abnormal SVA group, 13 patients (26.5%) showed extension of the knee joint while the SVA remained abnormal, however, 23 of the preoperatively abnormal SVA group patients (47.0%) showed improvement of SVA into the normal range with the extension of the hip and knee joints. Discussion. As the spine, pelvis, and lower extremities together affect body alignment, once limitation of knee extension due to severe knee OA is corrected and lower extremity alignment is improved with TKA, the lumbar lordosis may increase, and SVA could decrease. Recently, the relationship between the imbalance of the sagittal plane of the body and the risk of falls was described. From this, it could be said that TKA not only helped in recovering knee function and lower extremity alignment in severe knee OA, but also helped to improve posture and to protect from falls


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_2 | Pages 30 - 30
1 Feb 2015
Stone M Osei-Boredom D MacGregor A Williams F
Full Access

Background. The factors influencing normal spine curvature in midlife are unknown. We performed an MR and plain radiograph study on well characterised, unselected twin volunteers from the TwinsUK register (. www.twinsuk.ac.uk. ) to determine the relative contributions of genetic and environmental factors to spine curve. Methods. T2 weighted MR scans and long spine standing radiographs were obtained at the same morning visit on twin pairs. Midline sagittal MR images were coded for 4 degenerative features. SpineviewTM software was applied plain films and calculated the angles of curvature. A classical twin study was performed. Multivariate regression analysis was used to determine the association between spine curves, LDD and confounders (age, body mass index). Results. Data were available on 110 monozygotic (MZ) and 136 dizygotic (DZ) female twins. Mean age was 64.3 years (range 40.1–79.3); age was associated with increasing lumbar lordosis (p=0.02). The AE model (comprising additive genetic and unique environmental factors) was the most suitable model for both lumbar lordosis and thoracic kyphosis (as determined by Akaike information criterion). Heritability estimates = 59% (42–71%) for lumbar lordosis; and 61% (46–74%) for thoracic kyphosis. After adjusting for age and BMI, lumbar lordosis was significantly associated with a number of features of LDD (p<0.001) including disc signal intensity and osteophytes. Conclusion. The twins are known to be representative of women in the general population. Lumbar lordosis and thoracic kyphosis of the spine have considerable heritable component in females suggesting that a search for individual gene variants would be a reasonable next step. This abstract was presented at 14th Congress of the International Society for Twin Studies. Conflicts of interest: No conflicts of interest. Sources of funding: No funding obtained


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 95 - 95
1 Apr 2005
Levassor N Rillardon L Deburge A Guigui P
Full Access

Purpose: Analysis of the sagittal balance of the spine is a fundamental step in understanding spinal disease and proposing appropriate treatment. The objectives of this prospective study were to establish the physiological values of pelvic and spinal parameters of sagittal spinal balance and to study their interrelations. Material and methods: Two hundred fifty lateral views of the spine taken in the standing position and including the head, the spine and the pelvis were studied. The following variables were noted: lumbar lordosis, thoracic kyphosis, sagittal tilt at 9, sacral slope, pelvic incidence, pelvic version, intervertebral angle, and the vertebral wedge angle from T9 to S1. These measures were taken after digitalising the x-rays. Two types of analysis were performed. A descriptive univariate analysis was used to characterise angular parameters and a multivariate analysis (correlation, principal component analysis) was used to compare interrelations between the variables and determine how economic balance is achieved. Results and discussion: Mean angular values were: maximal lumbar lordosis 61±12.7°, maximal thoracic kyphosis 41.4±9.2°, sacral slope 42±8.5°, pelvic version 13±6°, pelvic incidence 55±11.2°, sagittal tilt at T9 10.5±3.1°. There was a strong correlation between sacral slope and pelvic incidence (r=0.8), lumbar lordosis and sacral slope (r=0.86), pelvic version and pelvic incidence (r=0.66), lumbar lordosis pelvic incidence pelvic version and thoracic kyphosis (r=0.9), and finally between pelvic incidence and sagittal tilt at T9, sacral slope, pelvic version, lumbar lordosis, and thoracic kyphosis (r=0.98). Multivariate analysis demonstrated three independent parameters influencing sagittal tilt at T9, reflecting the lateral balance of the spine. The first was a linear combination of the pelvic incidence, lumbar lordosis and sacral slope. The second was pelvic version and the third thoracic kyphosis. Conclusion: This work provides an aid for analysis and comprehension of anteroposterior imbalance observed in spinal disease and also to calculate with the linear regression equations describing the corrections to be obtained with treatment


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 126 - 126
1 Jan 2016
Esposito C Miller T Kim HJ Mayman DJ Jerabek SA
Full Access

Introduction. Pelvic flexion and extension in different body positions can affect acetabular orientation after total hip arthroplasty, and this may predispose patients to dislocation. The purpose of this study was to evaluate functional acetabular component position in total hip replacement patients during standing and sitting. We hypothesize that patients with degenerative lumbar disease will have less pelvic extension from standing to sitting, compared to patients with a normal lumbar spine or single level spine disease. Methods. A prospective cohort of 20 patients with primary unilateral THR underwent spine-to-ankle standing and sitting lateral radiographs that included the lumbar spine and pelvis using EOS imaging. Patients were an average age of 58 ± 12 years and 6 patients were female. Patients had (1) normal lumbar spines or single level degeneration, (2) multilevel degenerative disc disease or (3) scoliosis. We measured acetabular anteversion (cup relative to the horizontal), sacral slope angle (superior endplate of S1 relative to the horizontal), and lumbar lordosis angles (superior endplates of L1 and S1). We calculated the absolute difference in acetabular anteversion and the absolute difference in lumbar lordosis during standing and sitting (Figure 1). Results. Nine patients had normal lumbar spines or scoliosis, and 11 patients had multilevel disc disease. The median change in cup anteversion for normal and scoliosis patients was 29° degrees (range 11° to 41°) compared to 21° degrees (range 1° to 34°) for multilevel disc disease patients (p=0.03). There was a positive correlation between the change in cup anteversion and the change in lumbar lordosis (p=0.01; Figure 2). From standing to sitting, cup anteversion always increased and lumbar lordosis always decreased. Conclusions. The change in cup anteversion from standing to sitting was variable in patients with normal, degenerative, and scoliosis lumbar spines. Patients with degenerative disc disease have less pelvic extension, and thus less acetabular anteversion in the sitting position compared to normal spines. This may increase their risk of posterior dislocation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 86 - 86
1 Jul 2020
Innmann MM Grammatopoulos G Beaulé P Merle C Gotterbarm T
Full Access

Spinopelvic mobility describes the change in lumbar lordosis and pelvic tilt from standing to sitting position. For 1° of posterior pelvic tilt, functional cup anteversion increases by 0.75° after total hip arthroplasty (THA). Thus, spinopelvic mobility is of high clinical relevance regarding the risk of implant impingement and dislocation. Our study aimed to 1) determine the proportion of OA-patients with stiff, normal or hypermobile spino-pelvic mobility and 2) to identify clinical or static standing radiographic parameters predicting spinopelvic mobility. This prospective diagnostic cohort study followed 122 consecutive patients with end-stage osteoarthritis awaiting THA. Preoperatively, the Oxford Hip Score, Oswestry Disability Index and Schober's test were assessed in a standardized clinical examination. Lateral view radiographs were taken of the lumbar spine, pelvis and proximal femur using EOS© in standing position and with femurs parallel to the floor in order to achieve a 90°-seated position. Radiographic measurements were performed for the lumbar lordosis angle (LL), sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI) and pelvic-femoral-angle (PFA). The difference in PT between standing and seated allowed for patient classification based on spino-pelvic mobility into stiff (±30°). From the standing to the sitting position, the pelvis tilted backwards by a mean of 19.6° (SD 11.6) and the hip was flexed by a mean of 57° (SD 17). Change in pelvic tilt correlated inversely with change in hip flexion. Spinopelvic mobility is highly variable in patients awaiting THA and we could not identify any clinical or static standing radiographic parameter predicting the change in pelvic tilt from standing to sitting position. In order to identify patients with stiff or hypermobile spinopelvic mobility, we recommend performing lateral view radiographs of the lumbar spine, pelvis and proximal femur in all patients awaiting THA. Thereafter, implants and combined cup inclination/anteversion can be individually chosen to minimize the risk of dislocation. No predictors could be identified. We recommend performing sitting and standing lateral view radiographs of the lumbar spine and pelvis to determine spinopelvic mobility in patients awaiting THA


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 39 - 39
1 Dec 2022
Grammatopoulos G Pierrepont J Madurawe C Innmann MM Vigdorchik J Shimmin A
Full Access

A stiff spine leads to increased demand on the hip, creating an increased risk of total hip arthroplasty (THA) dislocation. Several authors propose that a change in sacral slope of ≤10° between the standing and relaxed-seated positions (ΔSSstanding→relaxed-seated) identifies a patient with a stiff lumbar spine and have suggested use of dual-mobility bearings for such patients. However, such assessment may not adequately test the lumbar spine to draw such conclusions. The aim of this study was to assess how accurately ΔSSstanding→relaxed-seated can identify patients with a stiff spine. This is a prospective, multi-centre, consecutive cohort series. Two-hundred and twenty-four patients, pre-THA, had standing, relaxed-seated and flexed-seated lateral radiographs. Sacral slope and lumbar lordosis were measured on each functional X-ray. ΔSSstanding→relaxed-seated seated was determined by the change in sacral slope between the standing and relaxed-seated positions. Lumbar flexion (LF) was defined as the difference in lumbar lordotic angle between standing and flexed-seated. LF≤20° was considered a stiff spine. The predictive value of ΔSSstanding→relaxed-seated for characterising a stiff spine was assessed. A weak correlation between ΔSSstanding→relaxed-seated and LF was identified (r2= 0.15). Fifty-four patients (24%) had ΔSSstanding→relaxed-seated ≤10° and 16 patients (7%) had a stiff spine. Of the 54 patients with ΔSSstanding→relaxed-seated ≤10°, 9 had a stiff spine. The positive predictive value of ΔSSstanding→relaxed-seated ≤10° for identifying a stiff spine was 17%. ΔSSstanding→relaxed-seated ≤10° was not correlated with a stiff spine in this cohort. Utilising this simplified approach could lead to a six-fold overprediction of patients with a stiff lumbar spine. This, in turn, could lead to an overprediction of patients with abnormal spinopelvic mobility, unnecessary use of dual mobility bearings and incorrect targets for component alignment. Referring to patients ΔSSstanding→relaxed-seated ≤10° as being stiff can be misleading; we thus recommend use of the flexed-seated position to effectively assess pre-operative spinopelvic mobility


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 49 - 49
1 Mar 2012
Ghosh S Sayana M Ahmed E Jones CW
Full Access

Introduction. We propose that Total Hip Replacement with correction of fixed flexion deformity of the hip and exaggerated lumbar lordosis will result in relief of symptoms from spinal stenosis, possibly avoiding a spinal surgery. A sequence of patients with this dual pathology has been assessed to examine this and suggest a possible management algorithm. Materials and methods. A retrospective study of 19 patients who presented with dual pathology was performed and the patients were assessed with regards to pre and post-operative symptoms, walking distance, and neurological status. Results. There were 17 patients with improvement in the spinal stenotic symptoms following hip replacement to an extent that none required spinal surgery. There were two patients who had spinal surgery after THR, at varying lengths following hip replacements as their spinal stenotic symptoms worsened over time, and had lateral spinal stenosis on MRI. Discussion. In advanced hip osteoarthritis, a fixed flexion deformity may develop at the hip leading to an exaggerated lumbar lordosis in erect posture. In the presence of co-existing spinal stenosis, the exaggerated lumbar lordosis may worsen the spinal stenotic symptoms while standing and walking. Cadaveric & Radiological studies have shown that canal narrowing occurs with increased lordosis/ extension in the lumbar spine. Our findings suggest that when central lumbar spinal stenosis coexists with bilateral hip arthritis and FFD at the hip, THR should be offered first. Successful hip surgery for arthritis correcting significant fixed flexion deformity would lessen the lumbar lordosis, thus correcting the excessive pathological narrowing. If a patient is fit enough, simultaneous bilateral THR via an anterior type of approach makes surgical correction of FFD easier. Although it has been suggested in the literature that patients with spinal stenosis have a increased risk of neurological impairment following THR, we did not find any clear association


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 23 - 23
1 Dec 2022
Innmann MM Verhaegen J Reichel F Schaper B Merle C Grammatopoulos G
Full Access

The presence of hip osteoarthritis is associated with abnormal spinopelvic characteristics. This study aims to determine whether the pre-operative, pathological spinopelvic characteristics “normalize” at 1-year post-THA. This is a prospective, longitudinal, case-control matched cohort study. Forty-seven patients underwent pre- and post- (at one-year) THA assessments. This group was matched (age, sex, BMI) with 47 controls/volunteers with well-functioning hips. All participants underwent clinical and radiographic assessments including lateral radiographs in standing, upright-seated and deep-flexed-seated positions. Spinopelvic characteristics included change in lumbar lordosis (ΔLL), pelvic tilt (ΔPT) and hip flexion (pelvic-femoral angle, ΔPFA) when moving from the standing to each of the seated positions. Spinopelvic hypermobility was defined as ΔPT>30° between standing and upright-seated positions. Pre-THA, patients illustrated less hip flexion (ΔPFA −54.8°±17.1° vs. −68.5°± 9.5°, p<0.001), greater pelvic tilt (ΔPT 22.0°±13.5° vs. 12.7°±8.1°, p<0.001) and greater lumbar movements (ΔLL −22.7°±15.5° vs. −15.4°±10.9°, p=0.015) transitioning from standing to upright-seated. Post-THA, these differences were no longer present (ΔPFApost −65.8°±12.5°, p=0.256; ΔPTpost 14.3°±9.5°, p=0.429; ΔLLpost −15.3°±10.6°, p=0.966). The higher prevalence of pre-operative spinopelvic hypermobility in patients compared to controls (21.3% vs. 0.0%; p=0.009), was not longer present post-THA (6.4% vs. 0.0%; p=0.194). Similar results were found moving from standing to deep-seated position post-THA. Pre-operative, spinopelvic characteristics that contribute to abnormal mechanics can normalize post-THA following improvement in hip flexion. This leads to patients having the expected hip-, pelvic- and spinal flexion as per demographically-matched controls, thus potentially eliminating abnormal mechanics that contribute to the development/exacerbation of hip-spine syndrome


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 62 - 62
1 Sep 2012
Torres R Saló G Garcia De Frutos A Ramirez M Molina A Llado A Ubierna MT Caceres E
Full Access

Purpose. compare the radiological results in sagittal balance correction obtained with pedicle subtraction osteotomy (PSO) versus anterior-posterior osteotomy (APO) by double approach in adults. Material and Methods. between January of 2001 and July of 2009, fifty-eight vertebral osteotomies were carried out in fifty-six patients: 9 Smith-Petersen osteotomy (SPO), one vertebral resection osteotomy (VRO), 30 anterior-posterior osteotomies (APO) and 18 pedicle subtraction osteotomies (PSO), being the lasts two groups the sample studied (48 osteotomies). The mean age of the patients was 56.3 years (17–72). Initial diagnose was: 28 posttraumathic kyphosis, 7 postsurgical kyphosis, 7 adult degenerative disease, 4 ankylosing spondylitis and 2 congenital kyphoscoliosis. We evaluated the preoperative standing radiographs, the postoperative and at final follow-up by digital measurements with iPACS system viewer (© Real Time Image, USA, 2001). The mean follow-up was 54 months (6–98), and complications were analized. Results. The group APO had a mean preoperative thoracic kyphosis of 67 °, a mean lumbar lordosis of −42° and a mean sagital balance of 8.6°. The group PSO had a mean preoperative thoracic kyphosis of 41°, a mean lumbar lordosis of −22° and a mean sagital balance of 12.3°. The mean correction in the APO group was 29° in its thoracic kyphosis, 8° of lumbar lordosis and 6.5° in its sagital balance. The mean correction in the PSO group was 12° of the thoracic kyphosis, 25 in the lumbar lordosis and 8.4 cm in the sagital balance. The local correction obtained at the osteotomy level was 28° in the APO group and 25.3° in the PSO group. There were no statistically significant differences in the percentage of correction between both groups (p>0.05). In terms of complications, PSO group had lower complication rate (26.6%) comparing to ODV group (44.5%). Conclusions. APO and PSO are useful techniques to correct the global sagital balance in patients with a disturbance of the sagittal profile. The correction obtained with the PSO is similar to obtained with the APO. Patients undergoing an OSP had a lower complication rate than patients undergoing APO


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 41 - 41
1 Dec 2022
Verhaegen J Innmann MM Batista NA Dion C Pierrepont J Merle C Grammatopoulos G
Full Access

The study of spinopelvic anatomy and movement has received great interest as these characteristics influence the biomechanical behavior (and outcome) following hip arthroplasty. However, to-date there is little knowledge of what “normal” is and how this varies with age. This study aims to determine how dynamic spino-pelvic characteristics change with age, with well-functioning hips and assess how these changes are influenced by the presence of hip arthritis. This is an IRB-approved, cross-sectional, cohort study; 100 volunteers (asymptomatic hips, Oxford-Hip-sore>45) [age:53 ± 17 (24-87) years-old; 51% female; BMI: 28 ± 5] and 200 patients with end-stage hip arthritis [age:56 ± 19 (16-89) years-old; 55% female; BMI:28 ± 5] were studied. All participants underwent lateral spino-pelvic radiographs in the standing and deep-seated positions to determine maximum hip and spine flexion. Parameters measured included lumbar-lordosis (LL), pelvic incidence, pelvic-tilt (PT), pelvic-femoral angles (PFA). Lumbar flexion (ΔLL), hip flexion (ΔPFA) and pelvic movement (ΔPT) were calculated. The prevalence of spinopelvic imbalance (PI–LL>10?) was determined. There were no differences in any of the spino-pelvic characteristics or movements between sexes. With advancing age, standing LL reduced and standing PT increased (no differences between groups). With advancing age, both hip (4%/decade) and lumbar (8%/decade) flexion reduced (p<0.001) (no difference between groups). ΔLL did not correlate with ΔPFA (rho=0.1). Hip arthritis was associated with a significantly reduced hip flexion (82 ±;22? vs. 90 ± 17?; p=0.003) and pelvic movements (1 ± 16? vs. 8 ± 16?; p=0.002) at all ages and increased prevalence of spinopelvic imbalance (OR:2.6; 95%CI: 1.2-5.7). With aging, the lumbar spine loses its lumbar lordosis and flexion to a greater extent that then the hip and resultantly, the hip's relative contribution to the overall sagittal movement increases. With hip arthritis, the reduced hip flexion and the necessary compensatory increased pelvic movement is a likely contributor to the development of hip-spine syndrome and of spino-pelvic imbalance


To present the results of surgical correction in patients with double or triple thoracic/lumbar AIS (Lenke types 2,3,4) with the use of a novel convex/convex unilateral segmental screw correction technique in a single surgeon's prospective series. We reviewed the medical records and spinal radiographs of 92 consecutive patients (72 female-20 male). We measured scoliosis, thoracic kyphosis, lumbar lordosis, scoliosis flexibility and correction index, coronal and sagittal balance before and after surgery, as well as at minimum 2-year follow-up. SRS-22 data was available preoperatively, 6-month, 12-month and 2-year postoperatively for all patients. Surgical technique. All patients underwent posterior spinal fusion using pedicle screw constructs. Unilateral screws were placed across the convexity of each individual thoracic or lumbar curve to allow for segmental correction. ‘Corrective rod’ was the one attached to the convexity of each curve with the correction performed across the main thoracic scoliosis always before the lumbar. Maximum correction of main thoracic curves was always performed, whereas the lumbar scoliosis was corrected to the degree required to achieve a balanced effect across the thoracic and lumbar segments and adequate global coronal spinal balance. Concave screws were not placed across any deformity levels. Bilateral screws across 2 levels caudally and 1–2 levels cephalad provided proximal/distal stability of the construct. Mean age at surgery was 14.9 years with mean Risser grade 2.8. The distribution of scoliosis was: Lenke type 2–26 patients; type 3–43 patients; type 4–23 patients. Mean preoperative Cobb angle for upper thoracic curves was 45°. This was corrected by 62% to mean 17° (p<0.001). Mean preoperative Cobb angle for main thoracic curves was 70°. This was corrected by 69% to mean 22° (p<0.001). Mean preoperative Cobb angle for lumbar curves was 56°. This was corrected by 68% to mean 18° (p<0.001). No patient lost >2° correction at follow-up. Mean preoperative thoracic kyphosis was 34° and lumbar lordosis 46°. Mean postoperative thoracic kyphosis was 45° (p<0.001) and lumbar lordosis 46.5° (p=0.69). Mean preoperative coronal imbalance was 1.2 cm. This corrected to mean 0.02 cm at follow-up (p<0.001). Mean preoperative sagittal imbalance was −2 cm. This corrected to mean −0.1 cm at follow-up (p<0.001). Mean theatre time was 187 minutes, hospital stay 6.8 days and intraoperative blood loss 0.29 blood volumes (1100 ml). Intraoperative spinal cord monitoring was performed recording cortical and cervical SSEPs and transcranial upper/lower limb MEPs and there were no problems. None of the patients developed neurological complications, infection or detected non-union and none required revision surgery to address residual or recurrent deformity. Mean preoperative SRS-22 score was 3.6; this improved to 4.6 at follow-up (p<0.001). All individual parameters also demonstrated significant improvement (p<0.001) with mean satisfaction rate at 2-year follow-up 4.9. The convex-convex unilateral pedicle screw technique can reduce the risk of neurological injury during major deformity surgery as it does not require placement of screws across the deformed apical concave pedicles which are in close proximity to the spinal cord. Despite the use of a lesser number of pedicle fixation points compared to the bilateral segmental screw techniques, in our series it has achieved satisfactory scoliosis correction and restoration of global coronal and sagittal balance with improved thoracic kyphosis and preserved lumbar lordosis. These results have been associated with excellent patient satisfaction and functional outcomes as demonstrated through the SRS-22 scores