Advertisement for orthosearch.org.uk
Results 1 - 20 of 114
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 139 - 139
1 Nov 2021
Müller M Thierbach M Aurich M Wildemann B
Full Access

Introduction and Objective. The rupture of the anterior cruciate ligament is a common sports injury and surgical reconstruction is often required to restore full function of the knee. Hamstring tendons are usually used as autografts. In addition to knee pain and stiffness, infections are feared complications after surgery. Incubation of the autograft in a vancomycin solution until implantation reduced the infection rate by about ten-fold. Recent studies showed no negative effect of vancomycin on the biomechanical properties of porcine tendons. A negative effect of high vancomycin concentrations on chondrocytes and osteoblast is reported, but the effect on tendon and tenocytes is not known. Materials and Methods. Rat Achilles tendons or isolated tenocytes were incubated with an increasing concentration of vancomycin (0 – 10 mg). Tendons were incubated for 0 – 40 minutes, while tenoyctes were incubated for 20 minutes followed by culturing for up to 7 days. Cell viability was assessed with PrestoBlue Assay and live/dead stain. The potential effect of vancomycin on the expression of tendon specific genes and extracellular matrix (ECM) genes was quantified. Possible structural changes of the tendon are analyzed. Results. Incubation of the tendons or tenocytes with 5 mg vancomycin for 20 minutes (clinical use) had no negative effects on the cell viability in the tendons or the isolated tenocytes, while incubation with the toxic control (ethanol) significantly reduced cell viability. Even twice the concentration and a longer incubation time had no negative effect on the cells in the tendons or the isolated cells. Vancyomycin did not affect the expression of Col1a1, Col3a1, and the tenocyte markers mohawk, scleraxis and tenomodulin. Conclusions. The results showed that clinical practice of wrapping the autograft in vancomycin did not impair the tenocyte viability. The expression of collagens and tenocyte markers was also not affected, neither in the incubated tendons nor in the isolated cells. This indicates that vancomycin had no effect on cell phenotype and the formation of the extracellular matrix, which, in addition to cell viability, is important for the performance of the autograft


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 15 - 15
1 Apr 2018
Lee K
Full Access

Anterior cruciate ligament (ACL) reconstruction is the current standard of care for ACL tears. However, the results are not consistently successful, autografts or allografts have certain disadvantages, and synthetic grafts have had poor clinical results. The aim of this study was to determine the efficacy of tissue engineering decellularized tibialis tendons by recellularization and culture in a dynamic tissue bioreactor. To determine if recellularization of decellularized tendons combined with mechanical stimulation in a bioreactor could replicate the mechanical properties of the native ACL and be successfully used for ACL reconstruction in vivo. Porcine tibialis tendons were decellularized and then recellularized with human adult bone marrow-derived stem cells. Tendons were cultured in a tissue bioreactor that provided biaxial cyclic loading for up to 7 days. To reproduce mechanical stresses similar to hose experienced by the ACL within the knee joint, the tendons were subjected to simultaneous tension and torsion in the bioreactor. Expression of tendon-specific genes, and newly synthesized collagen and glycosaminoglycan (GAG) were used to quantify the efficacy of recellularization and dynamic bioreactor culture. The mechanical strength of recellularized constructs was measured after dynamic stimulation. Finally, the tissue-engineered tendons were used to reconstruct the ACL in mini-pigs and mechanical strength was assessed after three months. Dynamic bioreactor culture significantly increased the expression of tendon-specific genes, the quantity of newly synthesized collagen and GAG, and the tensile strength of recellularized tendons. After in vivo reconstruction, the tensile strength of the tissue-engineered tendons increased significantly up to 3 months after surgery and were within 80% of the native strength of the ACL. Our translational study indicates that the recellularization and dynamic mechanical stimuli can significantly enhance matrix synthesis and mechanical strength of decellularized porcine tibialis tendons. This approach to tissue engineering can be very useful for ACL reconstruction and may overcome some of the disadvantages of autografts and allografts


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims

Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing.

Methods

A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 74 - 74
2 Jan 2024
Lehner C Benedetti B Tempfer H Traweger A
Full Access

Tendinopathy is a disease associated with pain and tendon degeneration, leading to a decreased range of motion and an increased risk of tendon rupture. The etiology of this frequent disease is still unknown. In other musculoskeletal tissues like cartilage and intervertebral discs, transient receptor potential channels (TRP- channels) were shown to play a major role in the progression of degeneration. Due to their responsiveness to a wide range of stimuli like temperature, pH, osmolarity and mechanical load, they are potentially relevant factors in tendon degeneration as well. We therefore hypothesize that TRP- channels are expressed in tendon cells and respond to degeneration inducing stimuli.

By immunohistochemistry, qRT-PCR and western blot analyses, we found three TRP channel members, belonging to the vanilloid (TRPV), and ankyrin (TRPA) subfamily, respectively, to be expressed in healthy human tendon tissue as well as in rodent tendon, with expression being located to cells within the dense tendon proper, as well as to endotenon resident cells. In vitro-inflammatory and ex vivo-mechanical stimulation led to a significant upregulation of TRPA1 expression in tendon cells, which correlates well with the fact that TRPA1 is considered as mechanosensitive channel being sensitized by inflammatory mediators.

This is the first description of TRP- channels in human and rodent tendon. As these channels are pharmacologically targetable by both agonists and antagonists, they may represent a promising target for novel treatments of tendinopathy.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 415 - 415
1 Oct 2006
Worboys S Jackson B Birch H
Full Access

Introduction Epidemiological studies have revealed that the incidence of Achilles tendon rupture is increasing and is especially high in middle age. Similarly, in horses, the superficial digital flexor tendon (SDFT) is often injured with older horses being most at risk. Tendons which play a role in elastic energy storage, such as the human Achilles tendon and equine SDFT, are much more susceptible to degenerative change and subsequent rupture than non-energy storing positional tendons, such as the human anterior tibialis tendon and the equine common digital extensor tendon (CDET). These energy storing tendons are required to operate with small safety margins and are likely therefore to incur high levels of micro-damage. The ability to repair micro-damage depends on the capacity for matrix turnover which requires both the capability to synthesise and degrade matrix components. In a previous study we have shown that the levels of matrix degrading enzymes (matrix metalloproteinases) differ significantly between the SDFT and CDET (Faram et al., 2004, Proc. BORS, Bristol) and that some matrix metalloproteinases (MMP-3) increase significantly with increasing age (Eissa et al., 2004, Proc. BSMB, Bristol). The aim of this study was to test the hypothesis that MMP derived fragments of collagen resulting from collagen breakdown are present at higher levels in the energy storing SDFT than the CDET and increase significantly with increasing age. Methods The SDFT and CDET were harvested from the left forelimb of horses (n=20) ranging in age from skeletal maturity to senescence (5 – 30 years) and tissue from the mid-metacarpal level of each tendon analysed. A commercially available radioimmunoassay kit (Oxford Biosystems) was used to measure levels of the C-terminal telopeptide of type I collagen (ICTP). In addition, DNA levels were measured by a fluorometric assay using Hoechst 33258 dye to give an indication of tissue cellularity and collagen-linked fluorescence was measured to give an indication of the age of the collagen in the matrix. Statistical significance (p = 0.05) was evaluated using a general linear model (SPSS software) to compare tendons (SDFT and CDET) and to determine changes with age. Results The levels of ICTP were approximately four times higher (p=0.001) in the CDET compared to the SDFT and in both tendons appeared to decrease with increasing age. DNA levels were significantly (p< 0.001) higher in the SDFT than the CDET and these levels did not change significantly with age. The collagen-linked fluorescence was significantly (p< 0.001) higher in the SDFT than the CDET and decreased significantly (p=0.006) with age in both tendons. Discussion The results demonstrate that the SDFT is more cellular than the CDET and may therefore be expected to be more metabolically active. Contrary to this, collagen-linked fluorescence is higher in the SDFT suggesting that the matrix is older and furthermore the levels of collagen fragments are much lower in the SDFT suggesting that the collagen within the matrix is turned over more rapidly in the CDET than the SDFT. The changes in collagen-linked fluorescence and ICTP levels suggest than collagen turnover decreases with ageing and low turnover may be responsible for SDFT degneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_9 | Pages 11 - 11
16 May 2024
Kendal A Brown R Loizou C Rogers M Sharp R Carr A
Full Access

Tendinopathy can commonly occur around the foot and ankle resulting in isolated rupture, debilitating pain and degenerative foot deformity. The pathophysiology and key cells involved are not fully understood. This is partly because the dense collagen matrix that surrounds relatively few resident cells limits the ability of previous techniques to identify and target those cells of interest. In this study, we apply novel single cell RNA sequencing (CITE-Seq) techniques to healthy and tendinopathic foot/ankle tendons. For the first time we have identified multiple sub-populations of cells in human tendons. These findings challenge the view that there is a single principal tendon cell type and open new avenues for further study. Healthy tendon samples were obtained from patients undergoing tendon transfer procedures; including tibialis posterior and FHL. Diseased tendon samples were obtained during debridement of intractable Achilles and peroneal tendinopathy, and during fusion of degenerative joints. Single cell RNA sequencing with surface proteomic analysis identified 10 sub-populations of human tendon derived cells. These included groups expressing genes associated with fibro-adipogenic progenitors (FAPs) as well as ITGA7+VCAM1- recently described in mouse muscle but, as yet, not human tendon. In addition we have identified previously unrecognised sub-classes of collagen type 1 associated tendon cells. Each sub-class expresses a different set of extra-cellular matrix genes suggesting they each play a unique role in maintaining the structural integrity of normal tendon. Diseased tendon harboured a greater proportion of macrophages and cytotoxic lymphocytes than healthy tendon. This inflammatory response is potentially driven by resident tendon fibroblasts which show increased expression of pro-inflammatory cytokines. Finally, identification of a previously unknown sub-population of cells found predominantly in tendinopathic tissue offers new insight into the underlying pathophysiology. Further work aims to identify novel proteins targets for possible therapeutic pathways.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 385 - 385
1 Oct 2006
Faram T Eissa S Smith R Goodship A Birch H
Full Access

Introduction: Energy storing tendons, such as the human Achilles tendon, suffer a much higher incidence of rupture than non- energy storing positional tendons, such as the anterior tibialis tendon. Similarly, in the horse partial rupture of the energy storing superficial digital flexor tendon (SDFT) and suspensory ligament (SL) occurs much more frequently than to the deep digital flexor tendon (DDFT) and common digital extensor tendon (CDET) which are not involved in energy storage. In order to function effectively, energy storing tendons experience strains during high speed locomotion which are much closer to failure strain than non-energy storing tendons. Therefore, these tendons are likely to sustain high levels of microdamage, hence cell metabolism may also be higher in order to repair damage and maintain matrix integrity. Maintenance of the matrix requires not only synthesis of new matrix components but also degradation of matrix macromolecules which is achieved, in part, by a family of matrix metalloproteinase enzymes (MMPs). In this study we test the hypothesis that the energy storing equine SDFT and SL which are prone to degenerative changes have higher levels of MMP2 and MMP9 than the positional DDFT and CDET that are rarely injured. Methods: Tendons (SDFT, DDFT, SL, CDET) were harvested from the distal part of the forelimbs of 18 month old Thoroughbred horses (n = 12). Tissue from the mid-metacarpal region of each tendon was snap frozen, lyophilised, powdered and MMPs extracted. Gelatin zymography was used to determine levels of the pro and active forms of the gelatinase enzymes, MMP2 and MMP 9. Proteolytic activity (units per mg dry weight tissue) was quantified based on densitometry measurements and standardised between gels using an equine neutrophil MMP extract. Statistical significance was evaluated using a general linear model (SPSS software). Results: The main activity observed in all tendon samples was that of proMMP2. Quantification showed that the energy storing SDFT (23.4 ± 10.95) and SL (18.9 ± 5.3) had significantly higher levels than the non-energy storing DDFT (2.90 ± 0.99) and CDET (4.06 ± 2.06). Active MMP2 levels were lower than the pro form and were not sufficient to quantify. However, there appeared to be more in the energy storing structures compared with the non energy storing structures. MMP9 activity was detected in some samples. A higher number of the CDET extracts contained MMP9 activity compared to extracts from the other structures. Discussion: The results of this study show higher levels of MMPs in energy storing structures than in non-energy storing structures. This suggests that there may be an increased demand for repair of micro-damage in these tendons and hence an increased capacity for matrix degradation. Previous studies on energy storing structures in the horse have shown that they do not undergo adaptive hypertrophy or a change in structural architecture in response to mechanical demand, unlike non-energy storing structures. The results of this study indicate that this lack of adaptation in energy storing structures is not due to a general deficiency in cell activity but may be a means of preventing increase in tendon stiffness and a subsequent decrease in efficiency. In order to maintain tendon integrity MMP activity must be matched by mechanisms to inhibit activity and/or to synthesize new matrix components. Degeneration may therefore occur when there is an imbalance between these processes


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 113 - 113
1 Dec 2020
Kempfert M Schwarze M Angrisani N Welke B Willbold E Reifenrath J
Full Access

Chronic rotator cuff tears are a major problem especially in the elderly population. Refixation is associated with high re-rupture rates. Therefore new implants or healing methods are needed. For a control of success biomechanical characteristics of native as well as treated tendons are of particular importance.

Currently, tensile tests with static material testing machines are the most common technique for the biomechanical characterization of tendons. Resulting values are the maximum force (Fmax), stiffness and the Young´s modulus. However, no information is given about the allocation of strains over the tendon area. In addition, the determination of Fmax results in tissue destruction thus foreclosing further evaluation like histology.

The Digital Image Correlation (DIC) is a contact-free non-destructive optical measuring method which gives information about distribution of strains by tracking the areal shift of an applied speckle pattern. The needed speckle pattern has to have a high contrast, a homogeneous distribution and a good adhesion to the surface. The method is established for the characterization of construction materials [1] to detect e.g. weak points. The present study examined if DIC is applicable for the complementary biomechanical evaluation of the sheep infraspinatus tendon.

Fine ground powder extracted from a printer cartridge was chosen as a starting point. Preliminary to the in vitro experiments, the powder was applied on sheets with different methods: brushing, blowing, sieving and stamping. Stamping showed best results and was used for further in vitro tests on cadaveric native tendons (n=5). First, the toner powder was transferred to coarse-grained abrasive paper using a brush and stamped on the tendon surface. Afterwards DIC analysis was performed. For the in vivo tests, the left infraspinatus tendon of two German black-headed Mutton Sheep was detached and then refixed with bone anchors, the right tendon was used as native control (authorization: AZ 33.19-42502-04-17/2739). 12 weeks after surgery the animals were euthanized, the shoulders were explanted and DIC measurement performed.

The speckle pattern could be applied adequately on the smooth tendon surfaces of native tendons. All specimens could be analyzed by DIC with sufficient correlation coefficients. The highest displacements were measured in the peripheral areas, whereas the central part of the tendon showed a low displacement. Repaired left tendons showed obvious differences already macroscopically. The tendons were thicker and showed inhomogeneous surfaces. Application of the toner powder by stamping was distinctly more complicated, DIC analysis could not produce sufficient correlation coefficients.

In summary, transfer of DIC to native infraspinatus tendons of sheep was successful and can be further transferred to other animal and human tendons. However, irregular surfaces in tendon scar tissues affect the application of an adequate speckle pattern with a stamp technique. Therefore, further modifications are necessary.

This research project has been supported by the German Research Foundation “Graded Implants FOR 2180 – tendon- and bone junctions” WE 4262/6-1.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 138 - 138
1 Nov 2021
Kinitz R Heyne E Thierbach M Wildemann B
Full Access

Introduction and Objective

Chronic tendinopathy is a multifactorial disease and a common problem in both, athletes and the general population. Mechanical overload and in addition old age, adiposity, and metabolic disorders are among the risk factors for chronic tendinopathy but their role in the pathogenesis is not yet unequivocally clarified.

Materials and Methods

Achilles tendons of young (10 weeks) and old (100 weeks) female rats bred for high (HCR) and low (LCR) intrinsic aerobic exercise capacity were investigated. Both Achilles tendons of 28 rats were included and groups were young HCR, young LCR, old HCR, and old LCR (n = 7 tendons per group/method). In this rat model, genetically determined aerobic exercise capacity is associated with a certain phenotype as LCR show higher body weight and metabolic dysfunctions in comparison to HCR. Quantitative real-time PCR (qPCR) was used to evaluate alterations in gene expression. For histological analysis, semi-automated image analysis and histological scoring were performed.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 19 - 19
1 Jan 2019
Mengoni M
Full Access

Ligaments and tendons are connective tissues with a highly hierarchical structure, from collagen fibres, to fibrils and fascicules. Their intricate structural arrangement produces an anisotropic non-linear elastic mechanical behaviour and a complex damage pattern before failure. Recent constitutive models have been developed with all parameters describing the structure of the tissue, with the advantage that they can in theory be measured on the tissue rather than being phenomenologically-derived. This is an ideal framework to model damage as its onset and propagation can be associated to changes in the structure directly.

In this preliminary study, the possibility to identify damage mechanisms in the tissue structure using in silico models was analysed for both the anterior cruciate ligament, with fascicules forming a helix with its longitudinal axis, and the patellar tendon, with fascicules co-aligned with its longitudinal axis. Tissues of interest were modelled as cylinders submitted to uniaxial tension. Damage was modelled as either a reduction of collagen volume fraction with increased strain, assuming the number of collagen fibres sustaining load decreases as fibres fail, or a reduction of the modulus of the fibres, assuming pre-failure damage of the fibres. Each damage mechanism was associated with a damage variable with different fibre stretch threshold for damage initiation and assuming linear variation of damage until an arbitrary failure point.

The apparent behaviour of the modelled tissues was significantly different as damage thresholds, damage mechanisms, type of fascicules were varied.

This preliminary work showed that using a structural constitutive model to describe occurrence and propagation of structural damage in an in silico model of hierarchical connective tissues is a framework that can clearly differentiate at a macroscopic level between different values of damage threshold and different damage mechanisms for tissue with co-aligned or helical fascicules.


Abstract

Objectives

Initial performance of sutured quadriceps tendon (QT) ACL graft constructs is not well studied in human tissue and the results of animal tissue testing may not extend to the human model. Two common methods of preserving human tissue are to freeze the specimens immediately after death or embalm with formalin solution. The purpose of this study is to compare elongations and loads in biomechanical testing of fresh-frozen to that of embalmed quadriceps tendon-suture constructs.

Methods

Twenty QT grafts were harvested from human cadaver specimens, 10 fresh-frozen and 10 embalmed. The grafts were prepared with the modified Prusik knot using a No.2 FiberWire (Arthrex, Naples, FL), mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subjected to tensile loading based on an established protocol. Each tendon was preconditioned with 3 cycles of 0–100N at 1Hz followed by a constant load of 50N for 1 minute and 200 cycles from 50–200N at 1Hz and then loaded to failure at a displacement rate of 20mm/min. Load and displacement data for each tendon-suture construct was recorded.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 98 - 98
1 Jan 2016
Verstraete M Van Der Straeten C Opsomer G De Lepeleere B Victor J
Full Access

An accurate evaluation of the mechanical properties of human tissue is key to understanding and successfully simulating (parts of) human joints. Due to the rapid post-mortem decay, however, the cadavers are usually frozen or embalmed. The main aim of this paper is to quantitatively compare the impact of both techniques on the biomechanical properties. To that extent, the Achilles tendons of seven cadavers have been tested. For each cadaver, one of the Achilles tendons was tested after being frozen for at maximum two weeks, whilst the other tendon was tested following a Thiel embalming process.

All specimens were gripped in custom made clamps and subjected to uniaxial tensile loading. The specimens were scanned using a micro-CT to determine their cross-sectional area, which allowed transferring the applied forces to stresses. During the tensile tests, the specimens’ elongation was measured both using the digital image correlation (DIC) technique and using linear variable displacement transducers (LVDT's) mounted across the grips. The former allowed to assess the severity of slip in the grips. As is well described in literature, the obtained stress-strain relationship is not linear (Figure 1). Accordingly, the following bilinear relationship was fitted through the data points using a least squares fit:

s = E0 e     e <= ê

s = E0 ê + E (e - ê)     e > ê

As a result, the stress-strain response is sub-divided in two regions: a toe-region (e <= ê) with a low slope and stiffness (E0) and a linear elastic region (e > ê) with a higher stiffness (E). Both stiffness values were subsequently compared between the fresh frozen and Thiel embalmed group. Given the non-normal distribution of the test data, the non-parametric Wilcoxon signed rank test was used to assess the statistical significance of the obtained results.

No statistically significant difference was observed between the stiffness of the toe-region (e <= ê) obtained from Thiel embalmed and fresh frozen specimens (p-value = 0.249). In the contrary, the stiffness of linear elastic region (e > ê) was significantly different between both groups (p-value = 0.046 – see Figure 2). An average, the Thiel embalmed specimens displayed a 36% higher stiffness compared to the fresh frozen specimens. The latter contrasts the findings of other studies reported in literature, which report a decrease of the stiffness following Thiel embalming. To the authors’ opinion, this discrepancy could either be attributed to a difference in testing protocol (embalming time, donor factors, …) or tissue perfusion kinetics (Achilles tendon is relatively massive).

In conclusion, this study has demonstrated that Thiel embalming significantly alters the biomechanical properties of tendons. Specimens that underwent Thiel embalming should therefore not be considered for determining input parameters for advanced numerical models.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 2 - 2
1 Oct 2015
Mansel C Gardiner N Kuzma-Kuzniarska M Hulley P Thompson M
Full Access

Introduction

Tendon disease and rupture are common in patients with diabetes and these are exacerbated by poor healing. although nanoscale changes in diabetic tendon are linked to increased strength and stiffness. The resistance to mechanical damage of a tissue may be measured using fatigue testing but this has not been carried out in diabetic tendon, although the toughness of diabetic bone is known to be reduced. The aim of this study was to measure the static fatigue behaviour of tendons from a streptozotocin (STZ)-induced rat model of diabetes, hypothesising that diabetes causes tendon to show lower resistance to mechanical damage than healthy tendon.

Materials and Methods

Diabetic (n=3, 12 weeks post-STZ) and age-matched control (n=3) adult male Sprague Dawley rats were culled, tails harvested and stored at −80ºC. Following defrosting, fascicles (5 per animal) were carefully dissected, mean diameter measured using an optical micrometer and mounted in a Bose Biodynamics test machine using custom grips in a PBS bath. Static fatigue testing at 30 MPa to failure enabled both elastic modulus (initial ramp) and steady state creep rate (gradient at creep curve inflexion) to be measured. Data are reported as median ± interquartile range and pw0.05 using a Mann-Whitney U test was taken as significant.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 121 - 121
1 Nov 2018
Musson D
Full Access

All cells exist within a 3D microenvironment where they are exposed to a multitude of mechanobiological cues, from nano-level cell/matrix interactions, to tissue-level mechanical strain. These cues are fundamental to maintaining tissue homeostasis, but when disrupted during disease, can promote pathological outcomes and impair healing. This is particularly true in tendons; 3D load bearing connective tissue structures composed of a complex arrangement of matrix proteins, organised in a highly aligned manner and maintained by tendon cells (tenocytes). When diseased or injured (termed tendinopathy), the tendon begins a journey of poor healing, characterised by mechanically inferior disorganised scar tissue which ultimately results in compromised or total loss of function. In both health and disease, the mechanobiological stimuli experienced by tenocytes will directly affect their behaviour, yet this is a poorly studied area of research. We have used decellularised tendon slices to mimic the structure of healthy tendon, and induced degradation to mimic tendinopathic tendon. We have re-seeded these slices with tenocytes or immune cells and are building a greater picture of the role that the structure and stiffness of the matrix has on cell behaviour in health and disease.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 30 - 30
1 Aug 2013
de Beer M
Full Access

Purpose:

The objective of this study was to determine the tensile strength of the different components of the rotator cuff tendons and their relationship to rotator cuff tears.

Method:

The tests were done on a newly designed and built test-bench that performed the tests at a consistent rupture speed. The tests were done on four fresh frozen cadaver shoulders. The capsular and tendinous layers of the rotator cuff were divided leaving them only attached on the humeral side. Separate tensile tests were done on these tendons, after they were divided into 10 mm wide strips before testing. The tendon thickness was also measured.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 500 - 500
1 Aug 2008
Maffulli N Ferran NA Oliva F Testa V
Full Access

Background: Recurrent peroneal tendon subluxation is uncommon. We report the results of a delayed anatomic repair using suture anchors. Using a case series we tested the null hypothesis that there are no differences between pre- and post-operative status following anatomical repair of the superior peroneal retinaculum.

Methods: In the period 1996 to 2001, we operated on 14 patients (all males; average age 25.3 ± 6.3 years, range 18–37) with traumatic recurrent unilateral peroneal tendon subluxation, with a followed up of 38 ± 3 (range 22 to 47) months.

Results: No patient experienced a further episode of peroneal tendon subluxation, and all had returned to their normal activities. Maximum calf circumference, functional ability, peak torque, total work and average power of plantar flexion were always lower in the operated leg, but the differences did not reach statistical significance. The AOFAS Ankle-Hindfoot Scale increased significantly from 54.3 ± 11.4 to 94.5 ± 6.4 (p = 0.03), with five patients reporting a fully normal ankle.

Conclusion: If an anatomic approach to treating the pathology is utilised, reattachment of the superior retinaculum is a most appropriate technique. It returns patients to a high level of physical activity, and gives high rate of satisfactory results both objectively and subjectively. Randomised control trials may be the way forward in determining the best surgical management method. However, the relative rarity of the condition and the large number of techniques make such a study difficult.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 275 - 276
1 Sep 2005
de Beer M Burger N van Rensburg J
Full Access

The objective of this study was to determine the tensile strength of the different components of rotator cuff tendons.

A test bench that performs tests at consistent rupture speed was used to do separate tensile tests on 10-mm strips of capsular and tendinous layers in four fresh frozen cadaveric shoulders. The layers were left attached only on the humeral side.

The maximum force was comparable but the elongation of the outer part of the tendon was greater, indicating that the capsular part would tear first. On average, a 10-mm strip of capsular layer failed at 170N with elongation of 7 mm, while a 10-mm strip of tendinous layer failed at 230N with elongation of 10 mm.

Using six fresh frozen cadaveric shoulders, we went on to determine the strength of the rotator hood, a thin layer of tendon extending beyond the tuberosity major and connecting the supraspinatus to the subscapularis via the bicipital tunnel. The rotator hood ruptured at a mean force of 70 N.

We concluded that the two layers of the cuff contribute equally to the strength. It is therefore important to repair both layers. The difference in elongation of the tendinous and capsular layers makes the capsular layer more vulnerable to elongation stress. The rotator hood is a strong and important structure, and it is important to repair it.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 181 - 181
1 May 2012
Sasahara J Takeda H Matsushita T Kurata T Koguchi A Oguro K Samejima Y Watarai K
Full Access

Tibial and femoral bone tunnel widening (TW) has been observed following anterior cruciate ligament (ACL) reconstruction. We developed a χ12 mm cannulated cancellous screw (Intercondylar Ligament Screw, ICLS) for femoral fixation to reduce TW.

The purpose of this study is to introduce our surgical method and its results. We employed an original ICLS system developed to reduce the needed distance between the tibial and femoral-fixation points (distance between fixation points, DbF) in ACL reconstruction. Five-strand (sometimes four or six-strand) hamstring grafts are connected to the ICLS. Tibial fixation is achieved with a Ligament Tension Screw, which had been developed by Murase et al. rom 2001 to 2008, 169 knees underwent ACL reconstruction at our hospitals using our ICLS system. TW was evaluated by radiographs at least three months postoperatively. An enlargement of more than 2 mm was considered TW. The following was also evaluated: range of motion, the limb symmetry index (LSI, injured leg divided by uninjured and multiplied by 100), value of knee extension power in OKC, anterior knee laxity, Lysholm score, and DbF. The average length of DbF was 38.1 mm (n=132). Only 6.7% (n=104) of cases showed more than 2 mm of TW. Mean LSI was 83.3%(n=77) four months postoperatively. The mean Lysholm score was 96.2(n=68) at three months after ACL reconstruction. The mean side-to-side difference in anterior tibial translation, measured with use of a KT-2000 or Knee Lax, was 1.60 mmï1/4N=57ï1/4‰.

We were able to reduce TW after ACL reconstruction using our ICLS system with good results.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 26 - 26
1 Mar 2013
Shepherd J Demirci T Legerlotz K Riley G Screen H
Full Access

Most cases of tendinopathy are believed to be overuse injuries rather than the result of a chronic event. The investigation of the fatigue properties of tendon is therefore of critical importance. This work considered the cyclic stress-relaxation and creep behaviour of two contrasting bovine tendon types – the largely postional digital extensor and the more energy storing deep digital flexor tendon. Fascicles were cyclically loaded (1Hz), to 1800 cycles of stress relaxation or to failure in creep, stopping some tests at 300, 900 or 1200 cycles to perform quasi-static failure tests or confocal imaging using a highly concentrated Acridine Orange solution. Creep tests were cycled to 60% of the ultimate tensile strength (UTS), while for stress relaxation, cyclic deformation to the strain associated with 60% UTS was used. Flexor tendon fascicles were found to exhibit reduced stress relaxation at all time points compared to the extensor fascicles and also showed an increase in the mean cycles to failure during creep testing. Evidence of fatigue damage was clear in the confocal images with breakdown of the collagen fibre alignment evident from 300 cycles; however it appears that some damage could occur without effect on the UTS of the fascicle. Despite what appears to be superior fatigue resistance in the flexor tendon fascicles, the matrix damage, certainly at early time points, appeared visually to be as severe as that observed with the extensor tendon fascicles.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 19 - 19
1 Oct 2015
Thorpe C Karunaseelan K Ng J Riley G Birch H Clegg P Screen H
Full Access

Introduction

Energy storing tendons such as the equine superficial digital flexor tendon (SDFT) stretch and recoil with each stride and therefore require a high degree of compliance compared to tendons with a purely positional function, such as the equine common digital extensor tendon (CDET). This extra extensibility is provided by a specialised interfascicular matrix (IFM), which provides greater sliding and recoil between adjacent fascicles in energy storing tendons. However, the composition of the IFM remains largely undefined. We hypothesised that the IFM in the SDFT has a distinct composition, with a greater abundance of proteoglycans and elastin which facilitate extension and recoil.

Materials and Methods

Transverse and longitudinal sections were cut from the mid-metacarpal regions of SDFTs and CDETs from 5 horses aged 3–7 years. Sections were stained using Alcian blue/Periodic acid Schiff to detect proteoglycans, elastic Van Giesson's to detect elastin, and immunohistochemistry was performed using antibodies for decorin, biglycan, fibromodulin, lumican and lubricin. Resultant images were graded by blinded observers to assess staining intensity in the IFM and fascicular matrix (FM), and statistical significance determined using ANOVA.