This study aimed to assess the effect of PRP on knee articular cartilage content (thickness and/or volume) and establish if there is a correlation between changes in cartilage and clinical outcomes in patients with knee osteoarthritis. A systematic review was performed following the Cochrane methodology. Studies were included if they reported on cartilage content with MRI or Ultrasound before and after the injection. A random-effects model meta-analysis was performed.Abstract
Introduction
Methodology
Posterolateral spinal fusion (PSLSF) in rabbits is a challenging model for bone substitutes because the transverse processes are extremely thin and the space to be filled with bone is greater than critical and meiopragic in terms of vascularity. Several investigators have shown beneficial effects of PRP in bone and soft-tissue healing processes. However, controversial results have been reported in clinical setting analysing the effectiveness of PRP. Aim of the present study was to test the effectiveness of PRP in experimental model of PLSF in rabbits. 20 White females New Zeland Rabbits were used. Seven rabbits (Group 1) had PRP plus carrier on the right side (Group 1A) and plus carrier and fresh bone marrow on the left side (Group 1B). Seven rabbits (Group 2) had carrier alone on the right side (Group 2A) and carrier plus fresh bone marrow on the left side (Group 2B). Six rabbits (Group 3) had sham operation on both right and left sides. Animals were sacrificed 6 months after surgery and the lumbar spine submitted to radiolographic and histologic analysis. Vascular density (VD) was also assessed in the different zone of the grafted material. Radiographs showed a complete fusion in 83% of group 1A and in 83% of group 1B, and in 86% of group 2A and 2B. Pseudarthrosis or non union, was observed in 1 specimen of group 1B and 2A and in all specimens of group 3 (sham). In contrast to radiographic results, no specimen showed a complete bony bridge between the transverse processes on histologic analysis. VD was significantly greater in the periapophyseal compared to the interapophyseal region of the graft material. However, no significant difference was found in the VD between groups.MATERIAL AND METHODS
RESULTS
Platelet-Rich-plasma (PRP) has been used in combination with stem cells, from different sources, with encouraging results both in vitro and in vivo in osteochondral defects management. Adipose-derived Stem Cells (ADSCs) represents an ideal resource for their ease of isolation, abundance, proliferation and differentiation properties into different cell lineages. Furthermore, Stem Cells in the adipose tissue are more numerous than from other sources. Aim of this study was to evaluate the potential of ADSCs in enhancing the effect of arthroscopic mesenchymal stimulation combined with infiltration of PRP. The study includes 82 patients. 41 patients were treated with knee arthroscopy, Steadman microfractures technique and intraoperative PRP infiltration, Group A. In the Group B, 41 patients were treated knee arthroscopy, Steadman microfractures and intraoperative infiltration of PRP and ADSCs (Group B). Group A was used as a control group. Inclusion criteria were: Age between 40 and 65 years, Outerbridge grade III-IV chondral lesions, Kellegren-Lawrence Grade I-II. Patient-reported outcome measures (PROMs) evaluated with KOOS, IKDC, VAS, SF-12 were assessed pre-operatively and at 3 weeks, 6 months, 1-year post-operative. 2 patients of Group A and 3 patients of Group B, with indication of Puddu plate removal after high tibial osteotomy (HTO), underwent an arthroscopic second look, after specific informed consent obtained. On this occasion, a bioptic sample was taken from the repair tissue of the chondral lesion previously treated with Steadman microfractures.Introduction and Objective
Materials and Methods
Aims. To determine whether
Aims. Intra-articular (IA) injection may be used when treating hip osteoarthritis (OA). Common injections include steroids, hyaluronic acid (HA), local anaesthetic, and
Aims. The present study investigates the effectiveness of
Aims. This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and
Aims. Bone marrow-derived mesenchymal stem cells obtained from bone marrow aspirate concentrate (BMAC) with
Objectives.
Aims. Platelet concentrates, like
We performed this systematic overview on the overlapping meta-analyses that analyzed autologous
Biofabrication is a popular technique to produce personalized constructs for tissue engineering. In this study we combined laponite (Lap), gellan gum (GG) with
Various approaches have been implemented to enhance bone regeneration, including the utilization of autologous platelet-rich plasma and bone morphogenetic protein-2. The objective of this study was to evaluate the impact of Marburg Bone Bank-derived bone grafts in conjunction with
Objectives. Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of
Osteoarthritis (OA) is a degenerative disease that lacks regenerative treatment options. Current research focuses on mesenchymal stem cells (MSCs) and
Objectives. To conduct a pilot randomised controlled trial to evaluate the
feasibility of conducting a larger trial to evaluate the difference
in Victorian Institute of Sports Assessment-Achilles (VISA-A) scores
at six months between patients with Achilles tendinopathy treated
with a
Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common polymers are polylactic acid (PGA); poly-(L)-lactic acid (PLLA); poly- (lactic-co-glycolic acid) (PLGA); polyurethane (PU); polyester carbon and polycaprolactone (PCL). The possible complications, more common in synthetic than natural polymers are poor cell adhesion and the possibility of developing a foreign body reaction or aseptic inflammation, leading to alter the joint architecture and consequently to worsen the functional outcomes. The biological materials that have been used over time are the periosteal tissue, the perichondrium, the small intestine submucosa (SIS), acellular porcine meniscal tissue, bacterial cellulose. Although these have a very high biocompatibility, some components are not suitable for tissue engineering as their conformation and mechanical properties cannot be modified. Collagen or proteoglycans are excellent candidates for meniscal engineering, as they maintain a high biocompatibility, they allow for the modification of the porosity texture and size and the adaptation to the patient meniscus shape. On the other hand, they have poor biomechanical characteristics and a more rapid degradation rate, compared to others, which could interfere with the complete replacement by the host tissue. An interesting alternative is represented by hydrogel scaffolds. Their semi-liquid nature allows for the generation of scaffolds with very precise geometries obtained from diagnostic images (i.e. MRI). Promising results have been reported with alginate and polyvinyl alcohol (PVA). Furthermore, hydrogel scaffolds can be enriched with growth factors,
Objectives. This study was conducted to evaluate the cytokine-release kinetics of
Introduction and Objective. The early pro-inflammatory hematoma phase of bone healing is characterized by platelet activation followed by growth factor release. Bone marrow mesenchymal stromal cells (MSC) play a critical role in bone regeneration. However, the impact of the pro-inflammatory hematoma environment on the function of MSC is not fully understood. We here applied