In cases of severe postdysplastic coxarthosis, it seems to be impossible to recognize acetabular geometry and the real femoral position on a plain X-ray because the real diameters and angles can be disfigured when projected. Computed tomography (CT) provides important information to the surgeon about the concavity, shape and stereotomy of the acetabulum. It is quite difficult to correctly evaluate severely changed hips. CT displays more precise acetabular diameters and angles than a plain radiograph. Because of the high density of bony tissue, the CT makes it easy to produce a three-dimensional display of the hip. From September 1995 to December 1998, 224 patients (148 female, 76 male) underwent arthroplasty using a non-cemented prosthesis according to Zweymüller. A total of 236 hip joints were operated and classified as Crowe Group I (76 hips), Crowe Group II (149 hips), and Crowe Group III (11 hips). There were no Crowe Group IV hips. A total of 96 patients were examined by 3D CT in preoperative planning. Based on CT results, four joints were not recommended for an operative solution. CT protocol: scanner Elscint TWIN II, slice 2.5 mm, 120 kV, 285 mAs, matrix 3402,. No. of slices: 40–50, incremental dual acquisition. Postprocessing: axial images, multiplanar reconstructions, 3D SSD. Acetabular stereometry:
Shoulder arthroplasty is used to treat osteoarthritis, post-traumatic arthritis, and avascular necrosis. Modular components allow for natural variability in shoulder anatomy, including retroversion and head-neck angles. Surgical options include anatomic or guide-assisted cut at a fixed retroversion and head-neck angle. The purpose of this study was to determine the variability between head height (HH) and anteroposterior (AP) and
In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data.Aims
Methods