Advertisement for orthosearch.org.uk
Results 1 - 20 of 268
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 90 - 90
1 Apr 2018
Chakladar ND Gao L Hall R Hewson R
Full Access

Aims. Wear is difficult to predict in mixed lubricated articulating surfaces and the time of computation is one of the challenges due to the deterministic definition of roughness on a micro-scale. This research aims to efficiently capture the wear and the evolution of the roughness of mixed lubricated bearing surfaces, employing a statistical description of the roughness. Methods. A numerical model was developed which characterizes the wear of a loaded and lubricated pin-on-plate system, assuming a rough non-wearing pin and a rough wearing plate. The part of the load, which is borne by asperities in contact, is derived from the Greenwood-Williamson approach and the rest, which is carried by the fluid film, is based on the Patir-Cheng flow factors lubrication method. Wear is computed in the areas of direct solid contact only. For simplicity, the depth of the pin and plate are assumed infinite in order to reduce the lubrication problem to one-dimension. The roughness and asperities are described by their Cumulative Distribution Functions (CDFs). As the plate runs-in the pin, the roughness of the plate is worn by the roughness of the pin, and the process is continued until steady wear is attained. The local gap-dependent flow factors influence the load carried by the thin film of the lubricant, whereas, the local gap-dependent overlap of asperities of the pin and the plate determines the true contact load. The sum of fluid and solid contact load is balanced with the applied load, adjusting the separation between the plate and the pin. The plate asperity CDFs are updated assuming Archard's wear model for the solid contact only and the asperity wear is extrapolated to update the roughness of the plate. Results and conclusion. In this study, material properties and roughness information of silicon nitride coatings are used for the pin and the plate. The evolution of load sharing due to wear reported a decrease of asperity contact load with an increase in fluid load since the total load is balanced with the applied load. A decrease in the contact area ratio is also observed, i.e. the ratio of total contact area to the nominal area reduced due to a lesser contact load. Effect of wear on the plate roughness CDF, indicated the smoothing of asperities during prolonged wear. In addition, a friction study varying the entrainment velocities is conducted to show all the regimes of lubrication. The boundary regime had a solid friction coefficient of 0.16, followed by a decrease in friction coefficient from a value of 0.16 to 0.005 in the mixed regime and an increase to a value of 0.02 in the full film regime. The model is numerically efficient in computing wear for mixed lubricated problems, given the CDFs of two real rough surfaces


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 64 - 64
1 Feb 2020
Darwish O Grover H McHugh D Carlson E Dacus E Van Citters D
Full Access

Introduction. Large-scale retrieval studies have shown backside wear in tibial inserts is dependent on the surface roughness of the tibial tray. Manufacturers acknowledge this design factor and have responded with the marketing of mirror-finished trays, which are clinically proven to have lower wear rates in comparison to historically “rough” (e.g. grit blasted) trays. While the relationship between wear and surface roughness has been explored in other polymer applications, the quantitative dependence of backside wear rate on quantitative surface finish has not yet been established for modern devices. The present study evaluates small-excursion polyethylene wear on pucks of a variety of surface roughnesses. The objective of this study is to determine where inflection points exist in the relationship between surface roughness and wear rate. Materials and Methods. An AMTI Orthopod, 6-station pin on disk tribotest was designed to mimic worst-case in vivo backside wear conditions based on published retrieval analyses. Titanium (Ti6Al4V) pucks with six different surface roughness preparations (Sa ranges from 0.06 um to 1.06 um) were characterized with white light profilometry. Never implanted polyethylene tibial inserts (never irradiated, EtO sterilized) were machined into 6 mm diameter cylindrical pins. Fretting-type motion was conducted in a 2mm square pattern at 2Hz under 100 N constant force in 25% bovine serum lubricant for 1.35 million cycles in triplicate. Mass measurements were taken every 225 thousand cycles. Results. Over the range of surface roughness studied (Sa = 0.06 – 1.06 µm), wear rate grew logistically. The wear rate for highly polished titanium (Sa = 0.06 µm) was not statistically different from less-polished titanium with Sa of 0.14 µm (p > 0.1). Titanium pucks having the highest surface roughness (Sa > 0.5µm), removed material significantly faster than those with roughness less than 0.3µm. The results of these tests suggest that Ti trays with Sa less than 0.15µm may yield equivalent clinical backside wear results, while pucks with Sa greater than 0.15µm begin to have increased wear rates that may be clinically significant. The two pucks with Sa greater than 0.5 µm yielded wear rates failing to be statistically differentiable (p = 0.059), corresponding with the flattening of the logistic curve. Discussion. These results suggest that baseplates with Sa less than 0.15 µm may ultimately yield clinically equivalent outcomes. The wear rate curve changes slope between Sa 0.14 and 0.22 µm and continues to increase across the range of surface roughnesses studied. The wear rates on rough pucks (Sa > 0.5 µm) showed high variation, reducing the ability to distinguish the two statistically (p = 0.059). Further study will better distinguish wear properties at higher surface roughnesses. Conclusion. These findings demonstrate that there may be a range of finishes between a mirror polish and grit blast that may produce clinically equivalent wear rates. This work provides justification for further study into the relationship between backside wear, baseplate tray roughness, and material choices. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 2 - 2
1 Jan 2016
Giardina F Castiello E Affatato S Battaglia S
Full Access

Introduction. In Total Knee Arthroplasty (TKA) a proper choice of the implant size is mandatory in order to guarantee the success of the prosthesis, although the tribological behavior TKA is strongly influenced by the implant design. Retrieval analysis of failed total knee prosthesis is essential to investigate the wear mechanism leading to osteolysis and loosening of the implant. Assessments from retrieval studies constitute crucial information in the effort to improve prosthesis functionality and reduce the risk of revision. The aim of the present study was to investigate the correlation among different implant sizes of retrieved TKA and patients' variables such as Body Mass Index (BMI) in terms of surface modifications and morphology change, in order to examine prosthesis properties and performances. In particular, this study can improve the understanding of the tribological behavior of total knee prosthesis and it can help the surgeon to select the best implant size of TKA considering patient's variables. Methods. Twelve retrieved total knee prostheses of the same design but with different sizes were investigated. These prostheses were all cemented, fixed and posterior stabilized. These prostheses were explanted from 12 patients after a mean of 3.2 years (from 1.1 to 7.4 years). These patients had undergone a primary TKA at our hospital between 2005 and 2010; there were 10 women and 2 men with a mean age of 68 years (ranging from 48 to 77 years) at implantation. A qualitative assessment of wear patterns and surface damages was performed on femoral components and polyethylene inserts. Roughness analyses were obtained on femoral components to assess surface modifications. Surface roughness of the metallic femoral components was performed with a contact rugosimeter. Following an internal protocol, thirty measurements were acquired from each condyle. Two roughness parameters were take into account: Ra (the Mean Roughness, i.e. the arithmetical mean value of the deviations of the roughness profile about the centre line) and Rsk. (i.e. the skewness, indicates the prevalence of peaks or valleys and quantifies the asymmetry of the profile variation from the mean line). Prostheses time in-vivo and patient details were known. Results. Results from roughness studies were compared among the specimens and then matched. In Figures 1 and 2 there are showed the Ra and Rsk values measured on the retrieved femoral prosthesis. The correlation between implant size, surface roughness and morphological alterations were found and showed that prosthesis size is a significant factor on the TKA overall performance. Moreover, differences were highlighted through the specimens characterized by different time in-vivo. Discussion. No previous study, to the best of authors' knowledge, was addressed to examine the implant size of retrieved total knee prosthesis in terms of surface and morphological modifications. The present study, however, has some limitations due to the small number of retrieved TKAs and the lack of information on the level of activity of the considered patients. This study can give a novel insight into tribological mechanisms leading to knee prosthesis failure and it can also offer indications for improving its functionality


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 147 - 147
1 Feb 2017
Grostefon J Nelson W
Full Access

Introduction. The corrosion of modular taper junctions in hip implants is becoming an area of increased research focus. Many design factors have been hypothesized to contribute to this kind of corrosion. The authors' previous research indicated femoral stem taper roughness may influence taper corrosion. The purpose of this study is to determine whether taper roughness significantly affects taper performance. Methods. A 2. 2. design of experiment was conducted with Ti6Al4V 12/14 taper coupons coupled with CoCrMo 12/14 taper 28mm+12 heads (DePuy Synthes, Warsaw, IN) with n=3 samples per test run for a total of 12 samples. The femoral heads and taper coupons were manufactured with “smooth” finishes ranging from R. t. 100–200 µin and “rough” finishes ranging from R. t. 900–1000 µin. Test components were assembled wet (dipped in saline solution and drained) and pressed together with a 4400 N assembly force. The assemblies were immersed in phosphate buffered saline and a potentiostat was used to maintain the potential of the specimen at −50mV vs. Ag/AgCl. Incrementally larger cyclic loads were applied vertically to the head at 3Hz until a 4000N maximum load was reached, then this cyclic load was maintained for an additional 1 million cycles. Results. The long-term average corrosion test results ranged from 0.26 to 2.98 µA among the groups. The “Rough Head – Rough Stem” (Group 1) resulted in the highest average corrosion currents of 1.53 ± 0.75 µA. The “Smooth Head – Smooth Stem” (Group 4) showed the lowest average corrosion currents of 0.20 ± 0.05 µA. ANOVA analysis revealed significant differences between the groups (p>0.05), Tukey-Kramer post-hoc analysis showed a significant difference between groups 1 and 4 only. Discussion. Femoral heads and femoral stems with a smoother taper roughness specification resulted in less measured corrosion compared to components with higher taper roughness specifications under the specified test conditions. Significance. This study demonstrates taper surface roughness is a relevant design factor which could influence taper corrosion


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 360 - 360
1 Mar 2013
Wang T Pelletier M Bertollo N Crosky A Walsh W
Full Access

Introduction. Implant contamination prior to cement application has the potential to affect the cement-implant bond. the consequences of implant contamination were investigated in vitro using static shear loading with bone cement and titanium dowels of differing surface roughness both with, and without contamination by substances that are likely to be present during surgery. Namely; saline, fat, blood and oil, as a negative control. Methods. Fifty Titanium alloy (Ti-6Al-4V) dowels were prepared with two surface finishes comparable to existing stems. The roughness (Ra and Rq) of the dowel surface was measured before and after the pushout test. Four contaminants (Phosphate Buffered Saline (PBS), ovine marrow, ovine blood, olive oil) were prepared and heated to 37°C. Each contaminant was smeared on the dowel surface completely and uniformly approximately 4 minutes prior to implantation. Samples were separated into ten groups (n=5 per group) based on surface roughness and contaminant. Titanium alloy dowels was placed in the center of Polyvinyl chloride (PVC) tubes with bone cement, and equilibrated at 37°C in PBS for 7 days prior to mechanical testing. The push out test was performed at 1 mm per minute. The dowel surface and cement mantel were analyzed using a Scanning Electron Microscopy (SEM) to determine the distribution and composition of any debris and contaminates on the surface. Results. All contaminants decreased stem-bone cement interfacial shear strength. Saline produced the greatest decrease, followed by blood. The effect of fat was less pronounced and similar to that of oil likely due to the strong lipid solvent properties of the methacrylate monomer. For rough dowels, there were differences in ultimate shear strength between control and contaminated groups (p<0.001). Blood and saline groups had lower ultimate shear strength compared to fat and oil (p<0.05) (fig. 1). The ultimate shear strength for smooth samples was not significantly affected by contamination. Increasing surface roughness increased the interfacial bonding strength, even in the presence of contaminants. In control, fat and oil groups, the effect of roughness are significant (p<0.001, p<0.05 and p<0.001 respectively) (fig. 1). Scanning Electron Microscopy (SEM) showed that contaminants influence the interfacial bond by different mechanisms. Although rough surfaces were associated with higher bond strength, they also generated more debris, which could negatively affect the longevity of the implant bond (fig. 2 and fig. 3). Conclusion. The results of this study underscores the importance of keeping an implant free from contamination, and that if contamination does occur, a saline rinse may further decrease the stability of an implant. Contaminants did not significantly affect the bond strength between bone cement and smooth Ti stem, although a trend of improved properties was seen in the presence of lipid based contaminants. Therefore, the influence of contaminants is more important to the shape-closed type stem. Increasing surface roughness dramatically improved the load carrying capability of the implant-cement interface even with contaminants


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 171 - 171
1 Jun 2012
Roy M Whiteside L Nayfeh T Katerberg B
Full Access

Introduction. Recent clinical studies found no apparent reduction in wear using yttria-stabilized zirconia (Y-TZP) instead of cobalt chromium alloy femoral heads bearing against cross-linked UHMWPE. The purpose of this study was to compare the surface topography of retrieved Y-TZP and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and evaluate the influence of time in vivo. The increase in average roughness (Ra, Sa) of Y-TZP due to phase transformation in vivo is well documented, while Mg-PSZ does not roughen or undergo phase transformation in vivo. However, the effects of phase transformation on the polarity (skewness, Ssk) of the surface of retrieved ZrO. 2. heads has not been reported. We hypothesized that phase transformation associated with the increased roughness of Y-TZP would influence skewness and thus the wear potential of the heads. Materials and Methods. Y-TZP (n = 18) and Mg-PSZ (n = 17) femoral heads were retrieved from revision THA. Heads were cleaned and scanned by optical profilometry (magnification = 10x) at three locations per specimen. After subtracting the curvature of the heads, roughness statistics (Sa, Ssk) were calculated and averaged for each specimen and then correlated to age in vivo, with p < 0.05 for significance. Results and Discussion. As expected, the roughness Sa of Y-TZP heads increased exponentially with age in vivo (p < 0.001, r. 2. = 0.766), while Mg-PSZ heads did not roughen with age (r. 2. = 0.007; Figure 1). The skewness data of Y-TZP retrievals were noisy with a weak positive correlation to age in vivo (r. 2. = 0.016), but were consistently positive (average Ssk of all Y-TZP specimens = 0.770), indicating its roughness was caused by positive features. Positive features such as raised edges have been reported to adversely affect wear rates in the lab, and combined with the increased average roughness suggests an accelerated wear potential with age in vivo. In contrast, the skewness data for the Mg-PSZ retrievals were negative (average Ssk = -1.00), indicating its roughness was caused by small negative features, with no relationship to age in vivo (r. 2. < 0.001). A surface best described by negative features would tend to entrap lubricant for better wear characteristics. Recent hip wear simulator tests reported Mg-PSZ femoral heads to exhibit significantly less wear compared with CoCr femoral heads. These in vitro data suggest that the low average roughness and negative polarity of Mg-PSZ femoral heads should provide superior wear characteristics in vivo. Conclusions. This study illustrated that Mg-PSZ zirconia ceramics remained stable and did not roughen or develop raised edges in vivo, in contrast to Y-TZP ceramic femoral heads. We believe that clinical studies with Mg-PSZ femoral heads would illustrate a significant reduction in wear of cross-linked UHMWPE liners. Future work will expand this study with additional specimens, and attempt to reduce the noise of the skewness data to more clearly discern any trends between Ssk and age in vivo


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 125 - 125
1 Jan 2016
Moussa M Esposito C Elpers M Wright T Padgett DE
Full Access

Introduction. Wear-related osteolysis continues to be a concern in the long-term outcome and survivorship of total hip arthroplasty (THA) and there continues to be an emphasis on bearing materials that exhibit improved wear profiles. Oxidized zirconium metal (Oxinium®, Smith & Nephew) was developed to reduce the amount of polyethylene wear as compared to cobalt chromium femoral heads, without the risk of brittle fracture seen with older generation ceramics. There are a limited number of retrieval studies evaluating the performance of Oxinium in THA. The aims of this study were 1) to visually assess damage on the surface of a large number of retrieved Oxinium femoral heads, 2) to measure surface roughness of scratches on the surfaces of Oxinium femoral heads, and 3) to use scanning electron microscopy (SEM) to assess the integrity of the oxidized zirconium surface in damaged areas. BIOLOX delta (CeramTec), a ceramic alternative to Oxinium, was included in this study for comparison. Methods. From 2006 to 2013, 59 retrieved Oxinium femoral heads in THAs were collected after an average time to revision surgery of 1.64 years. The mean patient age was 61.9 years, with 32 males and 27 females. Reasons for revision surgery were recurrent dislocation (24), femoral component loosening or subsidence (13), infection (9), acetabular loosening (4), periprosthethic fracture (4), acetabular malposition (2), heterotopic ossification (2), and 1 case of leg length discrepancy. The diameters of the femoral heads were 28 mm (9), 32 mm (22), 36mm (26) and 40mm (2). Three observers visually graded surface damage on all femoral heads according to the following criteria: 1) no scratches, 2) minimal damage with one to two scratches, 3) significant damage with multiple scratches. We measured the surface roughness of retrieved Oxinium and BIOLOX delta femoral heads with an interferomic profiler, and SEM to evaluate the extent of surface effacement. Results. Oxinium femoral heads explanted for recurrent dislocation showed substantially more severe damage as compared to heads retrieved during revision surgery for other reasons (p<0.001). Eighteen of 24 heads explanted for recurrent dislocation (75%) showed gross visual evidence of substantial surface damage (grade 3), compared to only 5 of the 35 explants for non-dislocation causes (Figure 1). The surface roughness of damaged Oxinium femoral heads was significantly higher (28.6× more rough) than undamaged Oxnium and 17.7× more rough than damaged Biolox delta heads (p<0.001; Figure 2). High magnification imaging showed severe damage and effacement of the oxidized zirconium layer, exposing the metal alloy underneath (Figure 3). This was confirmed by Energy Dispersive Xray Analysis (EDXA). Discussion. This study represents the first large-scale retrieval analysis of oxidized zirconium femoral heads in THA. The results show that high impact between an acetabular shell and an Oxinium femoral head during dislocation increases the surface roughness and causes substantial effacement to the oxidized zirconium layer compared with matched modern ceramic bearings. The surface damage seen to these femoral heads is of clinical concern because it has the potential to increase the wear of polyethylene liners in THA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 94 - 94
1 Jan 2016
Yamane S Kawahara I Oonishi H Iwamoto M Kyomoto M Hanaoka Y Oonishi H
Full Access

In total hip arthroplasty (THA), aseptic loosening induced by polyethylene (PE) wear debris is the most important cause that limits the longevity of implants. Abrasive wear generated through the mechanism such that micrometer-roughened regions and small asperities on the metallic femoral heads surface locally plow through the PE cup surface. Abrasive wear results in the PE material being removed from the track traced by the asperity during the motion of the metallic femoral heads surface. For the purpose of reducing wear, alumina ceramics was introduced in Europe and Japan in 1970s. The clinical results of ceramic-on-PE bearings regarding the wear resistance have been superior to that of the metal-on-PE bearings. Compared with Co–Cr–Mo alloys, alumina ceramics is advantageous for precision machining because of its higher hardness, enable to form spherical and smooth surface. The fracture resistance of the alumina ceramics itself is related to grain size; the grain size reduction leads to the improvement of its resistance. In this study, we evaluated the roundness and the roughness of retrieved two distinct alumina ceramics having different grain size, and Co–Cr–Mo alloy heads. Fourteen retrieved alumina ceramic femoral heads; ten heads with a diameter of 28 mm made of small grain size alumina (SG-alumina; mean grain size is 3.4 μm) with clinical use for 16–28 years and four heads with a diameter of 26 mm made of extra-small grain size alumina (XSG-alumina; mean grain size is 1.3 μm) with clinical use for 14–19 years, were examined. Six retrieved Co–Cr–Mo alloy femoral heads with a diameter of from 22 to 32 mm with average clinical use for 12–28 years were examined. SG-alumina and XSG-alumina heads showed significantly lower roundness compared with Co–Cr–Mo alloy heads, due to higher precision machining [Fig. 1]. The surface roughness for the contact area of the heads increased in order of XSG-alumina, SG-alumina and Co–Cr–Mo alloy. The surface roughness of the non-contact area for all kinds of heads was lower than that for the contact area [Fig. 2]. Surface profiles of the SG-alumina and XSG-alumina showed the reentrant surface while Co–Cr–Mo alloy heads showed the protrusion surface. The roundness and roughness of the Co–Cr–Mo alloy or ceramic surface and the presence or absence of hard third-body particles correlate to the amount of abrasive PE wear. When the third-body was entrapped during the clinical use, a reentrant surface might be formed on the ceramic while protrusion surface formed on the Co–Cr–Mo alloy. The differences in clinical results may be due in part to the influence of third-body particles. The ceramic becomes more resistant than Co–Cr–Mo alloy against the scratching by the entrapped abrasive contaminants because of its harder surface. From the good clinical results of more than 20 years using SG-alumina, the greater long term clinical results using XSG-alumina will be expected


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 139 - 140
1 Mar 2010
Oonishi H Kim S Kyomoto M Iwamoto M Ueno M Oonishi H
Full Access

Aseptic loosening induced by wear debris of polyethylene (PE) is the most common cause of long-term total hip arthroplasty failure. In the previous studies, we reported that the protruding contour and surface morphology of metallic femoral head brought an increase of PE wear. Alumina ceramics is advantageous (neutral shape and smooth surface) for precision machining compared with metal materials, because hardness of ceramics is higher than that of metal materials. In this study, we measured the roundness and the roughness of retrieved alumina ceramic and metallic heads, aiming to evaluate the change of surface morphology of those heads in vivo. Fourteen retrieved alumina ceramic femoral heads (Kyocera Corp., currently Japan Medical Materials Corp.) were examined: ten femoral heads were made of small grain-size alumina ceramic (SG-alumina; mean grain size is 3.4 um) with a diameter of 28 mm, with clinical use for 16–28 years (mean 22 years) and four femoral head was made of extra-small-grain size alumina ceramic (XSG-alumina; mean grain size is 1.3 um) with a diameter of 26 mm, with clinical use for 14–19 years (mean 16 years). Six retrieved metallic femoral heads with average clinical use for 12–28 years (mean 18 years) were examined: a diameter of from 22 to 32 mm (e.g. Zimmer Inc., Stryker Corp.) The roundness of the retrieved femoral heads was measured by a contour tracer. The surface roughness in the contact area and the non-contact area of the retrieved femoral heads was measured by a surface roughness tester. Out-of-roundness of SG-alumina and XSG-alumina heads was 0.15 um and 0.19 um, respectively. In contrast, that of metal heads was 2.43 um, and the profiles were in wide distortion compared with both alumina heads. The surface roughness was 0.012 um in the contact area, and 0.009 um in the non-contact area of retrieved SG-alumina heads. The surface roughness in the contact area, 0.007 um, of XSG-alumina was slightly higher than that in the non-contact area, 0.003 um, and the both area of XSG-alumina represent lower value than SG-alumina, with all alumina heads having a reentrant surface profile. In contrast, the surface roughness of metallic heads was in a range of 0.003–0.053 um and several heads showed the protrusion surface profile. In this retrieval study, the roundness and the roughness of both alumina ceramic femoral heads after long-term clinical use were low and stable compared with metallic heads. And also, the surface roughness increased in the order of XSG-alumina < SG-alumina < metallic head. The alumina ceramic femoral head showed the reentrant surface whereas the metallic head showed the protruding surface. When third-body wear occurs during the clinical use, generally reentrant form may occur on the ceramic surface whereas protrusion form may occur on the metallic surface. We have good clinical results more than 20 years using the SG-alumina, and clinical results for a long term will be expected with XSG-alumina of improved microstructure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 166 - 166
1 Jun 2012
Nakahara I Bandoh S Takao M Sakai T Nishii T Sugano N
Full Access

Introduction. The initial mechanical stability of cementless femoral stems in total hip arthroplasty is an important factor for stable biological fixation. Conversely, insufficient initial stability can lead to stem subsidence, and excessive subsidence can result in periprosthetic femoral fracture due to hoop stress. The surface roughness of stems with a surface coating theoretically contributes to initial mechanical stability by increasing friction against the bone, however, no reports have shown the effect of surface roughness on stability. The purpose of this study was to evaluate the effect of differences in surface roughness due to different surface treatments with the same stem design on the initial stability. Materials and Methods. Proximally titanium plasma-sprayed femoral stems (PS stem) and proximally grit-blasted stems (GB stem) were compared. The stem design was identical with an anatomic short tapered shape for proximal fixation. The optimum size of PS stem based on 3D templating was implanted in one side of 11 pairs of human cadaveric femora and the same size of GB stems was implanted in the other side. After implantation, the specimens were fixed to the jig of a universal testing machine in 25cm of entire length so that the long axis of the femur was positioned at 15-degrees adduction to the vertical. Vertical load tests were conducted under 1 mm/minute of displacement-controlled conditions. After 200 N of preload to eliminate the variance in the magnitude of press-fit by manual implantation, load was applied until periprosthetic fracture occurred. Results. The same size of PS or GB stem was successfully implanted in all 11 pairs without fracture. The distances of subsidence until fracture occurred were 2.2±1.2 mm in the PS stem and 2.5±1.1 mm in the GB stem and no significant difference was detected. The load applied for 1 mm of subsidence was 792±478 N in the PS stem and 565±431 N in the GB stem and there was a significant difference between the two groups. The load at fracture was 3037±1563 N in the PS stem and 2614±1484 N in the GB stem and there was a significant difference between the groups. Discussion. A significantly larger load was applied for 1 mm of subsidence in the PS stem compared to the GB stem. This suggests that the plasma-spray porous-coated surface had a less slippery interface than the grit-blasted surface. Both femora of a pair fractured at the same level of hoop stress that was induced by the same amount of stem subsidence but at significantly different loads. The fact that the load at fracture in the PS stem was significantly larger than that in the GB stem was due to differences in shear stress caused by different levels of friction. The scratching effect against the femoral canal due to the rougher surface of the plasma-spray porous-coating works advantageously for initial mechanical stability


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 65 - 65
1 Mar 2005
Borsari V Fini M Giardino R Torricelli P Rimondini L Giavaresi G Aldini NN
Full Access

Aims:. To test the effect of different surface roughness and fluorohydroxyapatite (FHA) coating on osteoblast-like cell (MG63) viability, proliferation, differentiation and synthetic activity, then to compare the various surfaces tested and try to identify an osteoblast parameter that can better explain the different behaviour of the tested surfaces observed in previous in vivo studies. Methods: The tested materials were made of Ti6Al4V coated with Ti and with Ti plus FHA with different roughness; they can be divided into four groups: low roughness (LR; Ra: 5.9 B5m), low roughness plus FHA coating (LR+FHA; Ra: 5.6 B5m), high roughness (HR; Ra: 22.5 B5m), high roughness plus FHA coating (HR+FHA; Ra: 21.2 B5m). MG63 were cultivated on 6 samples of each group and on polystyrene as control; after 72 hours the proliferation assay (WST-1) was done, alkaline phosphatase activity (ALP) was determined and the synthesis of osteocalcin (OC), type 1 collagen (CICP), transforming growth factor α 1 (TGF-A71), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-a) were measured. Samples of each material were randomly processed for analysis with a scanning electron microscope (SEM). Results: Cells proliferated on biomaterials more slowly than in the control group (p < 0.0001), the proliferation rate was higher on FHA-coated LR than uncoated HR (p = 0.037). CICP production was positively affected by the LR surface (p = 0.001) as compared to controls, while it was significantly lower (p = 0.0001) in the HR surfaces. Compared to controls, LR and HR surfaces led to enhanced production of TGF-A71, further improved by FHA (FHA-coated LR: p = 0.007; FHA-coated HR p < 0.0001 respectively). ALP, OC, IL-6 levels were not significantly different from the controls. Conclusions: Results suggest that CICP production could be useful in predicting the in vivo osteointegration rate of biocompatible biomaterials observed in previous studies


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 5 - 5
1 Nov 2015
Langton D Killen M Sidaginamale R Bowsher J Savisaar C Nargol A Joyce T Lord J
Full Access

Introduction. In this study, we aimed to investigate the effect of the topography of the female taper surface on taper wear. Patients/Materials & Methods. We measured volumetric material loss at the female taper surface of the first consecutive 36mm MoM hips received at our centre. The MoM hips were from a single manufacturer and possessed matching: head size (36mm); taper geometry (5.65 degree 12 14 tapers); and metallurgy (cobalt chrome female taper mated with a titanium stem). Volume loss was measured with a coordinate measuring machine using validated methods. Surface roughness was measured using a Surftest SJ400. There were 111 head tapers available for analysis. The majority had been revised secondary to ARMD, and a minority for loosening. The mean duration of implantation was 56 months. Volumetric wear values were log normalised in order to construct a multiple regression model to investigate the interaction of head offset, the head taper angle and the Rp value of the female taper surface. Rp is a roughness parameter, which is a measure of the peaks above the plateau of a surface. Results. The median (range) volumetric loss from the female taper surfaces was 0.132mm3 (0.008–2.149). Median Rp value was 1.94 microns (0.50 to 6.01). Multiple regression model returned an R2 value of 0.43 (p < 0.001) meaning that the Rp value of the female surface, the head offset, duration of implantation and the taper angle explained 43% of the variation in volumetric wear rates. Rp was the dominant variable. Discussion & Conclusion. The topography of the female taper surface appears to be an important factor in material loss from the taper junction in MoM hips. There was an unexpectedly wide variation in surface finishes in our sample set despite the fact that a single product from a single manufacturer was analysed


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 287 - 287
1 Dec 2013
Puthumanapully PK Shearwood-Porter N Stewart M Kowalski R Browne M Dickinson A
Full Access

Introduction. Implant-cement debonding at the knee has been reported previously [1]. The strength of the mechanical interlock of bone cement on to an implant surface can be associated with both bone cement and implant related factors. In addition to implant surface profile, sub-optimal mixing temperatures and waiting times prior to cement application may weaken the strength of the interlock. Aims. The study aimed to investigate the influence of bone cement related factors such as mixing temperature, viscosity, and the mixing and waiting times prior to application, in combination with implant surface roughness, on the tensile strength at the interface. Materials and Methods. Tensile tests were carried out on two types of hand-mixed cement, high (HV) and medium viscosity (MV), sandwiched between two cylindrical Cobalt-Chrome coupons with either smooth (60 grit) or rough (20 grit) surface finishes. 144 Specimens were prepared with a cement thickness layer of 2.5 mm in customised rigs (Figure 1). The samples were grouped and tested at two mixing temperatures (23 and 19 degrees), at different mixing times (HV-30s, MV-45s). Waiting times after mixing were varied between early (1.5 min), optimal (4.5 min) or late (8 min); for HV and 4 min, 7.5 min and 11 min for MV cements. All the samples were cured for 24 hours prior to testing. The peak force and stress was calculated for all specimens. Results and Conclusion. Surface Finish: Rough surfaced samples had significantly higher (p < 0.05) mean tensile forces and stress than smooth samples at both 19 and 23 degrees across HV and MV cement types. Cement Type: MV cements, when applied to rough samples with waiting times of 4 minutes at 23 degrees, and 11 minutes at 19 degrees, resulted in the highest peak tensile forces, followed by 7.5 minutes at 23 and 19 degrees respectively (Figure 2). Temperature at different application times for rough and smooth samples: for MV cement, rough samples prepared at 23 degrees, 4 minutes, and smooth samples at 19 degrees, 7.5 minutes were found to be significantly better (p < 0.05) than their counterparts. For HV cement, 23 degrees was found to be better (p < 0.05) for smooth samples at applications times of 4.5 and 8 minutes and 19 degrees for application times of 1.5 minutes. No significant difference was noted for rough samples for the same. Application times at different temperatures for rough and smooth samples: at both 19 and 23 degrees, there were no differences between application times within the rough sample groups for HV or MV. However, for smooth samples, HV cement, tensile forces were significantly higher (p < 0.05) at 23 degrees in the following order; 8 minutes > 4.5 minutes > 1.5. The results show that implant surface roughness and cement mixing time, temperature, viscosity and application times affect the strength of the interlock at the interface


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 59 - 59
1 Dec 2016
Sisko Z Teeter M Lanting B Howard J McCalden R Naudie D MacDonald S Vasarhelyi E
Full Access

Previous retrieval studies demonstrate increased tibial baseplate roughness leads to higher polyethylene backside wear in total knee arthroplasty (TKA). Micromotion between the polyethylene backside and tibial baseplate is affected by the locking mechanism design and can further increase backside wear. The purpose of this study was to examine modern locking mechanisms, in the setting of both roughened and polished tibial baseplates, on backside tibial polyethylene wear. Five TKA models were selected, all with different tibial baseplate and/or locking mechanism designs. Six retrieval tibial polyethylenes from each TKA model were matched based on time in vivo (TIV), age at TKA revision, BMI, gender, number of times revised, and revision reason. Two observers scored each polyethylene backside according to a visual damage score and individual damage modes. Primary outcomes were mean damage score and individual damage modes. Demographics were compared by one-way ANOVA. Damage scores and modes were analysed by the Kruskal-Wallis test and Dunn's multiple comparisons test. There were no differences among the groups based on TIV (p=0.962), age (p=0.651), BMI (p=0.951), gender, revision number, or reason for revision. There was a significant difference across groups for mean total damage score (p=0.029). The polished tibial design with a partial peripheral capture locking mechanism and anterior constraint demonstrated a significantly lower score compared to one of the roughened tibial designs with a complete peripheral-rim locking mechanism (13.0 vs. 22.1, p=0.018). Otherwise, mean total damage scores were not significant between groups. As far as modes of wear, there were identifiable differences among the groups based on abrasions (p=0.005). The polished design with a tongue-in-groove locking mechanism demonstrated a significantly higher score compared to both groups with roughened tibial baseplates (5.83 vs. 0.83, p=0.024 and 5.83 vs. 0.92, p=0.033). Only the two designs with roughened tibial baseplates demonstrated dimpling (5.67 and 8.67) which was significant when compared against all other groups (p0.99). No other significant differences were identified when examining burnishing, cold flow, scratching, or pitting. No polyethylene components exhibited embedded debris or delamination. Total damage scores were similar between all groups except when comparing one of the polished TKA design to one of the roughened designs. The other TKA model with a roughened tibial baseplate had similar damage scores to the polished designs, likely due to its updated locking mechanism. Dimpling wear patterns were specific for roughened tibial baseplates while abrasive wear patterns were identified in the design with a tongue-in-groove locking mechanism. Our study showed even in the setting of a roughened tibial baseplate, modern locking mechanisms decrease backside wear similar to that of other current generation TKA designs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 10 - 10
1 Mar 2017
Sisko Z Teeter M Lanting B Howard J McCalden R Vasarhelyi E
Full Access

Purpose. Previous retrieval studies demonstrate increased tibial baseplate roughness leads to higher polyethylene backside wear in total knee arthroplasty (TKA). Micromotion between the polyethylene backside and baseplate is affected by the locking mechanism design and can further increase backside wear. This study's purpose was to examine modern locking mechanisms influence, in the setting of both polished and non-polished tibial baseplates, on backside tibial polyethylene damage and wear. Methods. Five TKA models were selected with different tibial baseplate and/or locking mechanism designs. Six retrieval tibial polyethylenes from each TKA model were matched based on time in vivo (TIV), age at TKA revision, BMI, gender, number of times revised, and revision reason. Two observers visually assessed each polyethylene. Primary outcomes were visual damage scores, individual visual damage modes, and linear wear rates determined on micro-computed tomography (micro-CT) scan in mm/year. Demographics were compared by one-way ANOVA. Damage scores, damage modes, and linear wear were analyzed by the Kruskal-Wallis test and Dunn's multiple comparisons test. Results. There were no differences among the groups based on TIV (p=0.962), age (p=0.609), BMI (p=0.951), gender, revision number, or reason for revision. There was a significant difference across groups for visual total damage score (p=0.031). The polished tibial design with a partial peripheral capture locking mechanism and anterior constraint demonstrated a significantly lower score compared to one of the non-polished tibial designs with a complete peripheral-rim locking mechanism (13.0 vs. 22.0, p=0.019). Otherwise, mean total damage scores were not significant between groups. There were identifiable differences among the groups based on abrasions (p=0.006). The polished design with a tongue-in-groove locking mechanism demonstrated a significantly higher score compared to one of the designs with a non-polished baseplate (5.83 vs. 0.83, p=0.016). Only the two designs with non-polished baseplates demonstrated dimpling (5.67 and 8.67), which was significant when compared against all other groups (p<0.0001), but not against each other (p>0.99). No other significant differences were identified when examining burnishing, cold flow, scratching, or pitting. No polyethylene components exhibited embedded debris or delamination. There was a significant difference among groups for linear wear on micro-CT scanning (p=0.003). Two of the polished baseplate designs, one with the partial peripheral rim capture and one with the tongue-in-groove locking mechanism, demonstrated significantly lower wear rates than the non-polished design with a complete peripheral-rim locking mechanism (p=0.008 and p=0.032, respectively). There were no other differences in wear rates between groups. Conclusions. Total damage scores and wear rates were similar between all groups except when comparing two of the polished TKA designs to one of the non-polished baseplate designs. The other TKA model with a non-polished tibial baseplate had similar damage scores and wear rates to the polished designs, likely due to its updated locking mechanism. Dimpling was specific for non-polished tibial baseplates while abrasions were identified in the design with a tongue-in-groove locking mechanism. Our study showed even in the setting of a non-polished tibial baseplate, modern locking mechanisms can decrease backside damage and wear similar to that of other current generation TKA designs. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 196 - 196
1 Dec 2013
Pearce S Walter W Gillies M
Full Access

The design of the femoral prosthesis in cementless total hip arthroplasty is known to affect the initial strains in the cortex during implantation and in the early postoperative time period. High strains have a direct influence on periprosthetic fracture. This study compares the existing ABGII stem, which is proximally coated with a grit blasted titanium surface with hydroxyapatite coating with a prototype that has a rougher titanium plasma spray proximal coating. The Australian National Joint registry results 2011 reported the ABG2 femoral component cumulative percent revision (CPR) of 6.5 (93.5% survival), which compares favourably with equivalent stems with 10 year CPR data such as the Taperloc 6.6 and Corail 7.3. Six pairs of fresh-frozen cadaveric femurs were mounted in blocks according to ISO guidelines in single leg stance setup. Five strain gauges were attached around the neck of the femur and then prepared according to routine operative techniques to accept the femoral prosthesis. Cortical strains were measured during insertion of the prosthesis with an instrumented mallet attached to an accelerometer. Subsequently, force-displacement readings were taken during cyclical loading on a servo-hydraulic machine and finally the stems were tested to failure. Our results showed significantly less strain during cyclical loading of the stem with increased surface roughness (p < 0.05). They also showed no significant differences loads/strains during impaction (p = 0.159), no significant difference in micromotion (p = 0.148) and no significant difference in load-to-failure (p = 0.37)


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims. The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids. Methods. Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage. Results. At the completion of the wear test, the total thickness of the cartilage had significantly decreased in both the ceramic and metal groups, by 27% (p = 0.019) and 29% (p = 0.008), respectively. However, the differences between the two were not significant (p = 0.606) and the patterns of wear in the specimens were unpredictable. No significant correlation was found between cartilage wear and various factors, including age, sex, the size of the humeral head, joint mismatch, the thickness of the native cartilage, and the surface roughness (all p > 0.05). Conclusion. Although ceramic has better tribological properties than metal, we did not find evidence that its use in hemiarthroplasty of the shoulder in patients with healthy cartilage is a better alternative than conventional metal humeral heads. Cite this article: Bone Joint J 2024;106-B(11):1273–1283


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 53 - 53
1 Feb 2020
Cubillos PO Santos VD Pizzolatti ALA De Mello Roesler CR
Full Access

Introduction. The release of metallic debris can promote many adverse tissue reactions, as metallosis, necrosis, pseudotumors and osteolysis . 1–3. This debris is mainly generated by the fretting-corrosion mechanism due to the geometric difference in the head-stem interface . 4. Retrieval and in silico analysis showed the roughness of the stem-head interface appears to play an important role in the volume of material lost and THA failure . 5–7. The technical standard ISO 7206-2 recommends the measurement of average roughness (Ra) and max height of the profile (Rz) to control the quality of the surface finish of articulating surfaces on THA implants. However, despite the importance of the trunnion roughness, there is no specific requirement for this variable on the referred technical standard. The present study carried out a surface finish analysis of the trunnion of hip stems from five distinct manufacturers. Methods. Four stems (n = 4) from five (5) distinct manufacturers (A, B, C, D, and E) were used to evaluate the roughness of the trunnion. All the stems are similar to the classical Exeter stem design, with a 12/14 taper and a polished body surface. The roughness of trunnions was evaluated according to ISO 4287 and ISO 13565-2. The total assessment length was 4.8 mm with 0.8 mm cut-off. The first and last 8.33% of assessment length were not considered. The measurements of all samples were made in a rugosimeter with 2 µm feeler ITP (Völklingen, Germany), the velocity of 0.5 mm.s. -1. , and a force of 1.5 mN. The calibration was made at 20 ºC and relative humidity at 50%. The Kruskal Wallis with post hoc Nemenyi test was used to evaluate the difference of Ra among the manufacturers. The confidence level was set at 5%. Results and Discussion. The analysis of surface finish revealed different roughness among the manufactures (p < 0.005), with Ra between 0.061 µm to 3.184 µm and Rz varying of 0.41 µm to 12.69 µm. The manufacturers A and E had a Ra (2.587±0.050 µm and 3.146±0.031µm) of the trunnion similar to founded by Panagiotidou et al (2013). Within such range, the trunnion has shown a high presence of pit . 8. The manufacturer C, on the other hand, had the best surface finish of the trunnion (Ra = 0.069±0.010 µm and Rz = 0.505 ± 0.076 µm). This more smooth surface might increase the taper strength, reduce the shear stress and the susceptibility to the fretting-corrosion damage . 4,8. . Conclusion. The results were worrying because there is great variability of roughness among the manufacturers with the occurrence of trunnions with roughness too high. Nevertheless, the ISO technical standard does not recommend any procedure or minimum parameters acceptable for the surface finish of the trunnion. The revision of ISO 7206-2 would guarantee better control of trunnion roughness to reduce the amount of metallic debris and increase the safety of THA implants. Additional research is needed to determine a target value for this variable. For any figures or tables, please contact authors directly


The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 310 - 316
1 Mar 2017
Hothi H Henckel J Shearing P Holme T Cerquiglini A Laura AD Atrey A Skinner J Hart A

Aims. The aim of this study was to compare the design of the generic OptiStem XTR femoral stem with the established Exeter femoral stem. Materials and Methods. We obtained five boxed, as manufactured, implants of both designs at random (ten in total). Two examiners were blinded to the implant design and independently measured the mass, volume, trunnion surface topography, trunnion roughness, trunnion cone angle, Caput-Collum-Diaphyseal (CCD) angle, femoral offset, stem length, neck length, and the width and roughness of the polished stem shaft using peer-reviewed methods. We then compared the stems using these parameters. Results. We found that the OptiStems were lighter (p < 0.001), had a rougher trunnion surface (p <  0.001) with a greater spacing and depth of the machined threads (p < 0.001), had greater trunnion cone angles (p = 0.007), and a smaller radius at the top of the trunnion (p = 0.007). There was no difference in stem volume (p = 0.643), CCD angle (p = 0.788), offset (p = 0.993), neck length (p = 0.344), stem length (p = 0.808), shaft width (p = 0.058 to 0.720) or roughness of the polished surface (p = 0.536). Conclusion. This preliminary investigation found that whilst there were similarities between the two designs, the generic OptiStem is different to the branded Exeter design. Cite this article: Bone Joint J 2017;99-B:310–16


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 64 - 64
1 Apr 2018
DesJardins J Bales C Helms S
Full Access

Introduction. The accumulation of proteins and bacteria on implant surfaces is a critical concern in the biomedical field, especially with respect to the potential of biofilm formation on implant surfaces. Material surface wettability is often used as a predictor of potential colonization of specific bacterial strains. Surface roughness has also been shown to have a strong relationship with biofilm formation, as rougher surfaces tend to have a stronger affinity to harbor bacterial colonies. The modification of implant surfaces to impart a biofilm resistant layer can come at the expense of increasing surface roughness however, and it is therefore important to determine how the variables of wettability and roughness are affected by any new surface coating technologies. In the current work, a novel CoBlast (C) process that impregnates alumina (A) at 50 μm grit (5) or 90 μm grit (9) sizes, with the possible addition of polytetrafluoroethylene (P) onto titanium surfaces, combined with a plasma coating process called BioDep, that coats the surface with chitosan (X) with the possible addition of vancomycin (V), were evaluated for wettability and surface roughness to determine their potential as biofilm resistant treatments on implants. Materials and Methods. N=65 titanium alloy samples (n=5 for 13 sample modification types as described above and in the figure legends below) were analyzed for surface roughness and wettability. Following cleaning in ethanol, roughness testing (Ra, Rq, Rt and Rz, Wyko NT-2000 optical profilometer @ 28.7× magnification, FOV of 164×215 μm) at 5 different surface locations per specimen, and contact angle analysis was performed (2 μL water drops, KRUSS EasyDrop). Statistical differences between groups was determined using ANOVA. Results and Discussion. Figure 1a summarizes the roughness results, with significant roughening being observed with between surface blanks and all surface modification techniques, especially the CoBlasted 90 μm grit treatments. As expected, wettability (shown in Figure 1b) was significantly affected by PTFE modifications and also by the introduction chitosan and vancomycin. Conclusions. As can be seen from these results, changing the coating of a material can change the surface topography and the wettability of the surface, which can be beneficial for different applications. The results from this work show that the CoBlast and BioDep processes significantly affect both wettability and roughness, and that the benefits and potential drawbacks of each must be considered when assessing their potential for biofilm resistance. PTFE-coated samples would be best used when wanting to prevent a hydrophobic substance from binding to the material, while the alumina-coated or blank samples would be best used to prevent a hydrophilic substance from binding. In the future, nonpolar liquid wettability will be assessed to better mimic in-vivo conditions and to determine surface energy to be able to make better conclusions about the relationship between surface roughness and wettability. For any figures or tables, please contact the authors directly