The management of severe acetabular bone defects poses a complex challenge in revision hip arthroplasty. Although biological fixation materials are currently dominant, cage has played an important role in complex acetabular revision in the past decades, especially when a biological prosthesis is not available. The purpose of this study is to report the long-term clinical and radiographic results of Paprosky type Ⅲ acetabular bone defects revised with cage and morselized allografts. We retrospectively analyzed 45 patients who underwent revision hip arthroplasty with cage and morselized allografts between January 2007 and January 2019. Forty-three patients were followed up. There were 19
Introduction:. Jumbo cups (58 mm or larger diameter in females and 62 mm or larger diameter in males), theoretically have lowered the percentage of bleeding bone that is required for osseointegration in severe acetabular defects. The purpose of this study was to analyze the safety and efficacy of Tritanium jumbo cups in patients with major acetabular defects (Paprosky type IIIa and IIIb) and assess the extent of osseointegration. Material and Methods:. From February 2007 and August 2010, 28 consecutive hips (26 patients, mean age of 69 years) underwent acetabular revision arthroplasty for treatment of
Purpose. To assess acetabular component fixation by bone ongrowth onto a titanium plasma sprayed surface as used in revision total hip arthroplasty. Acetabular bone defects, a common finding in revision surgery, and their relation to outcome were also investigated. Methods. Clinical and radiological results were evaluated for all revision total hip replacements done between 2006 and 2011 that included the use of a specific revision acetabular component. Forty six hips in 46 patients were followed for an average of 2.5 years (range8 months to 6 years). The acetabular defects were graded according to Paprosky's classification. Results. Two cups needed re-revision for aseptic loosening with a rate of repeat revision of 4% (2 of 46). Only one other (unrevised) cup showed radiographic signs of loosening at the last follow up. Acetabular defects were found to be Paprosky type I in 9, type IIA in 10, type IIB in 9, type IIC in 12, Type IIIA in 2 and type IIIB in 3. Screw fixation was necessary in 72% (33 of 46) to achieve intraoperative stability. Conclusion. This study demonstrated that bone ongrowth onto a titanium plasma sprayed surface can achieve stable fixation in acetabular revision in the presence of contained bone defects. Short to medium term follow-up shows satisfying results. It should however be used with caution where the area of contact with host bone is limited as found in
Purpose:. Acetabular bone loss during revision total hip arthroplasty (THA) poses a challenge for reconstruction as segmental and extensive cavitary defects require structural support to achieve prosthesis stability. Trabecular metal (TM) acetabular augments structurally support hemispherical cups. Positive short-term results have been encouraging, but mid- to long-term results are largely unknown. The purpose of this study was to determine the continued efficacy of TM augments in THA revisions with significant pelvic bone loss. Methods:. Radiographs and medical records of 51 patients who had undergone THA revision with the use of a TM augment were retrospectively reviewed. Acetabular defects were graded according to the Paprosky classification of acetabular deficiencies based on preoperative radiographs and operative findings. Loosening was defined radiographically as a gross change in cup position, change in the abduction angle (>5°), or change in the vertical position of the acetabular component (>8 mm) between initial postoperative and most recent follow-up radiographs (Figure 1). Results:. Eleven patients had incomplete radiographic follow-up and were excluded. The study population included 17 men and 23 women, averaging 68.1 ± 14.1 years of age (range, 37–91), with average radiographic follow-up of 19.0 months (range, 2.4–97.4). Reasons for revision included osteolysis (n = 20, 38.5%), component loosening (n = 18, 15.4%), and periprosthetic fracture (n = 6, 11.5%). All patients underwent revision THA using a TM multi-hole revision acetabular cup and TM acetabular augment(s) to fill bony defects. Morcellized allograft was used in 9 patients. There were 33
One of the many challenges in revision hip arthroplasty is massive bone loss. Subsidence of the collarless stem with impaction allografting has been reported by several authors. Impaction grafting has emerged as a useful technique in the armamentarium of the revision total hip arthroplasty surgeon. The original technique proposed by Ling has been associated with complications, including femoral shaft fractures, recurrent dislocations, and uncontrolled component subsidence. Modifications in that technique seem to be associated with a reduction in complications. The aim of this study was to assess the functional outcome of radial impaction grafting in femoral bone defects and the use of collared long stem prosthesis. A total of 107 patients underwent radial impaction allografting and collared long stem prosthesis during revision THA between 1997 and 2005. The patients with
In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined. A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN).Objectives
Methods