Objectives. Studies reporting specifically on
Introduction and Objective. Ceramic on Ceramic bearings in Total Hip Arthroplasty (THA) afford a low friction coefficient, low wear rates and extreme hardness. Significant complications include hip
Explanations for “bearing” noise in ceramic-on-ceramic hips (COC) included stripe-wear formation and loss of lubrication leading to higher friction. However clinical and retrieval studies have clearly documented stripe wear in patients that did not have
Introduction. Acetabular cup orientation has been shown to be a factor in edge-loading of a ceramic-on-ceramic THR bearing. Currently all recommended guidelines for cup orientation are defined from static measurements with the patient positioned supine. The objectives of this study are to investigate functional cup orientation and the incidence of edge-loading in ceramic hips using commercially available, dynamic musculoskeletal modelling software that simulates each patient performing activities associated with edge-loading. Methodology. Eighteen patients with reproducible
The April 2014 Hip & Pelvis Roundup. 360 . looks at: Recent arthroplasty and flight; whether that
Introduction. Squeaking is a potential problem of all hard on hard bearings yet it has been less frequently reported in metal-on-metal hips. We compared a cohort of 11
INTRODUCTION. Squeaking after total hip replacement has been reported in up to 10% of patients. Some authors proposed that sound emissions from
The problem associated with ceramic on ceramic total hip replacement (THR) is audible noise. Squeaking is the most frequently documented sound. The incidence of
The use of hard-on-hard bearings, including ceramics peaked in the mid 2000's and has seen rapid decline since that time. Ceramics are not new to the market place but have had a 40 year history outside the U.S. The basis for renewed enthusiasm for ceramics included improved manufacturing, improved taper tolerances, higher strength, and lower wear. In spite of the major improvements concerns have been expressed with new generation ceramics by the experts and thought leaders in the field. The major concerns included complications related to modularity, continued problems with fracture and consequences of fracture, limited surgical options, and
Introduction. One of the most common complications of ceramic on ceramic hip replacement is
Alumina ceramic-ceramic bearings have the benefit of very low wear and studies showing the complete absence of osteolysis during the first decade of close study. However, good results depend on several critical factors including surgical exposure, surgical technique, component placement, and choice of component design. The following abstract discusses our experience with several of these factors. Initially, there were concerns that the use of ceramic-ceramic bearings would lead to a higher incidence of hip dislocation since the bearings have fewer femoral head-length choices and the absence of lipped-liners. In our prospective study of 418 hips the incidence of hip dislocation at 1 to 10 year followup is 0.5% (2/418). This experience suggests that the use of alumina ceramic-ceramic bearings is not associated with an increased incidence of dislocation. More recently, concerns about
Introduction: Squeaking after total hip replacement has been reported in up to 10% of patients. Some authors proposed that sound emissions from
At the present time, there is no bearing in total hip arthroplasty that a surgeon can present to a younger and/or more active patient as being the bearing that will necessarily last them a lifetime. This is the driver to offering alternative bearings (crosslinked polyethylene with either a CoCr or ceramic head, resurfacings, and ceramic-on-ceramic) to patients. Each of these bearings has pros and cons, and none has emerged as the clear victor in the ongoing debate. Ceramic-on-ceramic (CoC) bearings have been available for decades. Earlier generation CoC bearings did encounter problems with rare fractures, however, with a greater understanding and improvement in the material, the fracture incidence has been significantly reduced. However, what has emerged in the past few years is an increasing reporting of significant
Background: Squeaking in hip arthroplasty is a phenomenon that was described decades ago, but has only been brought back to attention recently. It occurs predominantly in ceramic on ceramic bearings, and has a reported incidence from less than 1% to 21%. The cause and the implication of
Polyimide (MP-1, MMATech, Haifa, Israel), is a high performance aerospace thermoplastic used for its lubricity, stability, inertness and radiation resistance. A wear resistant thin robust bearing is needed for total hip arthroplasty (THR). After independent laboratory testing, in 2006, the author used the material as a bearing in two Reflection (Smith and Nephew, USA) hip surgeries. The first, a revision for polyethylene wear, survives with no evidence of wear, noise, new osteolysis or complications related to the MP-1 bearing after 16 yrs. The second donated his asymptomatic MP-1 hip at 6.5yrs for post-mortem examination. There were no osteoclasts, cellular reaction bland in contrast to that of polyethylene. In 2013 a clinical study with ethical committee approval was started using a Biolox Delta (Ceramtec, Germany) head against a polyimide liner in 97 patients. MMATech sold all liners, irradiated: steam 52:45. Sixteen were re-machined in New Zealand. Acetabular shells were Delta PF (LIMA, Italy). The liner locked by taper. The cohort consisted of 46:51 M:F, and ages 43 to 85, mean 65. Ten received cemented stems. For contralateral surgery, a ceramic or polyethylene liner was used. Initial patients were lower demand, later, more active patients, mountain-biking and running. All patients have on-going follow up, including MP-1 liner revision cases. There has been no measurable wear, or osteolysis around the acetabular components using weight-bearing radiographs. Squeaking within the first 6 weeks was noted in 39 number of cases and subtle increase in palpable friction, (passive rotation at 50 degrees flexion), but then disappeared. There were 6 revisions, four of which were related to cementless Stemsys implants (Evolutis, Italy) fixed distally with proximal linear lucencies in Gruen zones 1 and 7, and 2 and 6. No shells were revised and MP-1 liners were routinely changed to ceramic or polyethylene. The liners showed no head contact at the apex, with highly polished contact areas. There were no deep or superficial infections, but one traumatic anterior dislocation at 7 years associated with 5 mm subsidence of a non-collared stem. The initial
Ceramic-on-ceramic (CoC) total hip arthroplasty (THA) can produce articular noise during the normal activities, generating discomfort to the patient. THA noise has to be investigated also as a potential predictor and a clinical sign of prosthetic failure. An observational study has been carried out to characterize the noise in CoC cementless THA, and to analyze the related factors. A total of 46 patients with noisy hip have been enrolled in 38 months, within the follow-up protocol normally applied for the early diagnosis of ceramic liner fracture [1]. Noise recording was based on a high-quality audible recorder (mod. LS 3, Olympus, Japan) and a portable ultrasonic transducer (mod USB AE 1ch, PAC, USA). The sensors for noise recording were applied to the hip of the patient during a sequence of repeatable motorial activities (forward and backward walking, squat, sit in a chair, flexion and extension of the leg). Sessions were also video-recorded to associate the noise emission to the specific movements. Each noise event was initially identified by the operator and therefore classified by comparison to the spectral characteristics (duration, intensity and frequency) of the main noise types. Number and spectral characteristics of noise events were obtained and correlated to the factors describing the clinical status of the patient, the surgical approach, the prosthetic device implanted. The study investigated also the noise as a sign of implant failure, by comparison with the total number of implants failed in the cohort during the study. We observed three types of noise with the main spectral characteristics in agreement to the literature: clicking,
Squeaking in ceramic on ceramic bearing total hip arthroplasty is well documented but its aetiology is poorly understood. In this study we have undertaken an acoustic analysis of the
Squeaking of ceramic-on-ceramic (CoC) hips is a clinical phenomenon that is concerning with regard to the long term performance of these joint devices. Investigations into the cause of the
Squeaking in ceramic total hip joint replacements has become a controversial topic. This study aims to document the incidence of
Introduction. The Delta Motion device (developed by Finsbury Orthopaedics, Leatherhead, United Kingdom, now manufactured by DePuy, Leeds, United Kingdom) is a pre-assembled factory fitted cup. It has been introduced to overcome some of the concerns relating to intra-operative assembly with improper seating of the liner and chipping. This device has a thinner shell and liner in comparison with other cups, allowing the use of larger sized heads which should help reduce the risk of impingement and dislocation. A drawback of the pre-assembled design is the inability to use supplementary screws to achieve stability and the difficulty in obtaining primary stability compared with a thin titanium shell. To date we are not aware of any publications reviewing the outcomes of these devices. Methods. 206 DeltaMotion cups were implanted in 195 patients, between Dec 2008 to Dec 2009 by the three senior authors. All the hips had the same stem (Osteonics) and a ceramic head was used. Data was prospectively collected and we reflect on our two year results. Results. A total of 206 cups (123 F: 83 M) were implanted in 195 patients. The mean age at implantation was 69 years (range 38–93). 11 patients had bilateral hips (6M:5F). Complications were 1 pulmonary embolism, 2 femoral stem subsidence, 1 dislocation, 2 femoral fractures, 13