Advertisement for orthosearch.org.uk
Results 1 - 20 of 1010
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 19 - 19
17 Nov 2023
Lee K van Duren B Berber R Matar H Bloch B
Full Access

Abstract. Objectives. Stiffness is reported in 4%–16% of patients after having undergone total knee replacement (TKR). Limitation to range of motion (ROM) can limit a patient's ability to undertake activities of daily living with a knee flexion of 83. o. , 93. o. , and 106. o. required to walk up stairs, sit on a chair, and tie one's shoelaces respectively. The treatment of stiffness after TKR remains a challenge. Many treatment options are described for treating the stiff TKR. In addition to physiotherapy the most employed of these is manipulation under anaesthesia (MUA). MUA accounts for up to 36% of readmissions following TKR. Though frequently undertaken the outcomes of MUA remain variable and unpredictable. CPM as an adjuvant therapy to MUA remains the subject of debate. Combining the use of CPM after MUA in theory adds the potential benefits of CPM to those of MUA potentially offering greater improvements in ROM. This paper reports a retrospective study comparing patients who underwent MUA with and without post-operative CPM. Methods. Standard practice in our institution is for patients undergoing MUA for stiff TKR to receive CPM for between 12–24hours post-operatively. Owing to the COVID-19 pandemic hospital admissions were limited. During this period several MUA procedures were undertaken without subsequent inpatient CPM. We retrospectively identified two cohorts of patients treated for stiff TKR: group 1) MUA + post-operative CPM 2) Daycase MUA. All patients had undergone initial physiotherapy to try and improve their ROM prior to proceeding to MUA. In addition to patients’ demographics pre-manipulation ROM, post-MUA ROM, and ROM at final follow-up were recorded for each patient. Results. In total 168 patients who had undergone MUA between 2017–2022 were identified with a median Age of 66.5 years and 64% female. 57% had extension deficit (>5. o. ), 70% had flexion deficit (< 90. o. ), and 37% had both. 42 had daycase MUA without CPM and the remaining 126 were admitted for post-operative CPM. The mean Pre-operative ROM was 72.3. o. (SD:18.3. o. ) and 68.5. o. (19.0. o. ) for the daycase and CPM groups respectively. The mean ROM recorded at MUA was 95.5. o. (SD:20.7. o. ) and 108.3. o. (SD:14.1. o. ) [p<0.01] and at final follow-up was 87.4o (SD:21.9o) and 92.1o (SD:18.2o) for daycase and CPM groups respectively. At final follow-up for the daycase and CPM groups respectively 10% vs. 7% improved, 29% vs. 13% maintained, and 57% vs. 79% regressed from the ROM achieved at MUA. The mean percentage of ROM gained at MUA maintained at final follow-up was 92% (SD:17%) and 85% (SD:14%) [p=0.03] for daycase and CPM groups respectively. Conclusion. Overall, there was no significant difference in ROM achieved at final follow-up despite the significantly greater improvement in ROM achieved at MUA for the CPM group. Analysis of the percentage ROM gained at MUA maintained at follow up showed that most patients regressed from ROM achieved at MUA in both groups with those in the CPM only maintaining 85% as opposed to 92% in the daycase patients. It is our observation that post-operative CPM does not improve ROM achieved after MUA as compared to MUA alone. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 101 - 101
2 Jan 2024
Firth A Lee K van Duren B Berber R Matar H Bloch B
Full Access

Stiffness is reported in up to 16% of patients after total knee replacement (TKR). 1. Treatment of stiffness after TKR remains a challenge. Manipulation under anaesthesia (MUA) accounts for between 6%-36% of readmissions following TKR. 2,3. The outcomes of MUA remain variable/unpredictable. Post-operative CPM is used as an adjuvant to MUA, potentially offering improved ROM, however, remains the subject of debate. We report a retrospective study comparing MUA with and without post-operative CPM. In our institution patients undergoing MUA to receive CPM post-operatively. Owing to the COVID-19 pandemic hospital admissions were limited. During this period MUA procedures were undertaken without CPM. Two cohorts were included: 1) MUA + post-operative CPM 2) Daycase MUA. Patients’ demographics, pre-manipulation ROM, post-MUA ROM, and ROM at final follow-up were recorded. Between 2017-2022 126 patients underwent MUA and were admitted for CPM and 42 had daycase MUA. The median Age was 66.5 and 64% were female. 57% had extension deficit (>5. o. ), 70% had flexion deficit (< 90. o. ), and 37% had both. The mean Pre-operative ROM was 72.3. o. (SD:18.3. o. ) vs. 68.5. o. (19.0. o. ), ROM at MUA was 95.5. o. (SD:20.7. o. ) vs 108.3. o. (SD:14.1. o. ) [p< 0.01], and at final follow-up 87.4. o. (SD:21.9. o. ) vs. 92.1. o. (SD:18.2. o. ) for daycase and CPM groups respectively. At final follow-up for the daycase and CPM groups respectively 10% vs. 7% improved, 29% vs. 13% maintained, and 57% vs. 79% regressed from the ROM achieved at MUA. The mean percentage of ROM gained at MUA maintained at final follow-up was 92%(SD:17) and 85%(SD:14)[p=0.03] for daycase and CPM groups respectively. There was no significant difference in ROM achieved at final follow-up despite the significantly greater improvement in ROM achieved at MUA for the CPM group. The CPM group lost a greater ROM after MUA (15% vs. 8%). We conclude that post-operative CPM does not improve ROM achieved after MUA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 21 - 21
2 May 2024
Palit A Kiraci E Seemala V Gupta V Williams M King R
Full Access

Ideally the hip arthroplasty should not be subject to bony or prosthetic impingement, in order to minimise complications and optimise outcomes. Modern 3d planning permits pre-operative simulation of the movements of the planned hip arthroplasty to check for such impingement. For this to be meaningful, however, it is necessary to know the range of movement (ROM) that should be simulated. Arbitrary “normal” values for hip ROM are of limited value in such simulations: it is well known that hip ROM is individualised for each patient. We have therefore developed a method to determine this individualised ROM using CT scans. CT scans were performed on 14 cadaveric hips, and the images were segmented to create 3d virtual models. Using Matlab software, each virtual hip was moved in all potential directions to the point of bony impingement, thus defining an individualised impingement-free 3d ROM envelope. This was then compared with the actual ROM as directly measured from each cadaver using a high-resolution motion capture system. For each hip, the ROM envelope free of bony impingement could be described from the CT and represented as a 3d shape. As expected, the directly measured ROM from the cadaver study for each hip was smaller than the CT-based prediction, owing to the presence of constraining soft tissues. However, for movements associated with hip dislocation (such as flexion with internal rotation), the cadaver measurements matched the CT prediction, to within 10°. It is possible to determine an individual's range of clinically important hip movements from a CT scan. This method could therefore be used to create truly personalised movement simulation as part of pre-operative 3d surgical planning


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 62 - 62
1 Mar 2017
Ogawa T Miki H Hattori A Hamada H Takao M Sakai T Suzuki N Sugano N
Full Access

Introduction. Range of motion (ROM) simulation of the hip is useful to understand the maximum impingement free ROM in total hip arthroplasty (THA). In spite of a complex multi-directional movement of the hip in daily life, most of the previous reports have evaluated the ROM only in specific directions such as flexion-extension, abduction-adduction, and internal - external rotation at 0° or 90° of hip flexion. Therefore, we developed ROM simulation software (THA analyzer) to measure impingement free ROM in any positions of the hip. Recent designs of the hip implants give a wider ROM by increasing the head diameter and then, bone to bone impingement can be a ROM limit factor particularly in a combination of deep flexion, adduction and internal rotation of the hip. Therefore, the purpose of this study were to observe an individual variation in the pattern of the bone impingement ROM in normal hip bone models using this software, to classify the bone impingement ROM mapping types and to clarify the factors affecting the bone impingement type. Methods. The subjects were 15 normal hips of 15 patients. Three dimensional surface models of the pelvis and femur were reconstructed from Computer tomography (CT) images. We performed virtual hip implantation with the same center of rotation, femoral offset, and leg length as the original hips. Subsequently, we created the ROM mapping until bone impingement using THA analyzer. We measured the following factors influenced on the bone impingement map patterns; the neck shaft angle, the femoral offset, femoral anteversion, pelvic tilt, acetabular anteversion, sharp angle, and CE angle. These factors were compared between the two groups. Statistical analysis was performed with Mann-Whitney U test, and statistical significance was set at P<0.05. Results. According to the borderline of ROM at the flexion-internal rotation corner on the bone impingement map, the hips were classified into two groups; group-A showed more than 45° of the borderline slope at the flexion-internal rotation corner and the remaining hips were group-B. (Fig.1). There were 7 hips in group-A and 8 hips in group-B. Femoral offset was 36.8±2.2 mm in group-A and 30±2.7 mm in group-B. Femoral anteversion was 32±6.4° in-group A and 43 ±4.8° in group-B. There were statistically significant differences in the femoral offset and femoral anteversion between the groups. There were no significant differences in the other factors. Discussion. The results of this study showed various ROM map patterns even in normal hips and we classified them into two groups. An increased femoral offset or a decreased femoral anteversion revealed an early impinge in internal rotation. ROM until bone impingement is affected by the individual bone morphology. However, it is not easy to evaluate bony ROM in complex hip positions. THA analyzer shows the impingement position visually on the map and it is easy to understand the hip positions with reduced ROMs. Conclusion. There are two patterns on the bony ROM map in normal hips, and an early impinge in internal rotation occurred by increasing the femoral offset or decreasing the femoral anteversion. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 63 - 63
1 Mar 2013
Garg R Yamin M Mahindra P Nandra S
Full Access

Primary Total Knee Arthroplasty (TKA) is considered to be one of the most successful orthopedic surgical interventions performed. Long-term results have been generally excellent, with 10–15 year survival rates as high as 90–95% reported, few complications, and reoperations occurring in approximately one percent of patients per year. One of the most important outcome measures of TKA is the range of motion. It has been demonstrated that a 67° of knee flexion is needed for the swing phase of the gait, 83° to climb stairs, 90° to descend stairs, and 93° to rise from chair. This is a prospective study of 50 patients who underwent Total Knee Arthroplasty at Dayanand Medical College & Hospital, Ludhiana between March 2008 & April 2009. Patients with a primary diagnosis of osteoarthritis, rheumatoid arthritis, or traumatic arthritis in which Natural Knee II implant (Zimmer) was used were included in the study. Absolute exclusion criteria were infection, sepsis, osteomyelitis, revision of a previous total knee replacement or deformities of the hip and spine. Preoperative demographic data, including sex, age at surgery, side affected, body mass index, primary diagnosis, tibio-femoral angle, knee score and functional score, and preoperative passive ROM were obtained. Patients underwent a medial parapatellar approach, with cement used to fix both the femoral and tibial components. Patellar resurfacing was not performed. Following surgery, patients underwent physical therapy at home or in a physiotherapy center, as appropriate. ROM and flexion were calculated at three and six months postoperatively. 54% of the patients were of age 60–75 years and 70% of them were females. 92% patients suffered from osteoarthritis. 80% patients had a BMI of <30 points. 63.46% patients had a preoperative knee flexion of <90°. The average preoperative knee flexion improved from 94.94° to 107.21° at 3 months and 112.12° at 6 months postoperatively (p-value=0.000056). The average preoperative knee flexion in patients with preoperative knee flexion <90°, 90°–110° and >110° changed from 88.33°-106.36°-108.73°, 102.67°-108.33°-114° and 120.50°-110°-117.50° at 3 months and 6 months respectively. The average preoperative knee score was 46.55 and functional score was 50.30, which improved to 95.62 (p-value=0.000015) and 75.60 (p-value=0.000213) respectively. Postoperative ROM is a function of many factors, with preoperative ROM being one of the most important. The knee ROM tends to regress towards a mean with excellent preoperative ROM loosing and poor preoperative ROM improving. Several factors related to surgical techniques have been found to be important. These include the tightness of the retained posterior cruciate ligament, the elevation of the joint line, increased patellar thickness, and a trapezoidal flexion gap. Vigorous rehabilitation after surgery appears useful, while continuous passive motion has not been found to be effective. Obesity and previous surgery are poor prognostic factors. In general, the clinical results of TKA were satisfactory in terms of pain relief and overall function. It was found that measurement of preoperative flexion gives the surgeon a good parameter for predicting flexion after arthroplasty


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 19 - 19
1 Feb 2017
Hori K Nakane K Terada S Suguro T Niwa S
Full Access

INTRODUCTION. Femur is one of the bones in humans that exhibit ethnic, racial, and gender difference. Several basic and clinical studies were conducted to explore these variations. Clinical anthropological studies have dealt with the compatibility of femoral prostheses and osteosythesis and materials with the femur. If there is a misalignment between the Total Knee Arthroplasy (TKA) femoral comportment installation position, Range of Motion (ROM) failure and several problems may arise. The aim of this study was to evaluate anterior bowing of the Japanese femur and to assess the adequacy of TKA femoral comportment installation position. METHODS. We analyzed 76 normal Japanese and 97 TKA patients. (June 2014-June 2015) The average age of the normal subjects was 62.0±20.90 (24–88) years old and the average of TKA subjects was 73.6±7.9 (53–89) years old. First we defined and measured the anterior curvature and the posterior condylar offset (PCO) in normal japanese femurs. Then in TKA patients we set the implant as same angle of the component. Third, we measured the post operative anterior curvature and PCO. Then calculated the anterior curvature difference and PCO differences and preformed statistical analysis with ROM. RESULTS SECTION. The average of anterior curvature in normal subjects was 7.87±6.60 degrees. Among 97 TKA patients, pre-operative anterior curvature was 7.58±0.16 degrees. Further, the angle of component which was set the post operatively was 7.32±0.25. The average of Anterior curvature difference and PCO differences had correlation with ROM. DISCUSSION. Gilbert reported that caucasian femurs are straight compared to asian femurs. Chinese and Japanese showed different anterior curvature because of different life style. The chalenges are when operating on different ethnic patients, Orthopedic Surgeons consider many factors. Previous studies yielded different suggestions for the ideal point of entry. We suggest difference between the curves of the femurs should be considered for TKA femoral comportment installation position. SIGNIFICANCE. 1)Our results gave an anatomical characteristics of Japanese femur. 2)These data will give clinical indication for TKA femoral comportment installation position


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 309 - 309
1 Jul 2008
Budithi S Mereddy P Logishetty R Nargol A
Full Access

Introduction: The distorted anatomy in Developmental Dysplasia of the Hip (DDH) makes a total hip arthroplasty (THA) a challenging procedure. The purpose of the current study is to report the midterm results after uncemented primary hip arthroplasty using S ROM prosthesis in a prospective series of patients with hip dysplasia. Methods: We performed 22 uncemented total hip replacements using S ROM prosthesis in 21 (12 female and 9 male) patients with hip dysplasia. The means age at the time of hip surgery was 41.8 (22 to 64) years. The mean follow-up was 6.3 (3.8 to 9.6) years. In 9 (40.9%) patients the operative treatment of DDH was performed during the early childhood (femoral osteotomy in 6 and pelvic osteotomy in 3). All patients were evaluated clinically and radiologically. The femoral head displacement prior to THA surgery was classified according to Crowe at al. classification (4 hips were type1, 2 type2, 10 type3 and 6 type 4). Results: The average Harris Hip Score improved from 29.48 to 72.76 (44 to 99) and the average Oxford hip score is 31.22 (12 to 47). The range of flexion is 60°–120° (average 83.23) and abduction is 10°–40°(average 22.94). None of the hips has dislocated. Radiolucent lines were noted around the femoral stem in one case. None of the cases have developed osteolysis around femoral prosthesis. In one patient (4.5%), revision hip surgery was done for aseptic loosening of cemented acetabular cup. Discussion: The midterm results of total hip replacement in DDH using S ROM uncemented prosthesis are promising. We recommend this modular prosthesis for hip replacement in dysplastic hips


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 80 - 80
1 Jan 2018
Choi J Blackwell R Ismaily S Mallepally R Harris J Noble P
Full Access

Most patients presenting with loss of hip motion secondary to FAI have a combination of cam and pincer morphology. In this study, we present a composite index for predicting joint ROM based on anatomic parameters derived from both the femur and acetabulaum using a single reformatted CT slice. Computer models of the hip joint were reconstructed from CT scans of 31 patients with mixed-type FAI (Average alpha angle: 73.6±11.1°, average LCE: 38.9±7.2°). The internal rotation of the hip at impingement was measured at 90° flexion using custom software. With the joint in neutral, a single slice perpendicular to the acetabular rim was taken at the 2 o'clock position. A set of 11 femoral and acetabular parameters measured from this slice were correlated with hip ROM using stepwise logistic regression. Three anatomic parameters provided significant discrimination of cases impinging at <15 and >15 degrees IR: femoral anteversion (28%, p=0.026), the arc of anterior femoral head sphericity (10%, p=0.040), and the LCE in the 2 o'clock plane (10%, p=0.048). This led to the following definition of the Impingement Index: 0.16*(fem version) +0.11*(ant arc)−0.17*(LCE) which correctly classified 82% of cases investigated. None of the traditional parameters (e.g. alpha angle) were significantly correlated with ROM. Our study has identified alternative morphologic parameters that could act as strong predictors of FAI in preoperative assessments. Using this information, each patient's individual risk of impingement may be estimated, regardless of the relative contributions of deformities of the femur and the acetabulum


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 20 - 20
1 Dec 2013
Buechel F
Full Access

Introduction:. UKA allows replacement of a single compartment in patients who have isolated osteoarthritis. However, limited visualization of the surgical site and lack of patient-specific planning provides challenges in ensuring accurate alignment and placement of the prostheses. Robotic technology provides three-dimensional pre-op planning, intra-operative ligament balancing and haptic guidance of bone preparation to mitigate the risks inherent with current manual instrumentation. The aim of this study is to examine the clinical outcomes of a large series of robot-assisted UKA patients. Methods:. The results of 500 consecutive medial UKAs performed by a single surgeon with the use of a metal backed, cemented prosthesis installed with haptic robotic guidance. The average age of the patients at the time of the index procedure was 71.1 years (range was 40 to 93 years). The average height was 68 inches (range 58″–77″) and the average weight was 192.0 pounds (range 104–339 pounds). There were 309 males and 191 females. The follow-up ranges from 2 weeks to 44 months. Results:. Surgical Technique: The technique evolved from a one night stay with a tourniquet and a retinacular “T'd” arthrotomy, to a same day surgical procedure with a 2.5–3 inch straight medial arthrotomy that is muscle sparing and tourniquet free allowing all patients to go home the same day with only 2–3 weeks of formal physical therapy post op, less pain medication and a quicker return to their preoperative range of motion. Clinical Outcomes: All patients increased their ROM by 3–6 months postop. The return to preoperative ROM was seen by 6 weeks with an increased ROM of 5–10 degrees by 1 year. 6 out of 500 patients were converted to a TKA (1.2%). Two for deep infection (one had severe venous stasis disease preop), Three for medial pain despite stable, well aligned implants, and one who developed pain at around 6 weeks that had a large scar band that formed across the top of the tibial poly causing pain with weight bearing. Conclusion:. This evolved surgical technique along with the use of the sophisticated, patient-specific preoperative and intraoperative planning software combined with haptically guided bone resection allowed most patients, regardless of age, to have their procedure performed as an outpatient. This new technique can provide significant savings to the healthcare system in terms of costs of hospital days, costs of rehabilitation, costs in pain medication and quality of life in the acute post operative period with no increased risk of failure, loosening, malalignment, DVT, PE, infection, return to the OR, readmissions, or manipulation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 117 - 117
1 Jan 2016
Elsissy J John A Smith E Donaldson T Burgett-Moreno M Clarke I
Full Access

Metal-on-metal (MOM) retrieval studies have demonstrated that CoCr bearings used in total hip arthroplasty (THA) and resurfacing (RSA) featured stripe wear damage on heads, likely created by rim impact with CoCr cups.1-3 Such subluxation damage may release quantities of large CoCr particles that would provoke aggressive 3rd-body wear. With RSA, the natural femoral neck reduces the head-neck ratio but avoids risk of metal-to-metal impingement (Fig. 1).4 For this study, twelve retrieved RSA were compared to 12 THA (Table 1), evaluating, (i) patterns of habitual wear, (ii) stripe-wear damage and (iii) 3rd-body abrasive scratches. Considering RSA have head/neck ratios much lower than large-diameter THA, any impingement damage should be uniquely positioned on the heads.

Twelve RSA and THA retrievals were selected with respect to similar diameter range and vendors with follow-up ranging typically 1–6 years (Table 1). Patterns of habitual wear were mapped to determine position in vivo. Stripe damage was mapped at three sites: polar, equatorial and basal. Wear patterns were examined using SEM and white light interferometry (WLI). Graphical models characterized the complex geometry of the natural femoral neck in coronal and sagittal planes and provided RSA head-neck ratios.4

Normal area patterns of habitual wear were similar on RSA and THA bearings. The wear patterns showing cup rim-breakout proved larger for RSA cups than THA. Polar stripes presented in juxtaposition to the polar axis in both RSA and THA (Fig. 1). As anticipated, basal stripes on RSA occurred at steeper cup-impingement angles (CIA) than THA. The micro-topography of stripe damage was similar on both RSA and THA heads. Some scratches were illustrative of 3rd-body wear featuring raised lips, punctuated terminuses, and crater-like depressions (Fig. 2).

Neck narrowing observed following RSA procedures may be a consequence of impingement and subluxation due to the small head-neck ratios. However, lacking a metal femoral neck, such RSA impingement would not result in metal debris being released. Nevertheless it has been suggested that cup-to-head impingement produced large CoCr particles and also cup “edge wear” as the head orbits the cup rim.4 Our study showed that impingement had occurred as evidenced by the polar stripes and 3rd-body wear by large hard particles as evidenced by the wide scratches with raised lips. We can therefore agree with the prior study, that 2-body and 3rd-body wear mechanisms were present in both RSA and THA retrievals.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 142 - 142
1 Jan 2016
Sabesan V Sharma V Schrotenboer A
Full Access

Introduction

Recent literature has shown that RSAs successfully improve pain and functionality, however variability in range of motion and high complication rates persist. Biomechanical studies suggest that tensioning of the deltoid, resulting from deltoid lengthening, improves range of motion by increasing the moment arm. This study aims to provide clinical significance for deltoid tensioning by comparing postoperative range of motion measurements with deltoid length for 93 patients.

Methods

Deltoid length measurements were performed radiographically for 93 patients. Measurements were performed on both preoperative and postoperative x-rays in order to assess deltoid lengthening. The deltoid length was measured as the distance from the infeolateral tip of the acromion to the deltoid tuberosity on the humerus for both pre- and post- x-rays. For preoperative center of rotation measurements, the distance extended from the center of humeral head (estimated as radius of best fit circle) to deltoid length line. For postoperative measurements, the distance was from the center of glenosphere implant to deltoid length line. Forward flexion and external rotation was measured for all patients.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 327 - 327
1 Mar 2004
Schneider T Schmidt-Wiethoff R
Full Access

Aims: Aim of this study was to asses the glenohumeral joint internal and external range of motion using ultra-sonographic based kinematic measurement. Methods: 27 male professional tennis players were bilaterally measured for internal and external rotation at 90 degrees of shoulder abduction while negating scapulothoracic motion. The normal control group consisted of 20 asymptomatic volunteers. Results: Both arms had signiþcantly greater degrees of external rotation than internal rotation (p< 0,05). The dominant arm (playing arm) had signiþcantly greater range of external rotation than the nondominant arm (p< 0,01). Analysis of internal rotational deþciency showed highly decreased internal rotation on the dominant arm (p< 0,01). The total rotational range of motion of the dominant arm was also found signiþcantly less (p< 0,01) in the elite tennis players. No signiþcant difference was found for the dominant and nondominant extremity in the control group. Conclusions: The objective measurement of glenohumeral rotational abilities has clinical application for the development of a speciþc treatment protocol that may reduce the risk of shoulder injury.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 851 - 857
10 Oct 2024
Mouchantaf M Parisi M Secci G Biegun M Chelli M Schippers P Boileau P

Aims. Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM. Methods. With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner. Results. The configuration with lateralization and correction of the RSA angle (C+L+) led to better ROM in flexion, extension, adduction, and external rotation (p ≤ 0.001). Only internal rotation was not significantly different between groups (p = 0.388). The configuration where correction of the inclination was done by medialization (C+M+) led to the worst ROM in adduction, extension, abduction, flexion, and external rotation of the shoulder. Conclusion. Our software study shows that, when using a 135° inlay reversed humeral implant, correcting glenoid inclination (RSA angle 0°) and lateralizing the glenoid component by using an angled bony or metallic augment of 8 to 10 mm provides optimal impingement-free ROM. Cite this article: Bone Jt Open 2024;5(10):851–857


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims. The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. Methods. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes. Results. All movement planes showed significant differences when comparing protocols with and without adjustment for posture. The largest mean difference was seen in external rotation, being 62° (SD 16°) without adjustment compared to 25° (SD 9°) with posture adjustment (p < 0.001), with the highest mean difference being 49° (SD 15°) in type C. Mean extension was 57° (SD 18°) without adjustment versus 24° (SD 11°) with adjustment (p < 0.001) and the highest mean difference of 47° (SD 18°) in type C. Mean abducted internal rotation was 69° (SD 11°) without adjustment versus 31° (SD 6°) with posture adjustment (p < 0.001), showing the highest mean difference of 51° (SD 11°) in type C. Conclusion. The present study demonstrates that accounting for scapulothoracic orientation has a significant impact on simulated ROM for rTSA in all motion planes, specifically rendering vastly lower values for external rotation, extension, and high internal rotation. The substantial differences observed in this study warrant a critical re-evaluation of all previously published studies that examined component choice and placement for optimized ROM in rTSA using conventional preoperative planning software. Cite this article: Bone Joint J 2024;106-B(11):1284–1292


Bone & Joint Open
Vol. 5, Issue 12 | Pages 1114 - 1119
19 Dec 2024
Wachtel N Giunta RE Hellweg M Hirschmann M Kuhlmann C Moellhoff N Ehrl D

Aims. The free latissimus dorsi muscle (LDM) flap represents a workhorse procedure in the field of trauma and plastic surgery. However, only a small number of studies have examined this large group of patients with regard to the morbidity of flap harvest. The aim of this prospective study was therefore to objectively investigate the morbidity of a free LDM flap. Methods. A control group (n = 100) without surgery was recruited to assess the differences in strength and range of motion (ROM) in the shoulder joint with regard to handedness of patients. Additionally, in 40 patients with free LDM flap surgery, these parameters were assessed in an identical manner. Results. We measured higher values for all parameters assessing force in the shoulder joint on the dominant side of patients in the control group. Moreover, LDM flap harvest caused a significant reduction in strength in the glenohumeral joint in all functions of the LDM that were assessed, ranging from 9.0% to 13.8%. Equally, we found a significantly reduced ROM in the shoulder at the side of the flap harvest. For both parameters, this effect was diminished, when the flap harvest took place on the dominant side of the patient. Conclusion. LDM flap surgery leads to a significant impairment of the strength and ROM in the shoulder joint. Moreover, the donor morbidity must be differentiated with regard to handedness: harvest on the non-dominant side potentiates the already existing difference in strength and ROM. Conversely, if the harvest takes place on the dominant side of the patient, this difference is diminished. Cite this article: Bone Jt Open 2024;5(12):1114–1119


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 3 - 3
1 Dec 2022
Getzlaf M Sims L Sauder D
Full Access

Intraoperative range of motion (ROM) radiographs are routinely taken during scaphoidectomy and four corner fusion surgery (S4CF) at our institution. It is not known if intraoperative ROM predicts postoperative ROM. We hypothesize that patients with a greater intra-operativeROM would have an improved postoperative ROM at one year, but that this arc would be less than that achieved intra- operatively. We retrospectively reviewed 56 patients that had undergone S4CF at our institution in the past 10 years. Patients less than 18, those who underwent the procedure for reasons other than arthritis, those less than one year from surgery, and those that had since undergone wrist arthrodesis were excluded. Intraoperative ROM was measured from fluoroscopic images taken in flexion and extension at the time of surgery. Patients that met criteria were then invited to take part in a virtual assessment and their ROM was measured using a goniometer. T-tests were used to measure differences between intraoperative and postoperative ROM, Pearson Correlation was used to measure associations, and linear regression was conducted to assess whether intraoperative ROM predicts postoperative ROM. Nineteen patients, two of whom had bilateral surgery, agreed to participate. Mean age was 54 and 14 were male and 5 were male. In the majority, surgical indication was scapholunate advanced collapse; however, two of the participants had scaphoid nonunion advanced collapse. No difference was observed between intraoperative and postoperative flexion. On average there was an increase of seven degrees of extension and 12° arc of motion postoperatively with p values reaching significance Correlation between intr-operative and postoperative ROM did not reach statistical significance for flexion, extension, or arc of motion. There were no statistically significant correlations between intraoperative and postoperative ROM. Intraoperative ROM radiographs are not useful at predicting postoperative ROM. Postoperative extension and arc of motion did increase from that measured intraoperatively


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 121 - 121
11 Apr 2023
Mariscal G Burgos J Antón-Rodrigálvarez L Hevia E Barrios C
Full Access

To analyze the dynamics of the thoracic spine during deep breathing in AIS patients and in healthy matched controls. Case-control cross-sectional study. 20 AIS patients (18 girls, Cobb angle, 54.7±7.9°; Risser 1.35±1.2) and 15 healthy volunteers (11 girls) matched in age (12.5 versus 15.8 yr. mean age) were included. In AIS curves, the apex was located in T8 (14) and T9 (6). Conventional sagittal radiographs of the whole spine were performed at maximal inspiration and expiration. The ROM of each spinal thoracic functional segment (T1-T7, T7-T10, T10-T12), the global T1–T12 ROM were measured. Respiratory function was assess by forced vital capacity (FVC), expiratory volume (FEV1), FEV1/FVC, inspiratory vital capacity (IVC) and peak expiratory flow (PEF). In healthy subjects, the mean T1–T12 ROM during forced breathing was 16.7±3.8. AIS patients showed a T1-T12 ROM of 1.1±1.5 (p<0.05) indicating a sagittal stiffness of thoracic spine. A wide T7–T10 ROM (15.3±3.0) was found in healthy controls (91.6% of the T1–T12 ROM). AIS patients showed only 0.4±1.4 ROM at T7-T10 (36.4% of the T1–T12 ROM) (p<0.001). There was a significant correlation between T7-T10 ROM and IVC. Lenke 1A AIS patients show a restriction of the thoracic spine motion with an almost complete abolition of T7-T10 ROM, a crucial segment participating in the deep breathing. T7-T10 stiffness could explain the ventilatory limitations found in AIS patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 2 - 2
2 Jan 2024
Mariscal G Burgos J Antón-Rodrigálvarez L Hevia E Barrios C
Full Access

In healthy subjects, respiratory maximal volumes are highly dependent on the sagittal range of motion of the T7-T10 segment. In AIS, the abolition of T7-T10 dynamics related to the stiffness induced by the apex region in Lenke IA curves could harm ventilation during maximal breathing. The aim of this study was to analyze the dynamics of the thoracic spine during deep breathing in AIS patients and in healthy matched controls. This is a cross-sectional, case-control study. 20 AIS patients (18 girls, Cobb angle, 54.7±7.9°; Risser 1.35±1.2) and 15 healthy volunteers (11 girls) matched in age (12.5 versus 15.8 yr. mean age) were included. In AIS curves, the apex was located at T8 (14) and T9 (6). Conventional sagittal radiographs of the whole spine were performed at maximal inspiration and exhalation. The ROM of each spinal thoracic functional segment (T1-T7, T7-T10, T10-T12) and the global T1-T12 ROM were measured. In healthy subjects, the mean T1-T12 ROM during forced breathing was 16.7±3.8. AIS patients showed a T1-T12 ROM of 1.1±1.5 (p<0.05), indicating a sagittal stiffness of the thoracic spine. A wide T7-T10 ROM (15.3±3.0) was found in healthy controls (91.6% of the T1–T12 ROM). AIS patients showed only 0.4±1.4 ROM at T7-T10 (36.4% of the T1-T12 ROM) (p<0.001). There was a significant positive correlation between the magnitude of T7-T10 kyphosis in maximal exhalation and both FVC (% of predicted FVC) and FEV1. In conclusion, Lenke 1A AIS patients show a restriction of the thoracic spine motion with an almost complete abolition of T7-T10 ROM, a crucial segment for deep breathing. T7-T10 stiffness could explain the ventilatory limitations found in AIS patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 10 - 10
23 Feb 2023
Hardwick-Morris M Twiggs J Miles B Jones E Bruce WJM Walter WL
Full Access

Dislocation is one of the most common complications in total hip arthroplasty (THA) and is primarily driven by bony or prosthetic impingement. The aim of this study was two-fold. First, to develop a simulation that incorporates the functional position of the femur and pelvis and instantaneously determines range of motion (ROM) limits. Second, to assess the number of patients for whom their functional bony alignment escalates impingement risk. 468 patients underwent a preoperative THA planning protocol that included functional x-rays and a lower limb CT scan. The CT scan was segmented and landmarked, and the x-rays were measured for pelvic tilt, femoral rotation, and preoperative leg length discrepancy (LLD). All patients received 3D templating with the same implant combination (Depuy; Corail/Pinnacle). Implants were positioned according to standardised criteria. Each patient was simulated in a novel ROM simulation that instantaneously calculates bony and prosthetic impingement limits in functional movements. Simulated motions included flexion and standing-external rotation (ER). Each patient's ROM was simulated with their bones oriented in both functional and neutral positions. 13% patients suffered a ROM impingement for functional but not neutral extension-ER. As a result, 48% patients who failed the functional-ER simulation would not be detected without consideration of the functional bony alignment. 16% patients suffered a ROM impingement for functional but not neutral flexion. As a result, 65% patients who failed the flexion simulation would not be detected without consideration of the functional bony alignment. We have developed a ROM simulation for use with preoperative planning for THA surgery that can solve bony and prosthetic impingement limits instantaneously. The advantage of our ROM simulation over previous simulations is instantaneous impingement detection, not requiring implant geometries to be analysed prior to use, and addressing the functional position of both the femur and pelvis