Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 441 - 441
1 Sep 2009
Shillington M Adam C Askin G Labrum R
Full Access

Introduction: The use of anterior vertebral staples in the fusionless correction of scoliosis has received increased attention in recent literature. Several animal studies have shown stapling to be effective in modulating vertebral growth. In 2005 Betz (1) published the only clinical series to date. Despite the increasing volume of literature suggesting the efficacy of this treatment, little is known about it’s biomechanical consequences. In 2007 Puttlitz (2) measured the change in spinal range of motion after staple insertion in a bovine model. They found a small but statistically significant decrease in range of motion in axial rotation and lateral bending. The clinical significance of this is questionable as the differences were only a few degrees over three vertebral levels. A well designed biomechanical evaluation of the effects of staple insertion on spinal stability is needed. The aim of this study was to evaluate the effect of insertion of a laterally placed anterior vertebral staple on the stiffness characteristics of a single motion segment.

Methods: Four-pronged shape memory alloy staples were inserted into fourteen individual bovine thoracic motion segments. A displacement controlled six degree-of-freedom robotic facility was used to test control and staple constructs through a pre-determined range of motion in flexion, extension, lateral bending, and axial rotation. All data were synchronised with robot position data and filtered using moving average methods. The stiffness in each condition was calculated in units of Nm/degree of rotation. Paired t-tests were used to compare results.

Results: Stiffness measurements in the control condition correlated with previously published measures (3). A significant decrease in stiffness (p< 0.05) following staple insertion was found in flexion, extension, lateral bending away from the staple, and axial rotation away from the staple. Stiffness for axial rotation towards the stapled side was significantly greater than for away. A near significant increase in lateral bend stiffness away from the staple compared with towards was also seen.

Discussion: These results suggest that staple insertion consistently decreased stiffness in all directions of motion. This is contrary to the results of Puttlitz (2), which reported a reduced range of motion (i.e. increased stiffness) for some motions using moment-controlled testing. This decrease in stiffness could not be explained by changes in anatomy or tissue properties between specimens, as each stapled motion segment was compared with its own intact state. Addition of the staple would intuitively be expected to increase motion segment stiffness, however we suggest that the staple prongs may cause sufficient disruption to the vertebral bodies and endplates to slightly reduce overall stiffness. Hence, growth modulation may be achieved through physical disruption of the endplate, rather than static mechanical stress. Further research is planned to investigate the proportion of load carried by the staple during spinal movement and the anatomical effect of the staple on the physis. In conclusion, anterior vertebral stapling causes a slight but significant decrease in the stiffness of treated motion segments.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_19 | Pages 20 - 20
1 Apr 2013
Sonanis SV Kumar S Deshmukh N Wray C Beard DJ
Full Access

Introduction

A prospective study was done using Kirschner (K) wires to internally fix capitellum fractures and its results were analysed.

Materials/Methods

Since 1989, unstable displaced 17 capitellum fractures were anatomically reduced and internally fixed by inserting K wires in coronal plane from the capitellum into trochlea. The lateral end of wires were bent in form of a staple behind the fracture plane and anchored into the lateral humeral condyle with pre-drilled holes. Additional screws were used in 2 cases to stabilise the lateral pillar comminution. The capitellum was exposed with a limited modified lateral elbow approach between anconeus and extensor carpi ulnaris. The capsule was reflected anteriorly to expose the capitellum and trochlea. The deeper dissection was limited anterior to lateral collateral ligament (LCL) keeping it intact. The capitellum fragment was reposition under the radial head and anatomically reduced by full flexion of elbow and then internally fixed. Total 17 patients (7 males and 10 females) with average ages 34.8 years(14 to 75) had fractures, Type I: (Hans Steinthal #) 12, Type II: (Kocher Lorez #) 1, and Type III: (Broberg and Morrey #) 4. Post-operatively the patients were not given any immobilisation and were mobilised immediately.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 266 - 267
1 Mar 2003
Aykut U Yazici M Gedikoglu G Kandemir U Aksoy M Surat A
Full Access

Introduction: Prior to skeletal maturity temporary hemiepiphyseal stapling is a treatment method for angular deformities of long bones. The purpose of this study is to investigate the effects of temporary hemiepiphyseal stapling on the bone geometry and histology of physis.

Materials & Methods: Proximal medial epipyseal stapling of the right tibia were done in 46 New Zealand rabbits. 23 of them were euthanized at the end of 3 weeks. For the remaining 23 rabbits staples were fixed subperiostally (group A) in 11, and extraperiosteally (group B) in 12 rabbits. After 3 weeks the staples removed and the rabbits were euthanized at the end of 6 weeks. Bromodeoxyuridine used to evaluate cellular activity of the growth plate. Radiographs utilized for bone alignment.

Results: The articular surface-diaphysis angle was significantly increased at the end three weeks when compared to controls (27.7° vs. −1.5°, p:0.001). Cellular activity was decreased but preserved in the stapled tibias. At the end of six weeks while the angular deformity was worsening in group A 22.9° vs. 35.6°, p:0.001) it was improving in group B (23.2 ° vs. 14.6°, p:0.001). Bone tissue bridging the growth plate was noted in group A. Cellular activity in the group B was higher than group A at the end of six weeks.

Conclusion: Hemiepiphyseal stapling causes decreased cellular activity at the growth plate, which leads to angulation. With removal of staples, increased cellular activity at the growth plate results in the improvement of the deformity if staples were inserted extraperiosteally. Temporary extraperiosteal hemiepiphyseal stapling could be used as a safe and effective method for treatment of angular deformities prior to skeletal maturity.