Aims. This study aimed to explore the diagnostic value of
Aims.
Aims. To analyze the potential role of
Aims. The aim of this study was to evaluate the performance of metagenomic next-generation sequencing (mNGS) in detecting pathogens from
Aims. The mechanism by which
Objectives. This study looked to analyse the expression levels of microRNA-140-3p and microRNA-140-5p in
Aims. The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of
Objectives. Prosthetic joint infection (PJI) diagnosis is a major challenge in orthopaedics, and no reliable parameters have been established for accurate, preoperative predictions in the differential diagnosis of aseptic loosening or PJI. This study surveyed factors in
Aims. Current guidelines consider analyses of joint aspirates, including leucocyte cell count (LC) and polymorphonuclear percentage (PMN%) as a diagnostic mainstay of periprosthetic joint infection (PJI). It is unclear if these parameters are subject to a certain degree of variability over time. Therefore, the aim of this study was to evaluate the variation of LC and PMN% in patients with aseptic revision total knee arthroplasty (TKA). Methods. We conducted a prospective, double-centre study of 40 patients with 40 knee joints. Patients underwent joint aspiration at two different time points with a maximum period of 120 days in between these interventions and without any events such as other joint aspirations or surgeries. The main indications for TKA revision surgery were aseptic implant loosening (n = 24) and joint instability (n = 11). Results. Overall, 80
Aim. One of the most accurate and inexpensive tests in detection of prosthetic joint infection (PJI) is
The paramount importance of
Aim. Prosthetic joint infection (PJI) represents the second most frequent complication of total joint arthroplasty (TJA) with up to 20% of low-grade PJI treated as aseptic failure. Sensitive diagnostic criteria have been provided by EBJIS. However, to date there is no single test to reliably diagnose all PJIs. Studies of Mazzucco et al. and Fu et al. suggest that
Aim.
Aims. This study aimed to evaluate calprotectin in
Aim. Evaluate the metabolites composition of the
Aim. Periprosthetic joint infections (PJI) are severe complications after total joint arthroplasty (TJA). Up to now, a gold standard in the diagnostics of PJI is missing. Small extracellular vesicles (sEVs) are secreted by all types of cells and play a key role in immune response in presence of infection (1). In this prospective study, the diagnostic accuracy of sEVs in the
Aim. Evaluate if Neutrophil Extracellular Traps related biomarkers (citrullinated histone H3 [H3Cit], cellfree DNA [cfDNA], and myeloperoxidase) are increased in
Aim. Prosthetic joint infection (PJI) presents the second most common complication of total joint arthroplasty (TJA). Accumulating evidence suggests that up to 20% of aseptic failures are low-grade PJI. However, there is still no single test to reliably diagnose all PJI. In his thesis, Mazzucco emphasized the viscosity differences between normal, osteoarthritic, and rheumatic
Aim. Periprosthetic joint infection (PJI) is one of the most frequent and devastating complications of total knee arthroplasty (TKA). Accurate diagnosis and proper treatment are essential to prevent functional loss and progression to systemic infection. However, the correct diagnosis of PJI is still a challenge since there is no accurate diagnostic method and the existing diagnostic criteria are based on serological, histological and microbiological tests that are imprecise and time-consuming. Recently, it was demonstrated that cell-free DNA is increased in the
Aims. The lack of disease-modifying treatments for osteoarthritis (OA) is linked to a shortage of suitable biomarkers. This study combines multi-molecule