Advertisement for orthosearch.org.uk
Results 1 - 20 of 58
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 82 - 82
22 Nov 2024
Roskar S Rak M Mihalic R Trebse R
Full Access

Aim. Periprosthetic joint infection (PJI) is one of the most devastating complications after joint replacement. It is associated with high morbidity and economic burden when misdiagnosed as an aseptic failure. Among all cases of PJI, up to 25% could yield negative cultures. Conversely, among cases of aseptic failures, up to 30% may actually be undiagnosed PJIs. In PJIs microbiological diagnosis is a key step for successful treatment. Sonication of the removed prosthesis is more sensitive than conventional periprosthetic-tissue culture, especially in patients who received antimicrobial therapy before surgery. This study aimed to compare the diagnostic value of classic sonication fluid cultures (SF-C) and sonication fluid incubation in blood culture bottle (SF-BCB). Method. Between 2016 and 2018 we analysed 160 revision procedures of joint arthroplasties. For each procedure, at least 5 microbiological and multiple histopathological samples were harvested, and explant sonication was performed which was further analysed by SF-C and SF-BCB. For SF-C classical cultivation of sonication fluid was performed. While for SF-BCB, 10 mL of sonication fluid was inoculated into aerobic and anaerobic lytic blood culture bottles. The definite diagnosis of PJI was based on the EBJIS definition. Results. Among 160 revisions, 59 PJIs were identified, 15 patients were treated with the debridement and implant retention, 7 patients with the one-stage and 35 with the two-stage exchange, remaining 2 were partial revisions. The sensitivity of SF-C and SF-BCB were 81.5% and 94.9%, respectively. The mismatch of microbe identification was observed in 5 cases. We observed positive SF-C while negative SF-BCB in 4 cases, among them having 2 positive histology. While 12 patients have negative SF-C and positive SF-BCB, among them 3 have positive and 6 negative histology. Among these 12 patients, typical low-grade microbes were identified in 9 cases (5 cases of C. acnes, 3 cases of S. epidermidis, and 1 case of S. capitis). Conclusions. The weakest point in all PJI diagnostic criteria is their sensitivity. SF-BCB demonstrates higher sensitivity in diagnosing PJI compared to SF-C. Therefore, it appears prudent to incorporate SF-BCB into the diagnostic protocol for all patients exhibiting either low-grade PJI symptoms or experiencing undiagnosed, presumably aseptic failures, where the likelihood of misdiagnosing infection is greatest


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 72 - 72
22 Nov 2024
Zouitni A van Oldenrijk J Bos K Croughs PD Yusuf E Veltman W
Full Access

Aim. Periprosthetic joint infection (PJI) is a serious complication after joint arthroplasty. Diagnosing PJI can be challenging as preoperative screening and conventional cultures may be inconclusive. Sonication fluid culturing stands out as a valuable adjunct technique to improve microbiological PJI diagnosis. This study aims to determine the clinical relevance of routinely using sonication for all septic and aseptic revisions. Method. All patients who underwent (partial) hip or knee revision arthroplasty for all causes between 2012 and 2021 at our institution were retrospectively reviewed. Based on the European Bone and Joint Society PJI criteria, we categorized them into three groups: infection confirmed, infection likely, and infection unlikely. We analyzed the clinical, laboratory, and radiological screening that could confirm or refute suspicion of PJI. We analyzed microbiology cultures and the most frequently detected microorganisms. Sensitivity and specificity were calculated for synovial fluid cultures (preoperative), tissue cultures, and sonication fluid cultures. We determined the clinical relevance of sonication as the percentage of patients for whom sonication confirmed (microbiological) PJI diagnosis. Results. 429 patients who underwent (partial) revision of hip (246 patients) or knee (183 patients) arthroplasty were included. Sensitivity and specificity were 69% and 99% for preoperative synovial fluid cultures, 76% and 92% for intraoperative tissue cultures, and 80% and 89% for sonication fluid cultures, respectively. Sonication fluid cultures improved tissue culture sensitivity and specificity to 83% and 99%, respectively. In 12 (11%) out of 110 PJIs, sonication fluid cultures were decisive for confirming the causative pathogen. This was applicable to acute and chronic infections. In 29 (9%) out of 319 aseptic cases, a negative sonication fluid culture could confirm contamination of tissue cultures. Conclusions. Routine sonication fluid cultures enhanced the sensitivity and specificity of PJI diagnostics. In 11% of PJI cases, causative pathogens were confirmed by sonication fluid culture results. Routine sonication may be helpful in confirming contamination of synovial fluid cultures and tissue cultures. Routine sonication fluid culture should be performed in all revision arthroplasties


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 77 - 77
24 Nov 2023
Oehen L Morgenstern M Wetzel K Goldenberger D Kühl R Clauss M Sendi P
Full Access

Aim. One of the surgical therapeutic options for periprosthetic joint infection (PJI) includes debridement, antibiotics, and implant retention (DAIR). Prognostically favorable criteria for DAIR include short duration of symptoms, stable implant, pathogen susceptible to a ‘biofilm-active’ antimicrobial agent, and intact soft-tissue conditions. Despite this, there is a proportion of failures after DAIR, possibly because the duration of infection is underestimated. With the hypothesis that the duration of infection correlates with the bacterial load, and hence, the bacterial load is associated with failure after DAIR, we aimed to investigate the association of bacterial load in the sonication fluid of mobile parts and clinical outcome after DAIR. Method. From our PJI cohort (2010–2021), patients with DAIR (both palliative and curative approaches) were reviewed retrospectively. Patients with hip, knee or shoulder arthroplasties fulfilling infection definition, available sonication results, and ≥2 years follow-up were included. Sonication results were categorized in ≤ or >1000 cfu/mL. Univariate analysis was performed to identify predictors for DAIR failure. Results. Out of 209 PJIs, we identified 96 patients (100 PJIs, 47.8%) with DAIR. In 67 (69.8%) patients with 71 PJIs, there was a follow-up of ≥2 years. The mean age was 72.7 (SD 12.99) years, 50% were male. The infection affected 36 hips (50.7%), 32 knees (45.1%) and 3 shoulders (4.2%). At follow-up, there were 29 (40.8%) cured and 42 (59.2%) failed cases. When comparing failed and cured cases, we found no difference in comorbidities and previously defined risk factors for PJI, ASA score, Charlson score, anatomic location, no. of previous surgeries, pathogenesis of infection or laboratory values. The proportion of patients with high bacterial load on mobile parts (i.e. >1000 cfu/mL) was significantly higher in the failed DAIR group than it was in the cured group (61.9% vs 20.7%, p<0.001). Conclusions. In this study, a high bacterial load in sonication fluid of mobile parts was associated with failure after DAIR in patients with PJI. Sonication may help to differentiate acute hematogenous seeding to the implant and late reactivation of a previously silent implant-associated infection


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 66 - 66
1 Dec 2018
Karbysheva S Di Luca M Butini ME Trampuz A
Full Access

Aim. To compare the performance of sonication and chemical methods (EDTA and DTT) for biofilm removal from artificial surface. Method. In vitro a mature biofilms of Staphylococcus epidermidis (ATCC 35984) and P. aeruginosa ATCC®53278) were grown on porous glass beads for 3 days in inoculated brain heart infusion broth (BHI). After biofilm formation, beads were exposed to 0.9% NaCl (control), sonication (40 kHz, 1 min, 0.2 W/cm. 2. ), EDTA (25 mM/15 min) and DTT (1 g/L/15 min). Quantitative and qualitative biofilm analysis were performed with viable counts (CFU/ml) and microcalorimetry using time to detection (TTD), defined as the time from insertion of the ampoule into the calorimeter until the exponentially rising of heat flow signal exceeded 100 μW, which is inversely proportional to the amount of remaining bacterial biofilm on the beads. All experiments were performed in triplicate. Results. Mean colony counts obtained after treatment S. epidermidis biofilms with EDTA and DTT was similar to those after 0.9% NaCl (control) – 6.3, 6.1 and 6.0 log CFU/mL, respectively. Sonication detected significantly higher CFU counts with 7.5 log (p<0.05). Concordant results were detected with microcalorimetry: significantly less (p<0.05) biofilm after treatment with sonication compared to EDTA and DTT (12 h vs 6h and 6h, respectively). The same results were observed when P. aeruginosa biofilms were treated. Mean colony counts dislodged after treatment with EDTA and DTT was similar to those after 0.9% NaCl (control) – 5.2, 5.3 and 5.0 log CFU/mL, respectively. Sonication detected significantly higher CFU counts with 6.5 log (p<0.05). Microcalorimetry reviled concordant results: significantly less (p<0.05) biofilm after treatment with sonication in comparison with EDTA and DTT (11 h vs 6h and 6h, respectively). Conclusions. Chemical methods showed no difference in biofilm dislodging compared to normal saline. Sonication is superior to chemical methods (DTT or EDTA) for biofilm detection. Sonication may be improved by combination of two or more chemical dislodgement methods


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 11 - 11
1 Dec 2017
Kocjancic B Jeverica S Trampuz A Simnic L Avsec K Dolinar D
Full Access

Aim. The aim of our study was to evaluate culture-negative prosthetic joint infections in patients who were pre-operatively evaluated as aseptic failure. Method. For the purpose of the study we included patients planed for revision surgery for presumed aseptic failure. Intraoperatively acquired samples of periprosthetic tissue and explanted prosthesis were microbiologicaly evaluated using standard microbiologic methods and sonication. If prosthetic joint infection was discovered, additional therapy was introduced. Results. Between October 2010 and June 2016 265 cases were operated as aseptic loosenings (66 revision knee arthroplasty, 199 revision hip arthroplasty). 69 (26,0%) cases had positive sonication and negative periprosthetic tissue sample, 24 (9,1%) cases had positive tissue samples, but negative sonication, in 27 (10,2%) cases both tests were positive and in 145 (54,7%) cases all microbiologic tests were negative. In both groups coagulase-negative staphylococci and P.acnes were most common, followed by mixed flora. Conclusions. With the increasing number of patients requiring revision arthroplasty, a clear differentiation between aseptic failure and prosthetic joint infection is crucial for the optimal treatment. Sonication of explanted material is more successful in the isolation of pathogens compared to periprosthetic tissue cultures. Sonication of explanted prosthetic material is helpful in the detection of culture-negative prosthetic joint infections


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 30 - 30
1 Dec 2017
Kramer T
Full Access

Aim. Periprosthetic joint infections (PJI) are a rare, but devastating complication. Diagnostic approaches to PJI vary greatly between different centers. Most commonly tissue biopsies and synovial fluid sampling are recommended for identification pathogens causing PJI. However, sensitivity and specificity of those techniques have been shown to be highly dependent on preanalytical factors like time and conditions of transportation, location of sampling, as well as analytical approaches and prolonged incubation for up to 14days. Sonication of explanted orthopedic devices has been shown to be more than only an addition in the diagnosis of PJI. The goal of this study was to evaluate the diagnostic value of sonication in PJI. Method. Retrospective cohort analysis of orthopedic samples sent for sonication from 29 surgical centers between 06/2014–04/2017. Until 07/2015 samples were plated on Columbia-, MacConkey-, Chocolate- and Schaedler agar*, incubated aerobically and anaerobically for up to 14 days. In 07/2015 an additional enrichment of 10ml per aerobic and anaerobic blood culture bottles* was introduced. The bottles were also incubated up to 14days and plated immediately if growth was detected. Results. We evaluated 698 orthopedic samples sent for sonication, of which resulted in growth of one (n=355) or several (n=15) relevant pathogens. Coagulase negative staphylococci were isolated in 162 cases; Staphylococcus aureus was isolated in 67 cases, Propionibacterium spp. In 23 cases, Streptococcus spp. in 14 cases, Gram negative in 44 cases, Enterococcus spp. also in 14 cases and Candida spp. in 3 cases. The necessary time of incubation to growth was further decreased to 1.8 days (range: 0–13) days after introduction of additional incubation of sonicate fluid in blood-culture bottles. 92.7% of all positive samples showed growth before the 8th day of incubation. Conclusions. Sonication of explanted orthopedic devices and culturing of the sonicate fluid provides a fast reliable tool for diagnosing pathogens of PJI/ODAI potentially without the need for prolonged incubation for up to 14 days. The additional incubation of the sonicate fluid in automated blood-culturing systems further improves the limit of detection and the time to growth. *BioMerieux, Marcy étoile


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 124 - 124
1 Dec 2015
Kocjancic B Lapoša A Jeverica S Trampuž A Dolinar D
Full Access

Clear differentiation between aseptic failure and prosthetic joint infection remains one of the goals of modern orthopaedic surgery. The development of new diagnostic methods enabled more precise evaluation of the etiology of prosthetic joint failure. With the introduction of sonication an increasing number of culture-negative prosthetic joint infection were detected. The aim of our study was to evaluate culture-negative prosthetic joint infections in patients who were preoperatively evaluated as aseptic failure. For the purpose of the study we included patients planed for revision surgery for aseptic failure. Intraoperatively acquired samples of periprosthetic tissue and explanted prosthesis were microbiologicaly evaluated using standard microbiologic methods and sonication. If prosthetic joint infection was discovered, additional therapy was introduced. Between October 2010 and April 2013 54 patients were operated (12 revision knee arthroplasty, 42 revision hip arthroplasty). 10 (18,6%) patients had positive sonication and negative periprosthetic tissue sample, 5 (9,2%) patients had positive tissue samples, but negative sonication, in 9 (16,7%) patients both tests were positive and in 30 (55,5%) patients all microbiologic tests were negative. The microbiologic isolates of sonicate fluid were in 12 cases coagulase-negative staphylococci, in 3 cases P.acnes in 3 cases mixed flora, in 1 case enterococcus and in 1 case SA. From periprosthetic tissue cultures 5 samples have yielded coagulase-negative staphylococci in 5 cases P.acnes in 2 cases mixed flora, in 1 case enterococcus and in 1 case SA were isolated. With the increasing number of patients requiring revision arthroplasty, a clear differentiation between aseptic failure and prosthetic joint infection is crucial for the optimal treatment. Sonication of explanted material is more successful in the isolation of pathogens compared to periprosthetic tissue cultures. Sonication of explanted prosthetic material is helpful in the detection of culture-negative prosthetic joint infections


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 62 - 62
1 Dec 2016
Kocjancic B Laposa A Jeverica S Trampuz A Avsec K Dolinar D
Full Access

Aim. Clear differentiation between aseptic failure and prosthetic joint infection remains one of the goals of modern orthopaedic surgery. New diagnostic methods can provide more precise evaluation of the etiology of prosthetic joint failure. With the introduction of sonication an increasing number of culture-negative prosthetic joint infection were detected. The aim of our study was to evaluate culture-negative prosthetic joint infections in patients who were preoperatively evaluated as aseptic failure. Method. For the purpose of the study we included patients planed for revision surgery for presumed aseptic failure. Intraoperatively acquired samples of periprosthetic tissue and explanted prosthesis were microbiologically evaluated using standard microbiologic methods and sonication. If prosthetic joint infection was discovered, additional therapy was introduced. Results. Between October 2010 and till the end of 2014 151 cases were operated (38 revision knee arthroplasty, 113 revision hip arthroplasty). 40 (26,5%) cases had positive sonication and negative periprosthetic tissue samples (knee 7 cases, hips 33 cases), 13 (8,6%) cases had positive tissue samples but negative sonication (knee 7 cases, hips 6 cases), in 13 (8,6%) cases both tests were positive (knee none, hips 13 cases) and in 85 (56,3%) cases all microbiologic tests were negative (knee 24 cases, hips 61 cases). In both groups cases coagulase-negative staphylococci and P.acnes were most common, followed by mixed flora. Conclusions. With the increasing number of patients requiring revision arthroplasty, a clear differentiation between aseptic failure and prosthetic joint infection is crucial for the optimal treatment. Sonication of explanted material is more successful in the isolation of pathogens compared to periprosthetic tissue cultures. Sonication of explanted prosthetic material is helpful in the detection of culture-negative prosthetic joint infections


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 35 - 35
1 Jul 2014
Gbejuade H Lovering A Hidalgo-Arroyo A Leeming J Webb J
Full Access

Summary Statement. Conventional culture techniques have poor sensitivity for detecting bacteria growing in biofilms, which can result in under-diagnosis of infections. Sonication of biofilm colonised orthopaedic biomaterials can render bacteria in biofilm more culturable, thereby improving diagnosis of orthopaedic implant infections. Introduction. Prosthetic joint infection (PJI) is a potentially devastating complication in arthroplasty. Biofilm formation is central to PJI offering protection to the contained bacteria against host defence system and antimicrobials. Orthopaedic biomaterials generally have a proclivity to biofilm colonisation. Conventional culture technique has a low sensitivity for detecting bacteria in biofilm. Sonication can disrupt bacteria biofilms aggregations and dislodge them from colonised surfaces, rendering them culturable and consequently improve the diagnosis of otherwise culture-negative PJI. We investigated the effect of ultrasonication on biofilms adherent to poylmethylmethacrylate PMMA cement. Method. Identical PMMA cement beads were aseptically prepared using 7mm bead templates. Each sample comprised of two beads and with multiple replicates made for each sample. Two proficient biofilm forming strains of Staphylococcus epidermidis (5179-R1 and 1457) were used for the experiments. Each set of cement sample was immersed in Brain Heart Infusion broth inoculated with a pre-culture of the chosen bacteria strains (final concentration approximately 4 × 10. 6. CFU/ml). All samples were then incubated for 24 hours at 37°C to allow for biofilm growth and colonisation of the cement surfaces, as well as for biofilm maturity. After incubation, each sample was washed twice with sterile phosphate buffer saline (PBS) to remove non-adherent and loosely adherent bacteria. The cement beads were transferred to a fresh sterile bottle at each stage of the experiment, while ensuring the maintenance of asepsis. After the final wash, 10ml of sterile PBS was added to the cement beads and each sample was sonicated for varying periods: 0min, 5min, 10min, 20min and 40min. Sonicate fluid were collected after each period of sonication, with which culture plates were inoculated for the purpose of viable bacteria counting. Results. The optimum sonication period was between 5min and10 min. The mean pre-sonication CFU/ml were 4.7 × 10. 5. and 8.3 × 10. 5. for bacteria strains 5179-R1 and 1457 respectively, while the mean CFU/ml after 10min of sonication were 1.4 × 10. 7. and 0.74 × 10. 7. for bacteria strains the respective bacteria strains. Discussion / Conclusion. Our study showed a significant increase (almost 100 fold) in bacteria culture yield following sonication. We were also able to demonstrate that the optimum duration for sonication (using comparable sonicators) was approximately 10min. Sonication was able to completely remove adherent bacteria from the surfaces of our cement samples allowing them to be cultured. Our result suggests that sonication of bone cement can be instrumental in improving the diagnosis of biofilm associated PJI


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 45 - 45
1 Dec 2015
Finelli C Dell Aquila A Miki-Rosario N Fernandes H Dos Reis F Cohen M Abdalla R Da Silva C Murça M Nigro S Salles M
Full Access

Intramedullary nailing (IMN) has been frequently indicated to treat long bone open and closed fractures, but infection following internal fixation may have devastating consequences, with higher costs. Treatment of intramedullary nail-associated infections (IMNI) is challenging and based upon surgery and adequate antibiotic administration, which requires the correct identification of causative microorganisms. However, there have been difficulties for the microbial diagnosis of IMNI, as the peri-prosthetic tissue cultures may show no microbial growth, particularly in patients with previous use of antibiotics. Sonication have shown higher sensitivity and specificity for microbial identification on a variety of orthopedic implant-associated infections. Aim: To compare clinical and microbiological results and sensitivity for the pathogen identification obtained by conventional peri-implant tissue culture samples with culture of samples obtained by sonication of explanted IMN implants, among patients presenting IMNI of long bones. Methods: Longitudinal prospective cohort study performed at a tertiary public hospital, ongoing since August 2011. We analyzed all patients with indication for IMN implant removal, and orthopedic-implant associated infections was defined according to previous publications addressing osteosynthesis-associated infections (Yano 2014). Minimal of 2 samples from the peri-implant tissue were taken and sent under sterile conditions to the laboratory for culture. Statistical analysis was performed McNemar's test for related proportions. Results: We included 26 patients presenting clinical signs of IMNI, of which tissue and sonication cultures were performed for 26 (100%) and 20 (77%) patients, respectively. Among them, 88% were male, with mean age was 35.9 years (range, 19–59 yo). Causes of trauma were mainly motorcycle crashes accounting 54% of accidents; tibia and fibula were affected in 65% and 27%, respectively. Gustilo open fracture classification was grade II (35%) and IIIA (35%). First stage management with external fixation for fracture stabilization was performed in 75% of trauma patients. Sensitivity of peri-prosthetic tissue culture and sonication was 80.7% (21/26), and 95% (19/20) (p< 0.05), respectively. Only one infected patient presented negative tissue and fluid cultures. Gram-positive cocci were isolated in 75% and 79% in tissue and sonication fluid cultures, respectively. Staphylococcus aureus, coagulase-negative staphylococci, Enterococcus sp., were isolated from tissue and sonication culture in 43.5% and 36.3%, 8.7% and 22.7%, 13% and 13.7%, respectively. Polymicrobial infection was diagnosed in 3.8% (1/26) and 15.8% (3/19), patients by tissue and sonication fluid cultures (p< 0,01), respectively. Conclusion: Sonication of retrieved infected intramedullary nails has the potential for improving the microbiological diagnosis of IMNI


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_15 | Pages 11 - 11
1 Dec 2015
Di Benedetto P Cainero V Beltrame A Gisonni R Fiocchi A Causero A
Full Access

The purpose of this study was to evaluate the accuracy of the sonication fluid cultures (SFC) for the diagnosis of prosthetic joint infection and compare it with frozen section and periprosthetic tissue cultures. 108 patients underwent revision or explantation procedure for any reason. Frozen sections of intraoperative specimen were analized and multiple periprosthetic samples (at least 5) were collected and cultured. All explanted prosthesis components were subject to sonication and cultured. All cultures were incubated for 14 days. PJI was diagnosed in 52 patients (48%). Sonication achieved the highest sensivity with 95% and specificity of 98%. Frozen section showed low sensivity (44%) and specificity (80%) and periprosthetic tissue cultures showed sensivity of 75% and specificity of 98%. Sonication fluid culture is a cheap, easy, accurate and sensitive diagnostic method and helps to detect about 30% more PJI compared to frozen section and 16% more compared to periprosthetic tissue cultures. It also detect about 25% more pathogens than periprosthetic tissue cultures


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 607 - 608
1 Oct 2010
Matamalas A Palou EC García A Horcajada J Martínez-Díaz S Pelfort X Puig L Salvadò M Sorli L
Full Access

Background: The presence of bacteria forming biofilms or prior antimicrobial use has been shown to reduce the sensitivity of the standard technique (PT cultures) in patients with infection of orthopedic implants. Culturing fluid resulting from sonication (FRS) of prosthesis could improve the microbiologic diagnosis. Objective: To analyze the diagnostic validity of culturing FRS of different orthopedic implants and PT culture. Methods: Between Jan 2007 and Apr 2008, patients undergoing knee or hip prosthesis removal, and those with ostheosyntesis or spinal instrumentation removal, were prospectively included (44 hip prosthesis, 63 knee prosthesis, 91 osteosynthesis and 14 spinal instrumentations). 5 PT specimens were collected for culture. Removed implants were sonicated during 5 min. (40Hz). Both, PT and FRS, were inoculated in aerobic agar (Chocolate Polyvitex), anaerobic agar (Schaedler + 5% blood) and in thioglycolat, for 7 days. Positive culture cut-off was defined as growing of > 5 CFU. Clinical diagnosis of prosthetic-joint infection was made as commonly accepted. Previous antimicrobial therapy was assessed. Diagnostic validity was calculated for both culturing methods. Sensitivity of methods was compared by Chi-square test (SPSS 15.0). Results: 212 cases were included. Diagnostic of infection was made in 17 hip prosthesis (THA), 20 knee prosthesis (TKA), 24 osteosynthesis (OS) and 6 spinal fusions (SI). Tissue culture was positive in 9 THA, 11 TKA 18 OS and 4 SI. Sonication culture was positive in 14 THA, 18TKA, 23 Os and 6 SI. Tissue culture: Sensibility: THA53%, TKA 55%, OS 75% and SI 66%. Specificity: THA 96%, TKA 100%, OS 96%, SI 100%. Sonications: Sensibility: THA 82%, TKA 90%, OS 95% and SI 100%. Specificity: THA 96%, TKA 100%, OS 92%, SI 100%. Statistical differences favoring sonication were found in sensitivity in knee arthroplasty and osteosynthesis implants. 6 patients received antibiotics for > 7 days before implant was removed. Sonication culture was positive in 4 of them whereas only one standard culture yielded positive. Conclusions: FRS cultures are more sensitive than PT cultures. Sensitivity of the method depends on which device is evaluated. Sonication also improves sensitivity of culture after preoperative antimicrobial therapy


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 37 - 37
1 Dec 2015
Brent A Barrett L Dudareva M Figtree M Colledge R Newnham R Bejon P Mcnally M Taylor A Atkins B
Full Access

Collection of 4–5 independent peri-prosthetic tissue samples is recommended for microbiological diagnosis of prosthetic joint infections. Sonication of explanted prostheses has also been shown to increase microbiological yield in some centres. We compared sonication with standard tissue sampling for diagnosis of prosthetic joint and other orthopaedic device related infections. We used standard protocols for sample collection, tissue culture and sonication. Positive tissue culture was defined as isolation of a phenotypically indistinguishable organism from ≥2 samples; and positive sonication culture as isolation of an organism at ≥50 cfu/ml. We compared the diagnostic performance of each method against an established clinical definition of infection (Trampuz 2011), and against a composite clinical and microbiological definition of infection based on international consensus (Gehrke & Parvizi 2013). 350 specimens were received for sonication, including joint prostheses (160), exchangeable components (76), other orthopaedic hardware and cement (104), and bone (10). A median of 5 peri-prosthetic tissue samples were received from each procedure (IQR 4–5). Tissue culture was more sensitive than sonication for diagnosis of prosthetic joint and orthopaedic device related infection using both the clinical definition (66% versus 57%, McNemar's Χ2 test p=0.016) and the composite definition of infection (87% vs 66%, p<0.001). The combination of tissue culture and sonication provided optimum sensitivity: 73% (95% confidence interval 65–79%) against the clinical definition and 92% (86–96%) against the composite definition. Results were similar when analysis was confined to joint prostheses and exchangeable components; other orthopaedic hardware; and patients who had received antibiotics within 14 days prior to surgery. Tissue sampling appears to have higher sensitivity than sonication for diagnosis of prosthetic joint and orthopaedic device infection at our centre. This may reflect rigorous collection of multiple peri-prosthetic tissue samples. A combination of methods may offer optimal sensitivity, reflecting the anatomical and biological spectrum of prosthetic joint and other device related infections


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 321 - 321
1 Jul 2011
Borens O Baalbaki R Nussbaumer F Clauss M Trampuz A
Full Access

Background: Antibiotic-loaded spacers and cement nails are commonly used in patients undergoing a two-stage implant exchange procedure for treatment of prosthetic joint infection (PJI). During re-implantation 2–6 weeks after implant removal, tissue specimens are collected to document successful eradication of infection. However, these specimens have limited sensitivity, especially in patients receiving antimicrobial treatment. We investigated the value of sonication of removed spacers and cement nails. Methods: We prospectively included patients in whom a spacer or cement nail was removed from January 2007 through April 2009 during a two-stage exchange procedure. The removed temporary device was sonicated in a container with Ringer’s solution in an ultrasound bath for 5 min at 40 kHz (as described in . NEJM. 2007. ;. 357. :. 654. ). The resulting sonication fluid was cultured aerobically and anaerobically for 10 days. In parallel, > 2 tissue samples were collected for conventional cultures on blood agar plates and enrichment broth. PJI was defined as visible purulence, acute inflammation on histopathology, sinus tract or significant microbial growth in tissue or implant sonication cultures. Results: In this ongoing study, 28 spacers and 10 cement nails from patients with confirmed PJI were included (median age 75 y; range 49–86 y). All devices were impregnated with antibiotics (gentamicin and/or vancomycin) and were placed in the hip (n=21), knee (n=9) or shoulder joint region (n=7). At the time of explantation, the following pathogens were isolated: coagulase-negative staphylococci (n=19), Staphylococcus aureus (n=7), Streptococcus agalactiae (n=3), Propionibacterium acnes (n=5) and mixed infection (n=4). All patients received systemic antibiotics for a median of 19 days (range 11–42 days) before removal of the spacer/nail. At the time of re-implantation, tissue cultures were negative in all 38 patients, whereas sonication cultures showed growth of Propionibacterium acnes in 2 of 38 patients (5%) with a hip and shoulder spacer, both in significant numbers (150 and 550 colonies/ml sonication fluid, respectively). These organisms were probably present as mixed infection already at the time of explantation, but were missed due to overgrowth due to another organism (S. aureus in one patient and coagulase-negative staphylococci in another). Both patients were not initially treated for the Propionibacterium acnes infection, but the treatment was given after re-implantation. Conclusion: Sonication of removed spacers is a suitable approach to identify persistent infection in patients with a two-stage exchange. Sonication may replace the current standard approach consisting of multiple tissue specimens in order to document successful eradication of infection


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 8 - 8
1 Dec 2015
Miksic NG Bombek M Krajnc Z Brodnik T Molicnik A
Full Access

To retrospectively analyze the etiology and microbiological results of synovial fluid culture, periprosthetic tissue culture and sonication fluid culture in 74 episodes of prosthetic joint infection (PJI) in 66 patients treated at the Department for Orthopaedic Surgery in 5 years period. PJI was diagnosed according to the standard definition criteria (1). Conventional microbiological methods were used together with sonication of explanted prosthesis and sonication fluid culture. The results are presented in Table 1. Acute PJI were more common in female patients (72%), whereas delayed PJI occurred in both sexes equally. Surprisingly, among acute PJI streptococcal (especially Streptococcus agalactiae) PJI were as common as Staphylococcus aureus PJI; we also observed high percentage of polymicrobial PJI (26 % among acute PJI and 30 % among delayed PJI), whereas 6/21 (28.6%) were detected by sonication fluid culture only. Preoperative synovial fluid culture identified the pathogen in 91.3% of acute PJI and in 63.2% of delayed PJI. Sonication fluid culture identified causative pathogens in 85% of acute PJI and in 95% of delayed PJI. In acute PJI 24/34 (70.6%) patient had concordant microbiological results between standard cultures and sonication fluid cultures, whereas in 4/34 (11.7%) microorganisms were detected by sonication fluid culture only and in 6/34 (17.6%)by tissue culture only. 23/40 (57.5%)patients with delayed PJI had concordant microbiological results; in 3/40 (7.5%) pathogens were detected by sonication fluid culture only. We found sonication as very useful additional method in diagnostics of PJI, especially low grade PJI. At the same time we observed high percentage of positive and concordant mcrobiological results between all three microbiological methods in patients with acute PJI


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 476 - 476
1 Sep 2012
Borens O Steinrücken J Furustrand U Trampuz A
Full Access

Objectives. Establishing the diagnosis of implant-associated infections is often difficult, because of variable clinical presentations and lack of uniform diagnostic criteria. Sonication of removed orthopedic devices was shown to have superior sensitivity and specificity for infection. We evaluated the value of microcalorimetry as a quick and reliable tool in the diagnosis of infection in sonication fluid from removed implants. Methods. Between 10/2009 and 02/2010 we prospectively included all removed orthopaedic devices at our institution, which were subjected to sonication. Periprosthetic tissue cultures were performed as standard procedure. The removed device was sonicated in Ringer solution (40 kHz, 1 minute) and the resulting fluid was cultured and centrifuged (3000 × g, 10 minutes). The resulting pellet was resuspended in 3 ml tryptic soy broth for isothermal microcalorimetry (sensitivity of 0.25 μW). The detection time until increase of 20 μW was calculated. A 48-channel batch calorimeter (TA Instruments, New Castle, DE, USA) was used to measure the heat flow at 37°C controlled at 0.0001 °C. Results. 39 cases were included (24 males, mean age ± SD was 63 ± 16 years). 29 cases were orthopedic prostheses (14 hip, 11 knee, 1 shoulder and 1 joint spacers) and 10 cases osteosynthetic materials (6 screws, 3 plates, 1 cement-nail). 13 cases (33%) were infected, of which 10 (77%) were positive in sonication culture and 12 (92%) in microcalorimetry. The mean detection time by microcalorimetry was 11.4 h (range, 0.2 h–20.9 h). Examples for microcalorimetric signals can be seen in Fig.1. Conclusions. Microcalorimety of sonication fluid showed superior sensitivity for the diagnosis of infection with detection time of <24 h. This method is a promising diagnostic assay for a rapid and accurate diagnosis of infections associated with orthopedic devices


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 62 - 62
24 Nov 2023
Rondaan C Maso A Birlutiu RM Fernandez M de Brito VD Salles MJC Junyent JG del Toro MD Hofstätter J Moreno JE Wouthuyzen-Bakker M
Full Access

Aim

The aim of this study was to investigate the clinical relevance of an isolated positive sonication fluid culture (SFC) in patients who underwent revision surgery of a prosthetic joint. We hypothesized that cases with a positive SFC have a higher rate of infection and prosthesis failure during follow-up compared to controls with a negative SFC.

Method

This retrospective multicentre observational study was performed within the European Study Group of Implant-Associated Infections (ESGIAI). All patients who underwent revision surgery of a prosthetic joint between 2013 and 2019 and had a minimum follow-up of 1 year were included. Patients with positive tissue cultures or synovial fluid cultures were excluded from the study.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 42 - 42
22 Nov 2024
Mu W Tarabichi S Xu B Wang F Li Y Lizcano JD Zhang X Parvizi J Cao L
Full Access

Aim

This study aimed to evaluate the impact of intraoperative direct sonication on the yield of traditional culture and the time to positivity (TTP) of cultures obtained for periprosthetic joint infection (PJI), thereby assessing its potential to improve diagnostic efficiency and reduce contamination risk.

Method

A prospective cohort study was conducted at a tertiary care center, involving 190 patients undergoing revision surgery for PJI from August 2021 to January 2024. Patients were included based on the 2018 International Consensus Meeting definition of PJI. The study utilized a novel sonication protocol, which involved direct intraoperative sonication of the implant and tissue, followed by incubation in a BACT/ALERT 3D system. The primary outcomes measured were the number and percentage of positive culture samples, identified microorganisms, and the TTP of each culture. Statistical analysis was performed using R software, with various tests applied to assess the significance of findings.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 69 - 69
22 Nov 2024
De Vecchi E Riccardi M Mastroianni N
Full Access

Aim

Diagnosis of prosthetic joint infection are often complicated by the presence of biofilm, which hampers bacteria dislodging from the implants, thus affecting sensitivity of cultures. In the last 20 years several studies have evidenced the usefulness of implant sonication to improve microbial recovery from biofilm formed on inert substrates. More recently, treatment of prosthetic joints and tissues with Dithiothreitol, a sulphur compound already used in routine diagnostic workflow for fluidification of respiratory samples, has proved to be not inferior to sonication in microbiological diagnosis of prosthetic joint infections.

This study aimed to evaluate if the combination of the two treatments could further improve microbial retrieval from biofilm in an in vitro model.

Method

Three isolates of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus lugdunensis, Eschericha coli and Pseudomonas aeruginosa responsible of prosthetic joint infections were used. They were grown onto 3 titanium discs (20 mm diameter) and incubated in 3 sterile plastic containers with 15 mL of Triptyc Soy Broth. After overnight incubation, not adhered cells were removed and fresh broth was added to each sample. After 48 hours incubation, the exausted broth was removed and one sample was used for sonication, one for treatment with 0,1% (v:v) Dithiothreitol and one treated with Dithiothreitol followed by sonication. Treated fluids were plated on Muller Hinton Agar plates for colony count.

One-way ANOVA analysis was performed to evidence statistical differences between treatments.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 59 - 59
1 Oct 2022
Santos INM Kurihara MNL Santos FF Valiatti TB d. Silva JTP Pignatari ACC Salles M
Full Access

Aim

S. aureus and S. epidermidis remain the leading biofilm-forming agents causing orthopedic implant-associated infections (OIAI), but other coagulase-negative Staphylococcus (CoNS) with clinical importance is emerging. Besides, few studies have assessed specific genomic traits associated with patient outcome. This is a preliminary descriptive study of phenotypic and genomic features identified in clinical isolates of S. aureus and CoNS isolates recovered from OIAIs patients that progressed to treatment failure.

Methods

Ten isolates were identified by matrix-time-of-flight laser-assisted desorption mass spectrometry (MALDI-TOF-MS) and tested for antibiotic susceptibility and biofilm formation. Genotypic characteristics, including, MLST (Multi Locus Sequence Typing), SCCmec typing, virulence and resistance genes were assessed by whole-genome sequencing (WGS) that was performed on an Illumina HiSeq 2500 platform. Bioinformatics analyzes were performed using CGE, PATRIC, VFDB, CARD RGI, SnapGene, BLAST, and PubMLST. S. aureus (215, 260 and 371) isolates belonged to CC5 (ST5 and ST105, spa type t002) and carried SCCmec type I (1B), II (2A) and V(5C2), respectively.