The National Health Service produces over 500,000 tonnes of waste and 25 mega tonnes of CO2 annually. Operating room waste is segregated into different streams which are recycled, disposed of in landfill sites, or undergo costly and energy-intensive incineration processes. By assessing the quantity and recyclability of waste from primary hip and knee arthroplasty cases, we aim to identify strategies to reduce the carbon footprint of arthroplasty surgery. Data was collected prospectively at a tertiary orthopaedic hospital, in the theatres of six arthroplasty surgeons between April – July 2022. Fifteen primary total hip arthroplasty (THA) and 16 primary total knee arthroplasty (TKA) cases were included; revision and complex primary cases were excluded. Waste was categorised into non-hazardous waste, hazardous waste, recycling, sharps, and linens. Each waste category was weighed. Items disposed as non-hazardous waste were catalogued for a sample of 10 TKA and 10 THA cases. Recyclability of items was determined from packaging. Average total waste generated for THA and TKA were 14.46kg and 17.16kg respectively, with TKA generating significantly greater waste (p < 0.05). On average only 5.4% of waste was recycled in TKA and just 2.9% in THA cases. The mean recycled waste was significantly greater in TKA cases compared to THA, 0.93kg and 0.42kg respectively (p < 0.05). Hazardous waste represented the largest proportion of the waste streams for both TKA (69.2%) and THA (73.4%). On average TKA generated a significantly greater amount (11.87kg) compared to THA (10.61kg), p < 0.05. Non-hazardous waste made up 15.1% and 11.3% of total waste for TKA and THA respectively. In the non-hazardous waste, only two items (scrub brush packaging and sterile towel packaging) were identified as recyclable based on packaging. We estimate that annually total hip and knee arthroplasty generates over 2.7 million kg of waste in the UK. Through increased use of recyclable plastics for packaging, combined with clear labelling of items as recyclable, medical suppliers can significantly reduce the carbon footprint of arthroplasty. Our data highlight only a very small percentage of waste is recycled in total hip and knee arthroplasty cases.
The NHS generates 4–5% of the nation's total carbon emissions and over 500,000 tonnes of waste annually. Up to one-third of waste from orthopaedic procedures are recyclable, with large joint arthroplasties producing more than other subspecialties. However, there is limited evidence demonstrating the principles of sustainability and its benefits within orthopaedic surgery. This study aimed to analyse the environmental impact and sustainable initiatives undertaken within orthopaedic surgery. A systematic review was performed according to PRISMA guidelines. The systematic search was conducted through EMBASE, Medline, and PubMed libraries.Abstract
Introduction
Methodology
Theatre-listed trauma patients routinely require two ‘group and save’ blood-bank samples, in case they need perioperative transfusion. The Welsh Blood Service (WBS) need patients to have one recorded sample from any time in the last 10 years. A second sample, to permit cross-matching and blood issuing, must be within 7 days of transfusion (or within 48 hours if the patient is pregnant, or has been transfused within the last 3 months). The approximate cost of processing a sample is £15.00. To investigate whether routine pretransfusion blood sampling for trauma admissions exceeds requirements.BACKGROUND
AIM
Arthroplasty has been shown to generate the most waste among all orthopaedic subspecialties, and it is estimated that hip and knee arthroplasty generate in excess of three million kg of waste annually in the UK. Infectious waste generates up to ten times more CO2 compared with recycled waste, and previous studies have shown that over 90% of waste in the infectious stream is misallocated. We assessed the effect of real-time waste segregation by an unscrubbed team member on waste generation in knee and hip arthroplasty cases, and compared this with a simple educational intervention during the ‘team brief’ at the start of the operating list across two sites. Waste was categorized into five categories: infectious, general, recycling, sharps, and linens. Each category was weighed at the end of each case using a digital weighing scale. At Site A (a tertiary orthopaedic hospital), pre-intervention data were collected for 16 total knee arthroplasy (TKA) and 15 total hip arthroplasty (THA) cases. Subsequently, for ten TKA and ten THA cases, an unscrubbed team member actively segregated waste in real-time into the correct streams. At Site B (a district general hospital), both pre- and post-intervention groups included ten TKA and ten THA cases. The intervention included reminding staff during the ‘team brief’ to segregate waste correctly.Aims
Methods
In response to the COVID-19 pandemic, there was a rapidly implemented restructuring of UK healthcare services. The The Royal National Orthopaedic Hospital, Stanmore, became a central hub for the provision of trauma services for North Central/East London (NCEL) while providing a musculoskeletal tumour service for the south of England, the Midlands, and Wales and an urgent spinal service for London. This study reviews our paediatric practice over this period in order to share our experience and lessons learned. Our hospital admission pathways are described and the safety of surgical and interventional radiological procedures performed under general anaesthesia (GA) with regards to COVID-19 in a paediatric population are evaluated. All paediatric patients (≤ 16 years) treated in our institution during the six-week peak period of the pandemic were included. Prospective data for all paediatric trauma and urgent elective admissions and retrospective data for all sarcoma admissions were collected. Telephone interviews were conducted with all patients and families to assess COVID-19 related morbidity at 14 days post-discharge.Introduction
Methods