Advertisement for orthosearch.org.uk
Results 1 - 20 of 1229
Results per page:
Bone & Joint Open
Vol. 2, Issue 12 | Pages 1057 - 1061
1 Dec 2021
Ahmad SS Weinrich L Giebel GM Beyer MR Stöckle U Konrads C

Aims. The aim of this study was to determine the association between knee alignment and the vertical orientation of the femoral neck in relation to the floor. This could be clinically important because changes of femoral neck orientation might alter chondral joint contact zones and joint reaction forces, potentially inducing problems like pain in pre-existing chondral degeneration. Further, the femoral neck orientation influences the ischiofemoral space and a small ischiofemoral distance can lead to impingement. We hypothesized that a valgus knee alignment is associated with a more vertical orientation of the femoral neck in standing position, compared to a varus knee. We further hypothesized that realignment surgery around the knee alters the vertical orientation of the femoral neck. Methods. Long-leg standing radiographs of patients undergoing realignment surgery around the knee were used. The hip-knee-ankle angle (HKA) and the vertical orientation of the femoral neck in relation to the floor were measured, prior to surgery and after osteotomy-site-union. Linear regression was performed to determine the influence of knee alignment on the vertical orientation of the femoral neck. Results. The cohort included 147 patients who underwent knee realignment-surgery. The mean age was 51.5 years (SD 11). Overall, 106 patients underwent a valgisation-osteotomy, while 41 underwent varisation osteotomy. There was a significant association between the orientation of the knee and the coronal neck-orientation. In the varus group, the median orientation of the femoral neck was 46.5° (interquartile range (IQR) 49.7° to 50.0°), while in the valgus group, the orientation was 52.0° (IQR 46.5° to 56.7°; p < 0.001). Linear regression analysis revealed that HKA demonstrated a direct influence on the coronal neck-orientation (β = 0.5 (95% confidence interval (CI) 0.2 to 0.7); p = 0.002). Linear regression also showed that realignment surgery was associated with a significant influence on the change in the coronal femoral neck orientation (β = 5.6 (95% CI 1.5 to 9.8); p = 0.008). Conclusion. Varus or valgus knee alignment is associated with either a more horizontal or a more vertical femoral neck orientation in standing position, respectively. Subsequently, osteotomies around the knee alter the vertical orientation of the femoral neck. These aspects are of importance when planning osteotomies around the knee in order to appreciate the effects on the adjacent hip joint. The concept may be of even more relevance in dysplastic hips. Cite this article: Bone Jt Open 2021;2(12):1057–1061


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 420 - 420
1 Apr 2004
Barink M van de Groes S Verdonschot N de Waal Malefijt M
Full Access

Malfunctioning of Total Knee Replacements is often related to patella-femoral problems. As the patella groove guides the patella during flexion, the difference between anatomic- and prosthetic groove geometry may be of major influence concerning patella-femoral problems. This study focusses on the orientation or direction of the femoral patella groove, relative to the mechanical axis of the femur. Literature shows a controversy in measured groove orientation: Eckhoff et al. (1996) have measured a lateral groove, and Feinstein et al. (1996) have measured a medial groove, relative to the mechanical axis. Current femoral knee components have a lateral, or neutral directed patella groove. As most TKA surgical techniques subscribe an exorotation of the femoral component during implantation, the prosthetic in vivo situation will show a lateral groove. The objectives were to clarify the described controversy and to determine whether there is a difference in anatomic- and prosthetic groove orientation, which might cause patella-femoral problems. The patella groove orientation of 100 human femora was measured using a 3-D measurement system. A spherical measurement probe was moved through the groove, starting at the notch and finishing at the cartilage edge, to simulate patella motion. The patella groove angle was defined as the angle between the mechanical axis and the measured groove points, in the frontal plane. A medial patella groove angle of 1.8±2.6° was measured. An implanted situation of a femoral component with neutral groove showed a lateral groove angle of 1.3°. An implanted situation of a femoral component with assymmetrical groove showed a lateral groove angle of 2.6°. The authors measured a medial oriented patella groove. This anatomical groove orientation is in contradiction with current femoral knee component design and surgical practice, because that results in a lateral oriented groove. This difference in anatomic- and prosthetic groove orientation may be a cause of patella-femoral problems


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 20 - 20
7 Jun 2023
Navacchia A Pagkalos J Davis E
Full Access

We have previously reported on the improved all-cause revision and improved revision for instability risk in lipped liner THAs using the NJR dataset. These findings corroborate studies from the Australian (AOANJRR) and New Zealand (NZOA) joint registries. The optimal orientation of the lip in THAs utilising a lipped liner remains unclear to many surgeons. The aim of this study was to identify impingement-free optimal liner orientations whilst considering femoral stem version, cup inclination and cup version. A cementless THA kinematic model was developed using a 20 degree XLPE liner. Physiological ROM and provocative dislocation manoeuvre analyses were performed. A total of 9 cup positions were analysed (inclination 30–40–50 degrees, anteversion 5-15-25 degrees) and combined with 3 stem positions (anteversion 0-15-30 degrees) and 5 lip orientations (right hip 11 to 7 o'clock). Some lip orientation/component position combinations lead to impingement within the physiological ROM range. Using a lipped liner increases the femoral head travel distance prior to dislocation when impingement occurs in the plane of the lip. In THAs with a cup inclination of 30 and 40 degrees, inferior lip orientations (7–8 o'clock for a right hip) performed best. Superior lip orientation performed best with a cup inclination of 50 degrees. Femoral stem version has a significant effect on the range of movement prior to impingement and hence the preferred lip orientation. The optimal orientation of the lip in lipped liner THA is dependent on the position of both the acetabular and femoral components. In the common component orientation combination of stem anteversion 15, cup inclination 40 and cup anteversion 15, the optimal lip orientation was postero-inferiorly (8 o'clock for a right hip). Preventing impingement during physiological ROM is possible with appropriate lip liner orientation


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 30 - 30
1 Dec 2022
Lohre R Lobo A Bois A Pollock J Lapner P Athwal G Goel D
Full Access

Glenoid baseplate orientation in reverse shoulder arthroplasty (RSA) influences clinical outcomes, complications, and failure rates. Novel technologies have been produced to decrease performance heterogeneity of low and high-volume surgeons. This study aimed to determine novice and experienced shoulder surgeon's ability to accurately characterise glenoid component orientation in an intra-operative scenario. Glenoid baseplates were implanted in eight fresh frozen cadavers by novice surgical trainees. Glenoid baseplate version, inclination, augment rotation, and superior-inferior centre of rotation (COR) offset were then measured using in-person visual assessments by novice and experienced shoulder surgeons immediately after implantation. Glenoid orientation parameters were then measured using 3D CT scans with digitally reconstructed radiographs (DRRs) by two independent observers. Bland-Altman plots were produced to determine the accuracy of glenoid orientation using standard intraoperative assessment compared to postoperative 3D CT scan results. Visual assessment of glenoid baseplate orientation showed “poor” to “fair” correlation to 3D CT DRR measurements for both novice and experienced surgeon groups for all measured parameters. There was a clinically relevant, large discrepancy between intra-operative visual assessments and 3D CT DRR measurements for all parameters. Errors in visual assessment of up to 19.2 degrees of inclination and 8mm supero-inferior COR offset occurred. Experienced surgeons had greater measurement error than novices for all measured parameters. Intra-operative measurement errors in glenoid placement may reach unacceptable clinical limits. Kinesthetic input during implantation likely improves orientation understanding and has implications for hands-on learning


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 55 - 55
1 Feb 2021
Niesen A Hull M Howell S Garverick A
Full Access

Introduction. Model-based radiostereometric analysis (MBRSA) allows the in vivo measurement of implant loosening (i.e. migration) from a host bone by acquiring a pair of biplanar radiographs of the patient's implant over time. Focusing on total knee replacement patients, the accuracy of MBRSA in calculating tibial baseplate migration depends on the accuracy in registering a 3D model onto the biplanar radiographs; thus, the shape of the baseplate and its orientation relative to the imaging planes is pertinent. Conventionally, the baseplate coordinate system is aligned with the laboratory coordinate system, however, this reference orientation is unnecessary and may hide unique baseplate features resulting in less accurate registration (Figure 1). Therefore, the primary objective of this study was to determine the optimal baseplate orientation for improving accuracy during MBRSA, and an acceptable range of orientations for clinical use. A second objective was to demonstrate that a custom knee positioning guide repeatably oriented the baseplate within the acceptable range of orientations. Materials and Methods. A tibia phantom consisting of a baseplate rigidly fixed to a sawbone was placed in 24 orientations (combination of six rotations about X (i.e. knee flexion) and four rotations about Z (i.e. hip abduction)) with three pairs of radiographs acquired at each orientation. The radiographs were processed in MBRSA software, and the mean maximum total point motion (MTPM), an indicator of bias error during model registration, was plotted as a function of the two rotations to determine the optimal orientation and a range of acceptable orientations (Figure 2). A custom knee positioning guide was manufactured with the goal of orienting the baseplate close to the optimal orientation and within the acceptable range of orientations (Figure 3). Ten independent pairs of biplanar radiographs were acquired by repeatedly placing a knee model in the knee positioning guide, and the images were processed in MBRSA software to determine the baseplate orientation. Results and Discussion. Results showed an 85% decrease in bias error between the reference orientation (i.e. no rotation) and the optimal orientation (10° rotation about X and 5° rotation about Z). An acceptable range of orientations from 5° − 20° rotation about an axis perpendicular to the sagittal imaging plane and from 5° − 15° rotation about an axis perpendicular to the coronal imaging plane was defined as these orientations decreased the bias error by more than 50%. Additionally, the custom knee positioning guide controlled the mean orientation ± one standard deviation within the acceptable range of orientations. Conclusions. The accuracy of MBRSA is significantly improved if the tibial baseplate is placed in the range of acceptable orientations as opposed to the conventional reference orientation. A custom knee positioning guide can be used during a clinical study to repeatably position the patient's knee within the range of acceptable orientations. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 52 - 52
1 Jul 2020
Abdic S Knowles N Johnson J Walch G Athwal G
Full Access

Superiorly eroded glenoids in cuff tear arthropathy represent a surgical challenge for reconstruction. The bone loss orientation and severity may influence glenoid component fixation. This computed-tomography study quantifies both the degree of erosion and orientation in superiorly eroded Favard E2 glenoids. We hypothesized that the erosion in E2 glenoids does not occur purely superiorly, rather, it is oriented in a predictable posterosuperior orientation with a largely semicircular line of erosion. Three-dimensional reconstructions of 40 shoulders with E2 glenoids (28 female, 12 male patients) at a mean age of 74 years (range, 56–88 years) were created from computed-tomography images. Point coordinates were extracted from each construct to analyze the morphologic structure. The anatomical location of the supra- and infraglenoid tubercle guided the creation of a superoinferior axis, against which the orientation angle of the erosion was measured. The direction and, thus, orientation of erosion was calculated as a vector. By placing ten point coordinates along the line of erosion and creating a circle of best fit, the radius of the circle was placed orthogonally against a chord that resulted by connecting the two outermost points along the line of erosion. To quantify the extent of curvature of the line of erosion between the paleo- and neoglenoid, the length of the radius of the circle of best fit was calculated. Individual values were compared against the mean of circle radii. The area of bony erosion (neoglenoid), was calculated as a percentage of the total glenoid area (neoglenoid + paleoglenoid). The severity of the erosion was categorized as mild (0% to 33%), moderate (34% to 66%), and severe erosion (>66%). The mean orientation angle between the vector of bony erosion and the superoinferior axis of the glenoid was 47° ± 17° (range, 14° – 74°) located in the posterosuperior quadrant of the glenoid, resulting in the average erosion being directed between the 10 and 11 o'clock position (right shoulder). In 63% of E2 cases, the line of erosion separating the paleo- and neoglenoids was more curved than the average of all bony erosions in the cohort. The mean surface area of the neoglenoid was 636 ± 247 mm2(range, 233 – 1,333 mm2) and of the paleoglenoid 311 ± 165 mm2(range, 123 – 820 mm2), revealing that, on average, the neoglenoids consume 67% of the total glenoid surface. The extent of erosion of the total cohort was subdivided into one mild (2%), 14 moderate (35%) and 25 severe (62%) cases. Using a clock-face for orientation, the average orientation of type E2 glenoid defects was directed between the 10 and 11 o'clock position in a right shoulder, corresponding to the posterosuperior glenoid quadrant. Surgeons managing patients with E2 type glenoids should be aware that a superiorly described glenoid erosion is oriented in the posterosuperior quadrant on the glenoid clock-face when viewed intra-operatively. Additionally, the line of erosion in 63% of E2 glenoids is substantially curved, having a significant effect on bone removal techniques when using commercially available augments for defect reconstruction


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 26 - 26
1 Dec 2020
Schotanus M Grammatopoulos G Meermans G
Full Access

Introduction. Acetabular component orientation is an important determinant of outcome following total hip arthroplasty (THA). Although surgeons aim to achieve optimal cup orientation, many studies demonstrate their inability to consistently achieve this. Factors that contribute are pelvic orientation and the surgeon's ability to correctly orient the cup at implantation. The goal of this study was to determine the accuracy with which surgeons can achieve cup orientation angles. Methods. In this in vitro study using a calibrated left and right sawbone hemipelvis model, participants (n=10) were asked to place a cup mounted on its introducer giving different targets. Measurements of cup orientation were made using a stereophotogrammetry protocol to measure radiographic inclination and operative anteversion (OA). A digital inclinometer was used to measure the intra-operative inclination (IOI) which is the angle of the cup introducer relative to the floor. First, the participant stated his or her preferred IOI and OA and positioned the cup accordingly. Second, the participant had to position the cup parallel to the anteversion of the transverse acetabular ligament (TAL). Third, the participant had to position the cup at IOI angles of 35°, 40° and 45°. Fourth, the participant used the mechanical alignment guide (45° of IOI and 30° of OA) to orient the cup. Each task was analysed separately and subgroup analysis included left versus right side and hip surgeons versus non-hip surgeons. Results. For the first task, hip surgeons preferred smaller IOI and larger OA than non-hip surgeons, but there was no significant difference in accuracy between both groups. When aiming for TAL, both surgeon groups performed similar, but accuracy on the non-dominant side was significantly better compared with the dominant side (mean deviation 0.6° SD 2.4 versus −2.6° SD 2.3) (p=0.004). When aiming for a specific IOI target of 35°, 40° or 45°, non-hip surgeons outperformed hip surgeons (mean deviation form target IOI 1.9° SD 2.7 versus −3.1° SD 3.8) (p<0.0001) with less variance (p=0.03). Contrary to version, accuracy on the dominant side was significantly better compared with the non-dominant side (mean deviation −0.4° SD 3.4 versus −2.1° SD 4.8). When using a mechanical guide, surgeons performed similar (0.6° SD 1.2 versus −0.4° SD 2.1 for inclination p=0.11 and −0.5° SD 2.6 versus −1.8° SD 3.3 for version p=0.22) and these values did not differ significantly from the actual IOI and OA of the mechanical guide. When using a mechanical guide, there was no difference in accuracy between the dominant and non-dominant side. Conclusion. There was no difference in accuracy between hip surgeons and non-hip surgeons when they aimed for their preferred IOI and OA or used a mechanical guide. When aiming for a specific IOI target, non-hip surgeons outperformed hip surgeons. Hip surgeons overestimate IOI and underestimate OA, presumably because this helps to achieve the desired radiographic cup orientation. Regarding accuracy, the non-dominant side was better for version and the dominant side for inclination. When aiming for a specific IOI and OA target, using a mechanical guide is significantly better than freehand cup orientation


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 60 - 60
1 Jul 2022
Williams A Zhu M Lee D
Full Access

Abstract. Background. Performing lateral extra-articular tenodesis (LET) with ACL reconstruction may conflict with the ACLR femoral tunnel. Methods. 12 fresh-frozen cadaveric knees were used: at 120 flexion, an 8mm ACLR femoral tunnel was drilled in the anteromedial bundle position via the anteromedial portal. A modified Lemaire LET was performed using a 1 cm-wide iliotibial band strip left attached to Gerdy's tubercle. The LET femoral fixation point was identified 10mm proximal / 5 mm posterior to the LCL femoral attachment, and a 2.4-mm guide wire was drilled, aiming at 0, 10, 20, or 30 degrees anteriorly in the axial plane, and at 0, 10, or 20 degrees proximally in the coronal plane. The relationship between the LET drilling guide wire and the ACLR femoral tunnel reamer was recorded for each combination. When collision with the femoral tunnel was recorded, the LET wire depth was measured. Results. Tunnel conflict occurred at a mean LET wire depth of 23.6 mm (15–33 mm). No correlation existed between LET wire depth and LET drilling orientation (r=0.066; p=0.67). Drilling angle in the axial plane was significantly associated with the occurrence of tunnel conflict (P < .001). However, no such association was detected when comparing the drilling angle in the coronal plane (P=0.267). Conclusion. Conflict occurred at as little as 15 mm depth. When longer implants are used, the orientation should be at least 30 degrees anterior in the axial plane. Clinical Relevance. This study provides important information for surgeons performing LET in combination with ACLR


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 57 - 57
23 Jun 2023
Konishi T Sato T Motomura G Hamai S Kawahara S Hara D Utsunomiya T Nakashima Y
Full Access

Accurate cup placement in total hip arthroplasty (THA) for the patients with developmental dysplasia of the hip (DDH) is one of the challenges due to distinctive bone deformity. Robotic-arm assisted system have been developed to improve the accuracy of implant placement. This study aimed to compare the accuracy of robotic-arm assisted (Robo-THA), CT-based navigated (Navi-THA), and manual (M-THA) cup position and orientation in THA for DDH. A total of 285 patients (335 hips) including 202 M-THAs, 45 Navi-THAs, and 88 Robo-THA were analyzed. The choice of procedure followed the patient's preferences. Horizontal and vertical center of rotation (HCOR and VCOR) were measured for cup position, and radiographic inclination (RI) and anteversion (RA) were measured for cup orientation. The propensity score-matching was performed among three groups to compare the absolute error from the preoperative target position and angle. Navi-THA showed significantly smaller absolute errors than M-THA in RI (3.6° and 5.4°) and RA (3.8° and 6.0°), however, there were no significant differences between them in HCOR (2.5 mm and 3.0 mm) or VCOR (2.2 mm and 2.6 mm). In contrast, Robo-THA showed significantly smaller absolute errors of cup position than both M-THA and Navi-THA (HCOR: 1.7 mm and 2.9 mm, vs. M-THA, 1.6 mm and 2.5 mm vs. Navi-THA, VCOR:1.7 mm and 2.4 mm, vs. M-THA, 1.4 mm and 2.2 mm vs. Navi-THA). Robo-THA also showed significantly smaller absolute errors of cup orientation than both M-THA and Navi-THA (RI: 1.4° and 5.7°, vs. M-THA, 1.5° and 3.6°, vs. Navi-THA, RA: 1.9° and 5.8° vs. M-THA, 2.1° and 3.8° vs. Navi-THA). Robotic-arm assisted system showed more accurate cup position and orientation compared to manual and CT-based navigation in THA for DDH. CT-based navigation increased the accuracy of cup orientation compared to manual procedures, but not cup position


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 23 - 23
1 Mar 2021
Howgate D Oliver M Stebbins J Garfjeld-Roberts P Kendrick B Rees J Taylor S
Full Access

Abstract. Objectives. Accurate orientation of the acetabular component during a total hip replacement is critical for optimising patient function, increasing the longevity of components, and reducing the risk of complications. This study aimed to determine the validity of a novel VR platform (AescularVR) in assessing acetabular component orientation in a simulated model used in surgical training. Methods. The AescularVR platform was developed using the HTC Vive® VR system hardware, including wireless trackers attached to the surgical instruments and pelvic sawbone. Following calibration, data on the relative position of both trackers are used to determine the acetabular cup orientation (version and inclination). The acetabular cup was manually implanted across a range of orientations representative of those expected intra-operatively. Simultaneous readings from the Vicon® optical motion capture system were used as the ‘gold standard’ for comparison. Correlation and agreement between these two methods was determined using Bland-Altman plots, Pearson's correlation co-efficient, and linear regression modelling. Results. A total of 55 separate orientation readings were obtained. The mean average difference in acetabular cup version and inclination between the Vicon and VR systems was 3.4° (95% CI: −3–9.9°), and −0.005° (95% CI: −4.5–4.5°) respectively. Strong positive correlations were demonstrated between the Vicon and VR systems in both acetabular cup version (Pearson's R = 0.92, 99% CI: 0.84–0.96, p<0.001), and inclination (Pearson's R = 0.94, 99% CI: 0.88–0.97, p<0.001). Using linear regression modelling, the adjusted R. 2. for acetabular version was 0.84, and 0.88 for acetabular inclination. Conclusion. The results of this study indicate that the AescularVR platform is highly accurate and reliable in determining acetabular component orientation in a simulated environment. The AescularVR platform is an adaptable tracking system, which may be modified for use in a range of simulated surgical training and educational purposes, particularly in orthopaedic surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 74 - 74
1 Dec 2017
Murphy WS Kowal JH Hayden B Yun HH Murphy SB
Full Access

Introduction. Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago1. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation by comparing the orientation of acetabular components revised due to recurrent instability and to a series of stable hip replacements. Methods. Cup orientation in 50 hips revised for recurrent instability was measured using CT. These hips were compared to a group of 184 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured. Images to assess femoral anteversion in the unstable group were not available. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination2. Both absolute cup position relative to the APP and tilt-adjusted cup position3 were calculated. Results. Supine tilt-adjusted Operative anteversion for the anteriorly unstable hips was significantly higher than in the stable hips (p< .0001). Supine tilt-adjusted Operative anteversion for the posteriorly unstable hips was significantly lower than in the stable hips (p<.01). Alt in the supine position, all unstable hips had operative anteversion of less than 22.9 or more than 38.6 degrees or operative inclination of less than 30.6 or more than 55.9 degrees or both. The center of the “safe zone” is 30.7 +/− 7.8 degrees of tilt-adjusted operative anteversion and 42.4 +/− 13.5 degrees of operative inclination (Figure 1). Conclusions. The current study demonstrates that most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. Using acetabular revision for recurrent instability as the end point, a safe zone for acetabular component orientation does exist. The range is narrower for anteversion than for inclination. Improved methods of defining component positioning goals on a patient-specific basis and accurately placing the acetabular component may reduce the incidence of cup mal-position and its associated complications. For figures and tables, please contact authors directly


Bone & Joint Research
Vol. 4, Issue 1 | Pages 6 - 10
1 Jan 2015
Goudie ST Deakin AH Deep K

Objectives. Acetabular component orientation in total hip arthroplasty (THA) influences results. Intra-operatively, the natural arthritic acetabulum is often used as a reference to position the acetabular component. Detailed information regarding its orientation is therefore essential. The aim of this study was to identify the acetabular inclination and anteversion in arthritic hips. Methods. Acetabular inclination and anteversion in 65 symptomatic arthritic hips requiring THA were measured using a computer navigation system. All patients were Caucasian with primary osteoarthritis (29 men, 36 women). The mean age was 68 years (SD 8). Mean inclination was 50.5° (SD 7.8) in men and 52.1° (SD 6.7) in women. Mean anteversion was 8.3° (SD 8.7) in men and 14.4° (SD 11.6) in women. . Results. The difference between men and women in terms of anteversion was significant (p = 0.022). In 75% of hips, the natural orientation was outside the safe zone described by Lewinnek et al (anteversion 15° ± 10°; inclination 40° ± 10°). Conclusion. When using the natural acetabular orientation to guide component placement, it is important to be aware of the differences between men and women, and that in up to 75% of hips natural orientation may be out of what many consider to be a safe zone. Cite this article: Bone Joint Res 2015;4:6–10


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 41 - 41
1 Mar 2017
Murphy S Murphy W Kowal J
Full Access

Introduction. Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago1. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation by comparing the orientation of acetabular components revised due to recurrent instability and to a series of stable hip replacements. Methods. Cup orientation in 21 hips revised for recurrent instability was measured using CT. These hips were compared to a group of 115 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured. Images to assess femoral anteversion in the unstable group were not available. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination2. Both absolute cup position relative to the APP and tilt-adjusted cup position3 were calculated. Results. Operative anteversion for the anteriorly unstable hips was significantly higher than in the stable hips (p < .001). Operative anteversion for the posteriorly unstable hips was significantly lower than in the stable hips (p=.01). Adjusting for pelvic tilt in the supine position, all unstable hips had operative anteversion of less than 22.9 or more than 38.6 degrees or operative inclination of less than 28.9 or more than 55.9 degrees or both. The center of the “safe zone” is 30.7 +/− 7.8 degrees of tilt-adjusted operative anteversion and 42.4 +/− 13.5 degrees of operative inclination. Conclusions. The current study demonstrates that most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. Using acetabular revision for recurrent instability as the end point, a safe zone for acetabular component orientation does exist. The range is narrower for anteversion than for inclination. Improved methods of defining component positioning goals on a patient-specific basis and accurately placing the acetabular component may reduce the incidence of cup malposition and its associated complications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 114 - 114
1 Feb 2020
Slotkin E Pierrepont J Smith E Madurawe C Steele B Ricketts S Solomon M
Full Access

Introduction. The direct anterior approach (DAA) for total hip arthroplasty continues to gain popularity. Consequently, more procedures are being performed with the patient supine. The approach often utilizes a special leg positioner to assist with femoral exposure. Although the supine position may seem to allow for a more reproducible pelvic position at the time of cup implantation, there is limited evidence as to the effects on pelvic tilt with such leg positioners. Furthermore, the DAA has led to increased popularity of specific softwares, ie. Radlink or JointPoint, that facilitate the intra-op analysis of component position from fluoroscopy images. The aim of this study was to assess the difference in cup orientation measurements between intra-op fluoroscopy and post-op CT. Methods. A consecutive series of 48 DAA THAs were performed by a single surgeon in June/July 2018. All patients received OPS. TM. pre-operative planning (Corin, UK), and the cases were performed with the patient supine on the operating table with the PURIST leg positioning system (IOT, Texas, USA). To account for variation in pelvic tilt on the table, a fluoroscopy image of the hemi-pelvis was taken prior to cup impaction, and the c-arm rotated to match the shape of the obturator foramen on the supine AP Xray. The final cup was then imaged using fluoroscopy, and the radiographic cup orientation measured manually using Radlink GPS software (Radlink, California, USA). Post-operatively, each patient received a low dose CT scan to measure the radiographic cup orientation in reference to the supine coronal plane. Results. Mean cup orientation from intra-op fluoro was 38° inclination (32° to 43°) and 24° anteversion (20° to 28°). Mean cup orientation from post-op CT was 40° inclination (29° to 47°) and 30° anteversion (22° to 38°). Cups were, on average, 6° more anteverted and 2° more inclined on post-op CT than intra-op. These differences were statistically significant, p<0.001. All 48 cups were more anteverted on CT than intra-op. There was no statistical difference between pre- and post-op supine pelvic tilt (4.1° and 5.1° respectively, p = 0.41). Discussion. We found significant differences in cup orientation measurements performed from intra-op fluoro to those from post-op CT. This is an important finding given the attempts to adjust for pelvic tilt during the procedure. We theorise two sources of error contributing to the measurement differences. Firstly, the under-compensation for the anterior pelvic tilt on the table. Although the c-arm was rotated to match the obturator foramen from the pre-op imaging, we believe the manual matching technique utilised in the Radlink software carries large potential errors. This would have consistently led to an under-appreciation of the adjustment angle required. Secondly, the manual nature of defining the cup ellipse on the fluoro image has previously been shown to underestimate the degree of cup anteversion. These combined errors would have consistently led to the under-measurement of cup anteversion seen intra-operatively. In conclusion, we highlight the risk of over-anteversion of the acetabular cup when using 2D measurements, given the manual inputs required to determine a result


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 68 - 68
1 Jan 2016
Murphy S Murphy W Kowal JH
Full Access

INTRODUCTION. Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago. 1. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation by comparing the orientation of acetabular components revised due to recurrent instability and to a series of stable hip replacements. METHODS. Cup orientation in 30 hips revisedin 27patients for recurrent instability was measured using CT. These hips were compared to a group of 115 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured. Images to assess femoral anteversion in the unstable group were not available. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination. 2. Both absolute cup position relative to the APP and tilt-adjusted cup position. 3. were calculated. RESULTS. Operative anteversion for the anteriorly unstable hips was significantly higher than in the stable hips (p < 0.001). Operative anteversion for the posteriorly unstable hips was significantly lower than in the stable hips (p < 0.01). Adjusting for pelvic tilt in the supine position, all unstable hips had operative anteversion of less than 21.8 or more than 42.6 degrees or operative inclination of less than 30.6 or more than 55.9 degrees or both. The center of the “safe zone” is 32.2 ± 10.4 degrees of tilt-adjusted operative anteversion and 45.3 ± 8.7 degrees of operative inclination (Figure 1). CONCLUSIONS. The current study demonstrates that most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. Using acetabular revision for recurrent instability as the end point, a safe zone for acetabular component orientation does exist. The range is narrower for anteversion than for inclination. Improved methods of accurately placing the acetabular component placement may reduce the incidence of cup malposition and its associated complications


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 56 - 56
1 Apr 2018
Pierrepont J Hardwick-Morris M McMahon S Bare J Shimmin A
Full Access

Introduction. The Intellijoint HIP system is a mini-optical navigation system designed to intraoperatively assist with cup orientation, leg length and offset in total hip replacement (THR). As with any imageless navigation system, acquiring the pelvic reference frame intraoperatively requires assumptions. The system does however have the ability to define the native acetabular orientation intra-operatively by registering 3-points along the bony rim. In conjunction with a pre-operative CT scan, the authors hypothesised that this native acetabular plane could be used as an intraoperative reference to achieve a planned patient-specific cup orientation. Method. Thirty-eight THR patients received preoperative OPS. TM. dynamic planning (Optimized Ortho, Sydney). On the pre-operative 3D model of each patient's acetabulum, a 3-point plane was defined by selecting recognisable features on the bony rim. The difference in inclination and anteversion angles between this native 3-point reference plane and the desired optimal orientation was pre-operatively calculated, and reported to the surgeon as “adjustment angles”. Intraoperatively, the surgeon tried to register the same 3-points on the bony rim. Knowing the intraoperative native acetabular orientation, the surgeon applied the pre-calculated adjustment angles to achieve the planned patient specific cup orientation. All patients received a post-operative CT scan at one-week and the deviation between planned and achieved cup orientation was measured. Additionally, the cup orientation that would have been achieved if the standard Intellijoint pelvic acquisition was performed was retrospectively determined. Results. The absolute mean inclination deviation from plan of the 3-point rim method was 5.6° (0.0° to 16.7°). The absolute mean anteversion deviation from plan of the 3-point rim method was 2.7° (0.1° to 9.5°). This constituted 90% within 10° of the desired patient-specific target. All anteversion measurements were within 10°, with 90% within 5°. The retrospective analysis on what would have been achieved if the standard pelvic acquisition was used, showed that the absolute mean inclination deviation from plan would have been 4.0° (0.0° to 14.2°) and the absolute mean anteversion deviation would have been 6.7° (0.1° to 24.1°). Only 74% of cups would have been within 10° of the desired target. Conclusions. Using the native acetabular orientation as a reference plane for delivering a patient-specific cup orientation showed promising preliminary results. Errors in inclination were significantly larger than anteversion. More points on the rim could reduce this error


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 91 - 91
1 Apr 2018
Chappell K McRobbie D Van Der Straeten C Ristic M Brujic D
Full Access

Purpose. Collagen-rich structures of the knee are prone to damage through acute injury or chronic “wear and tear”. Collagen becomes more disorganised in degenerative tissue e.g. osteoarthritis. An alignment index (AI) used to analyse orientation distribution of collagen-rich structures is presented. Method. A healthy caprine knee was scanned in a Siemens Verio 3T Scanner. The caprine knee was rotated and scanned in nine directions to the main magnetic field B. 0. A 3D PD SPACE sequence with isotropic 1×1×1mm voxels (TR1300ms, TE13ms, FOV256mm,) was optimised to allow for a greater angle-sensitive contrast. For each collagen-rich voxel the orientation vector is computed using Szeverenyi and Bydder's method. Each orientation vector reflects the net effect of all the fibres comprised within a voxel. The assembly of all unit vectors represents the fibre orientation map. Alignment Index (AI) in any direction is defined as a ratio of the fraction of orientations within 20° (solid angle) centred in that direction to the same fraction in a random (flat) case. In addition, AI is normalised in such a way that AI=0 indicates isotropic collagen alignment. Increasing AI values indicate increasingly aligned structures: AI=1 indicates that all collagen fibres are orientated within the cone of 20° centred at the selected direction. AI = (nM - nRnd)/(nTotal - nRnd) if nM >= nRnd. AI = 0 if nM < nRnd. Where:. nM is a number of reconstructed orientations that are within a cone of 20° centred in selected direction. nRnd is a number of random orientations within a cone of 20° around selected direction. nTotal is a number of collagen reach voxels. By computing AI for a regular gridded orientation space we are able to visualise change of AI on a hemisphere facilitating understanding of the collagen fibre orientation distribution. Results. The patella tendon had an AI=0.6453. The Anterior Cruciate Ligament (ACL) had an AI=0.2732. The meniscus had an AI=0.1847. Discussion. The most aligned knee structure is the patella tendon where the collagen fibres align with the skeleton to transmit forces through bones and muscles. This structure had the AI closest to 1. The ACL had the second highest AI and is composed of two fibre bundles aligned diagonally across the knee. The meniscus acts as a shock absorber and is made up of vertical, radial and circumferential fibres which disperse forces more equally. The complexity of the meniscal structure resulted in the lowest AI. To date, this technique has only been performed with healthy tissue; the AI may become closer to zero if there is damage disrupting the collagen fibre alignment. The AI can further our understanding of collagen orientation distribution and could be used as a quantitative, non-invasive measure of structural health


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 30 - 30
1 Jul 2020
Faizan A Zhang J Scholl L
Full Access

Iliopsoas tendonitis after total hip arthroplasty (THA) can be a considerable cause of pain and patient dissatisfaction. The optimal cup position to avoid iliopsoas tendonitis has not been clearly established. Implant designs have also been developed with an anterior recess to avoid iliopsoas impingement. The purpose of this cadaveric study was to determine the effect of cup position and implant design on iliopsoas impingement. Bilateral THA was performed on three fresh frozen cadavers using oversized (jumbo) offset head center revision acetabular cups with an anterior recess (60, 62 and 66 mm diameter) and tapered wedge primary stems through a posterior approach. A 2mm diameter flexible stainless steel cable was inserted into the psoas tendon sheath between the muscle and the surrounding membrane to identify the location of the psoas muscle radiographically. CT scans of each cadaver were imported in an imaging software. The acetabular shells, cables as well as pelvis were segmented to create separate solid models of each. The offset head center shell was virtually replaced with an equivalent diameter hemispherical shell by overlaying the outer shell surfaces of both designs and keeping the faces of shells parallel. The shortest distance between each shell and cable was measured. To determine the influence of cup inclination and anteversion on psoas impingement, we virtually varied the inclination (30°/40°/50°) and anteversion (10°/20°/30°) angles for both shell designs. The CT analysis revealed that the original orientation (inclination/anteversion) of the shells implanted in 3 cadavers were as follows: Left1: 44.7°/23.3°, Right1: 41.7°/33.8°, Left2: 40/17, Right2: 31.7/23.5, Left3: 33/2908, Right3: 46.7/6.3. For the offset center shells, the shell to cable distance in all the above cases were positive indicating that there was clearance between the shells and psoas. For the hemispherical shells, in 3 out of 6 cases, the distance was negative indicating impingement of psoas. With the virtual implantation of both shell designs at orientations 40°/10°, 40°/20°, 40°/30° we found that greater anteversion helped decrease psoas impingement in both shell designs. When we analyzed the influence of inclination angle on psoas impingement by comparing wire distances for three orientations (30°/20°, 40°/20°, 50°/20°), we found that the effect was less pronounced. Further analysis comparing the offset head center shell to the conventional hemispherical shell revealed that the offset design was favored (greater clearance between the shell and the wire) in 17 out of 18 cases when the effect of anteversion was considered and in 15 out of 18 cases when the effect of inclinations was considered. Our results indicate that psoas impingement is related to both cup position and implant geometry. For an oversized jumbo cup, psoas impingement is reduced by greater anteversion while cup inclination has little effect. An offset head center cup with an anterior recess was effective in reducing psoas impingement in comparison to a conventional hemispherical geometry. In conclusion, adequate anteversion is important to avoid psoas impingement with jumbo acetabular shells and an implant with an anterior recess may further mitigate the risk of psoas impingement


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 70 - 70
1 Jan 2016
Eberle R Murphy W Kowal JH Murphy S
Full Access

BACKGROUND. Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation. PURPOSE. We assessed the orientation of acetabular components revised due to recurrent instability and compared the results to a series of stable hip replacements. METHODS. Cup orientation in 21 hips revised for recurrent instability was measured using CT. These hips were compared to a group of 115 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured. Images to assess femoral anteversion in the unstable group were not available. RESULTS. Operative anteversion for the anteriorly unstable hips was significantly higher than in the stable hips (p=.01). Operative anteversion for the posteriorly unstable hips was significantly lower than in the stable hips (p<.001). Operative inclination was not significantly different between the control and dislocating groups. Adjusting for pelvic tilt in the supine position, all unstable hips had operative anteversion of less than 22.9 or more than 38.6 degrees or operative inclination of less than 28.9 or more than 55.9 degrees or both. The center of the “safe zone” is 30.7 ± 7.8 degrees of tilt-adjusted operative anteversion and 42.4 ± 13.5 degrees of operative inclination. CONCLUSION. Using acetabular revision for recurrent instability as the end point, a safe zone for acetabular component orientation does exist. The range is narrower for anteversion than for inclination