Introduction. The main postoperative complications in fixation of ulna shaft fractures are non-union and implant irritation using currently recommended 3.5-mm locking compression plates. An alternative approach using a combination of two smaller plates in orthogonal configuration has been proposed. The aim of this study was to compare the biomechanical properties of a single 3.5-mm locking compression plate versus double
Recently, a new generation of superior clavicle plates was developed featuring the variable-angle locking technology for enhanced screw positioning and optimized plate-to-bone fit design. On the other hand, mini-fragment plates used in dual
Introduction and Objective.
Proximal humeral shaft fractures are commonly treated with long straight plates or intramedullary nails. Helical plates might overcome the downsides of these techniques as they are able to avoid the radial nerve distally. The aim of this study was to investigate in an artificial bone model: (1) the biomechanical competence of different plate designs and (2) to compare them against the alternative treatment option of intramedullary nails. Twenty-four artificial humeri were assigned in 4 groups and instrumented as follows: group1 (straight 10-hole-PHILOS), group2 (MULTILOCK-nail), group3 (45°-helical-PHILOS) and group4 (90°-helical-PHILOS). An unstable proximal humeral shaft fracture was simulated. Specimens were tested under quasi-static loading in axial compression, internal/external rotation and bending in 4 directions monitored by optical motion tracking. Axial displacement (mm) was significantly lower in group2 (0.1±0.1) compared to all other groups (1: 3.7±0.6; 3: 3.8±0.8; 4: 3.5±0.4), p<0.001. Varus stiffness in group2 (0.8±0.1) was significantly higher compared to groups1+3, p≤0.013 (1: 0.7±0.1; 3: 0.7±0.1; 4: 0.8±0.1). Varus bending (°) was significantly lower in group2 compared to all other groups (p<0.001) and group4 to group1, p=0.022. Flexion stiffness in group1 was significantly higher compared to groups2+4 (p≤0,03) and group4 to group1, p≤0,029 (1: 0.8±0.1; 2: 0.7±0.1; 3: 0.7±0.1; 4: 0.6±0.1). Flexion bending (°) in group4 was higher compared to all other groups (p≤0.024) and lower in group2 compared to groups1+4, p≤0.024. Torsional stiffness remained non significantly different, p≥0.086. Torsional deformation in group2 was significantly higher compared to all other groups, p≤0.017. Shear displacement remained non significantly different, p≥0.112. From a biomechanical perspective, helical
Distal radius fractures have an incidence rate of 17.5% among all fractures. Their treatment in case of comminution, commonly managed by volar locking plates, is still challenging. Variable-angle screw technology could counteract these challenges. Additionally, combined volar and dorsal plate fixation is valuable for treatment of complex fractures at the distal radius. Currently, biomechanical investigation of the competency of supplemental dorsal
The surgical care of extra-articular distal tibial fractures remains controversial. This study looks at the radiological outcomes of distal tibial fractures treated with either a direct medial or anterolateral plate, with or without
Aims. Surgical treatment of young femoral neck fractures often requires an open approach to achieve an anatomical reduction. The application of a calcar plate has recently been described to aid in femoral neck fracture reduction and to augment fixation. However, application of a plate may potentially compromise the regional vascularity of the femoral head and neck. The purpose of this study was to investigate the effect of calcar femoral neck
Aims. Posterior column
Aims. The purpose of this study was to compare reoperation and revision rates of double
Introduction and Objective. Distal femoral fractures are commonly treated with a straight plate fixed to the lateral aspects of both proximal and distal fragments. However, the lateral approach may not always be desirable due to persisting soft-tissue or additional vascular injury necessitating a medial approach. These problems may be overcome by pre-contouring the plate in helically shaped fashion, allowing its distal part to be fixed to the medial aspect of the femoral condyle. The objective of this study was to investigate the biomechanical competence of medial femoral helical
Distal femur fractures (DFF) are common, especially in the elderly and high energy trauma patients. Lateral locked osteosynthesis constructs have been widely used, however non-union and implant failures are not uncommon. Recent literature advocates for the liberal use of supplemental medial
A retrospective analysis of the treatment of distal radius fractures with an angularly stable locking plate (Matrix Plate, Stryker, UK) via a dorsal approach performed at Southend University Hospital in the United Kingdom. 91 fractures were treated over a three year period between 2004 and 2007. Dorsally angulated and displaced (including intraarticular) fractures were included. All patients commenced early mobilization without splintage on the first post-operative day. The study group consisted of 42 men and 49 women with a mean age of 63 years. The average time to follow up was 19 months (range 6–29). The average tourniquet time was 44 minutes (20–81). Assessment consisted of range of motion and grip strength measurement, Mayo wrist score, quick DASH questionnaire and Gartland and Werley scoring. Complications consisted of 1 EPL rupture and 3 patients suffered extensor irritation. To date only 5 plates (5.4%) have been removed. We demonstrate that dorsal
Purpose: Distal radius fractures are common and rising in incidence as orthopaedists treat an increasingly aged population. Both external fixation and volar
Dual
Background. Total ankle replacements (TARs) are becoming increasingly more common in the treatment of end stage ankle arthritis. As a consequence, more patients are presenting with the complex situation of the failing TAR. The aim of this study was to present our case series of isolated ankle fusions post failed TAR using a spinal cage construct and anterior
Implant removal after clavicle
Introduction. Distal femur fracture fixation in elderly presents significant challenges due to osteoporosis and associated comorbidities. There has been an evolution in the management of these fractures with a description of various surgical techniques and fixation methods; however, currently, there is no consensus on the standard of care. Non-union rates of up to 19% and mortality rates of up to 26 % at one year have been reported in the literature. Delay in surgery and delay in mobilisation post-operatively have been identified as two main factors for high rate of mortality. As biomechanical studies have proved better stability with dual
Aims. The aim of this retrospective study was to compare the functional
and radiological outcomes of bridge
Introduction. The incidence of distal femoral fractures in the geriatric population is growing and represents the second most common insufficiency fracture of the femur following fractures around the hip joint. Fixation of fractures in patients with poor bone stock and early mobilisation in feeble and polymorbide patients is challenging. Development of a fixation approach for augmentation of conventional LISS (less invasive stabilization system)
Neer Type-IIB lateral clavicle fractures are inherently unstable fractures with associated disruption of the coracoclavicular (CC) ligaments. A novel