Advertisement for orthosearch.org.uk
Results 1 - 20 of 76
Results per page:
Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 234 - 234
1 Sep 2005
Noyes D Shaw M Birch N
Full Access

Study Design: Prospective randomised controlled trial. Objective: To determine whether topical application of autologous growth factors (AGF) and thrombin as a spray to large spinal wounds can reduce blood loss after lumbar spinal fusion. Subjects: Seventy patients undergoing single or multi-level lumbar spinal fusion were randomised to receive a spray of AGF and thrombin to the raw surfaces of the wound as a haemostat or to receive no spray, immediately prior to wound closure. Outcome Measures: Intra-operative swab and suction blood loss and post-operative loss into suction drains. Results: The median intra-operative blood loss in the two groups was similar (665 ml in the AGF/Thrombin spray group and 500 ml in the non-spray group), but the post-operative loss in the AGF/Thrombin spray group was 34% less than in the controls when expressed as the ratio of intra- to post-operative blood loss (median postoperative loss in AGF / Thrombin spray group 315 ml; median loss in the non-spray group 360 ml). There was an even greater difference (44%) when intra-operative blood loss was more than 500ml (median loss in AGF/Thrombin spray group 340 ml; median loss in the non-spray group 520 ml). Conclusions: AGF/Thrombin spray applied to lumbar spine wounds reduces blood loss generally, but more particularly when the intra-operative loss has been considerable. This effect is probably due to local replacement of haemostatic agents when these have been systemically depleted by the surgical procedure. This study provides evidence to support the use of AGF/Thrombin spray as an effective haemostatic agent in major spinal surgery


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 292 - 292
1 May 2009
Hanratty B Bunn R Doyle T Marsh D Li G
Full Access

Thrombin related peptide (TP 508) is a 23 amino-acid synthetic peptide that mimics a portion of the receptor-binding domain of the human thrombin molecule. Thrombin triggers both proteolytic activated receptors and non proteolytic activated receptors to bring about a mixture of responses ranging from tissue breakdown and clot formation, to new vessel formation and tissue repair. TP 508 stimulates only the non proteolytic activated receptors, and this initiates repair and angiogenesis but not clot formation or tissue breakdown Previous studies have shown that TP508 can stimulate repair in the dermal and musculoskeletal tissues by promoting angiogenesis and enhancing the proliferation and migration of cells. High energy fractures are associated with a delay in healing. We hypothesized that high energy fracture healing would be improved with the use of TP508, and that the dose and site of application would have importance. Methods: 80 CD 1 Mice were randomised into four groups; all underwent a high energy quadriceps muscle crush and a femoral fracture on the left hind limb. In each case the fracture was reduced and held with an external fixator. At the time of operation Group I received a dose of 100ìg TP 508 into the fracture, Group II 100ìg into the surrounding damaged soft tissue, Group III a dose of 10ìg into the fracture, and group IV (the control group) received PBS carrier into the fracture. 24 animals were sacrificed on day 21 and the remaining 56 mice on day 35. Of the 35 day old animals 8 in each group had both femora harvested and the biomechanical properties were tested using the 3-point bending technique. Specimens from the 21 day old animals and remaining 35 day old animals were used for histological analysis. All 80 animals had digital radiographs taken each week. Using image analysis software five pixel density graphs were generated across each fracture gap. A validated semi quantitative analysis was used to score each graph and the total accumulated for each radiograph. The width of the fracture calus was measured and expressed as a ratio of the femur diameter. Results: Mechanical testing showed significantly greater stiffness in group I when compared to control (p < 0.05), and a dose dependent trend of increasing strength. Radiographic analysis showed greater healing of fracture and callus formation in Group I compared to Groups II, III, and IV, at both three and five weeks post-fracture (P< 0.05). Histological analysis showed an increase in bone formation in group I compared to the other groups. Conclusion: This data from this model, suggests that TP508 enhances healing in high energy fractures. The results also suggest that the effects of TP508 are dose dependant, and are greater when delivered into the fracture site


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_3 | Pages 15 - 15
1 Apr 2019
Gibbs VN Raval P Rambani R
Full Access

Background of study. There has been an exponential increase in the use of direct thrombin (DT) and factor Xa inhibitors (FXI) in patients with cardiovascular problems. Premature cessation of DT/FXI in patients with cardiac conditions can increase the risk of coronary events. Our aim was to ascertain whether it is necessary to stop DT and FXI preoperatively to avoid postoperative complications following hip fracture surgery. Materials and Methods. Prospective data was collected from 189 patients with ongoing DT/FXI therapy and patients not on DT/FXI who underwent hip fracture surgery. Statistical comparison on pre- and postoperative haemoglobin (Hb), ASA grades, comorbidities, operative times, transfusion requirements, hospital length of stay (LOS), wound infection, haematoma and reoperation rates between the two groups was undertaken. Results. There were 91 patients in the DT/FXI group (DTX) and 88 in the non-DTX group (NDTX). Mean age was 81.9 years. There was no difference in ASA grade, number of comorbidities (except cardiac comorbidities), age, gender and operation times between the groups. Mean preoperative Hb was 12.9 g/dl and 13.5 g/dl respectively in the DTX and NDTX. 4 and 2 patients respectively required transfusions postoperatively in the DTX and NDTX (p= 0.17). We found no difference with respect to LOS, wound infection, haematoma and reoperation rates between the two groups postoperatively. Conclusions. Our study suggests that maintaining DT and FXI therapy throughout the perioperative period in high risk patients with femoral neck fractures is not associated with an increased risk of bleeding or complications following hip fracture surgery


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 223 - 223
1 Sep 2005
Li G McILmurray L Ryaby J Carney DH Wang H
Full Access

The thrombin-related peptide, TP508, is a synthetic 23 amino acid peptide, which represents the receptor binding domain of thrombin. TP508 mimics thrombin by interacting with receptors on cells involved in tissue repair. TP508 has been shown to enhance revascularization of injured tissue, and promote soft tissue wound healing, cartilage repair, and fracture repair. The aim of this study is to (1) test the effect of TP508 on bone regeneration during distraction osteogenesis; (2) study the chemotactic effect of TP508 on human osteoblasts. Unilateral tibial osteoectomies were performed and stabilized with MX100 Orthofix lengthener in 5 male adult NZW rabbits. After 7 days, distraction was initiated at rates of 1.4 mm / day for 6 days. TP508 (100 μg/ml, n=2; 10 μg/ml, n=1) or saline (300 μl, n=2) was injected into the osteotomy / lengthening gap at days 1, 7 and 14 post surgery. Animals were sacrificed at 2 weeks after leg lengthening. Bone formation in the regenerate was assessed by radiography, quantitative computed tomography (pQCT) and histology. For chemotaxis studies, MG63 cells were cultured on glass cover slips for three days, and then inverted onto a Dunn chamber slide and sealed with dental wax. Gradients of TP508 (1, 10, 100 μg/ml) were added to the outer well and plain medium to the inner well. A sequence of images of the cells between the wells was taken via a CCD camera for 9 hours at interval of 10 minutes. Movements of individual cells were tracked and statistically analysed by a specially written Macro program. The Rayleigh test for unimodal clustering was used to determine the directional chemotactic movements. The radiographic evaluation indicated a significant increase in new bone in the distraction regenerate in the TP508 treated groups at 1 and 2 weeks. pQCT images at 2 weeks demonstrated more advanced bone formation in the TP508 treated animals compared to the control. The mean total bone mineral density (BMD) of the regenerate, obtained from 3 slices was significantly greater (p = 0.019, t-test) in the TP508 treated group (BMD = 479.20 +/− 35.57 mg/ccm) than that in the saline control group (BMD = 355 +/− 2.83 mg/ccm). The histological evaluation supported the radiographic and the pQCT results. For chemotaxis study, no directional movements of the cells were found in the controls, whereas the MG63 cells were strongly chemotactic to TP508 at 1, 10 and 100 μg/ml concentrations. This preliminary study shows that administration of TP508 enhances bone formation during distraction osteogenesis in the rabbit. The findings also show that TP508 has a chemotactic effect on osteoblasts, consistent with the effect of TP508 on fracture repair. A large animal study is in the process to confirm these findings and explore the underlying mechanisms


Bone & Joint Research
Vol. 5, Issue 2 | Pages 37 - 45
1 Feb 2016
Roh YH Kim W Park KU Oh JH

Objectives. This study was conducted to evaluate the cytokine-release kinetics of platelet-rich plasma (PRP) according to different activation protocols. Methods. Two manual preparation procedures (single-spin (SS) at 900 g for five minutes; double-spin (DS) at 900 g for five minutes and then 1500 g for 15 minutes) were performed for each of 14 healthy subjects. Both preparations were tested for platelet activation by one of three activation protocols: no activation, activation with calcium (Ca) only, or calcium with a low dose (50 IU per 1 ml PRP) of thrombin. Each preparation was divided into four aliquots and incubated for one hour, 24 hours, 72 hours, and seven days. The cytokine-release kinetics were evaluated by assessing PDGF, TGF, VEGF, FGF, IL-1, and MMP-9 concentrations with bead-based sandwich immunoassay. Results. The concentration of cytokine released from PRP varied over time and was influenced by various activation protocols. Ca-only activation had a significant effect on the DS PRPs (where the VEGF, FGF, and IL-1 concentrations were sustained) while Ca/thrombin activation had effects on both SS and DS PRPs (where the PDGF and VEGF concentrations were sustained and the TGF and FGF concentrations were short). The IL-1 content showed a significant increase with Ca-only or Ca/thrombin activation while these activations did not increase the MMP-9 concentration. Conclusion. The SS and DS methods differed in their effect on cytokine release, and this effect varied among the cytokines analysed. In addition, low dose of thrombin/calcium activation increased the overall cytokine release of the PRP preparations over seven days, relative to that with a calcium-only supplement or non-activation. Cite this article: Professor J. H. Oh. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols. Bone Joint Res 2016;5:37–45. doi: 10.1302/2046-3758.52.2000540


Background. Few studies have compared aspirin with DOACs (direct oral anticoagulants = direct thrombin inhibitors and factor Xa inhibitors) for venous thromboembolism (VTE) prophylaxis following total hip and knee replacement (THR and TKR). We assessed the efficacy and safety of aspirin compared with DOACs for VTE prophylaxis following THR and TKR using the world's largest joint replacement registry. Methods. We studied the National Joint Registry linked to English hospital inpatient episodes for 218,650 THR and TKR patients. Patients receiving aspirin were matched separately to (1) direct thrombin inhibitors, and (2) factor Xa inhibitors using propensity scores. Outcomes assessed at 90 days included VTE, length of stay, and adverse events. Results. Following THR, the risk of VTE was significantly lower in patients receiving direct thrombin inhibitors (0.44%; odds ratio (OR)=0.69, 95% confidence interval (CI)=0.55–0.87, p=0.002) and factor Xa inhibitors (0.37%; OR=0.63, CI=0.47–0.85, p=0.003) compared with aspirin (0.63%). Following THR, direct thrombin inhibitors (coefficient=−0.37, CI=−0.43 to −0.31, p<0.001) and factor Xa inhibitors (coefficient=−0.80, CI=−0.87 to −0.74, p<0.001) reduced length of stay compared with aspirin. Similar findings for both outcomes were observed following TKR. Compared with aspirin, DOACs did not increase the risk of short-term revision surgery; reoperation; major haemorrhage; wound disruption; surgical site infection; and mortality. Conclusions. Following THR and TKR, the risk of VTE was lower in patients receiving DOACs compared with aspirin. DOACs were associated with a reduced length of stay, and DOACs did not increase the risk of further surgery, wound problems, bleeding complications, or mortality compared with aspirin


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 62 - 62
17 Nov 2023
Lan T Wright K Makwana N Bing A McCarthy H Hulme C
Full Access

Abstract. Objectives. Bone marrow aspirate concentrate (BMAC), together with fibrin glue (Tisseel, Baxter, UK) and Hyaluronic acid (HA) were used as a one-step cell therapy treating patients with ankle cartilage defects in our hospital. This therapy was proven to be safe, with patients demonstrating a significant improvement 12 months post-treatment. Enriched mesenchymal stem cells (MSCs) in BMAC are suggested inducers of cartilage regeneration, however, currently there is no point-of-care assessment for BMAC quality; especially regarding the proportion of MSCs within. This study aims to characterise the cellular component of CCR-generated BMAC using a point-of-care device, and to investigate if the total nucleated cell (TNC) count and patient age are predictive of MSC concentration. Methods. During surgery, 35ml of bone marrow aspirate (BMA) was collected from each patients’ iliac crest under anaesthesia, and BMAC was obtained via a commercial kit (Cartilage Regeneration kit, CCR, Innotec. ®. , UK). BMAC was then mixed with thrombin (B+T) for injection with HA and fibrinogen. In our study, donor-matched BMA, BMAC and B+T were obtained from consented patients (n=12, age 41 ± 16years) undergoing surgery with BMAC therapy. TNC, red blood cell (RBC) and platelet (PLT) counts were measured via a haematology analyser (ABX Micros ES 60, Horiba, UK), and the proportion of MSCs in BMA, BMAC and B+T were assessed via colony forming unit-fibroblast (CFU-F) assays. Significant differences data in matched donors were tested using Friedman test. All data were shown as mean ± SD. Results. Mean TNC counts in BMA and BMAC were not significantly different (14.0 ± 4.4 million/ml and 19.4 ± 32.9 million/ml, respectively, P>0.9999). However, TNC counts were significantly lower in B+T compared to BMAC (9.7 ± 24.5 million/ml and 19.4 ± 32.9 million/ml, respectively, P=0.0167). Similarly, PLT counts were decreased in B+T compared to BMAC (40.7 ± 30.7 million/ml and 417.5 ± 365.5 million/ml, respectively, P<0.0001), however, PLTs were significantly concentrated in BMAC compared to BMA (417.5 ± 365.5 million/ml and 114.8 ± 61.6 million/ml, respectively, P=0.0429). RBC counts were significantly decreased in BMAC and B+T compared to BMA (P=0.0322 and P<0.0001, respectively). Higher concentration of MSCs were observed in BMAC compared to BMA (0.006% ± 0.01% and 0.00007% ± 0.0001%, respectively, P=0.0176). Similar to TNCs and PLTs, the proportion of MSCs significantly decreased in B+T compared to BMAC (0.0004% ± 0.001% and 0.006% ± 0.01%, respectively, P=0.0023). Furthermore, patient age and TNC counts did not correlate with MSC concentration (Spearman's Rank test, P=0.3266 and P=0.4880, respectively). Conclusions. BMAC successfully concentrated PLTs, but BMAC preparations were highly variable. Mixing BMAC and thrombin however, as described in the CCR protocol, resulted in a dramatic reduction in TNCs, PLTs and MSCs. TNC counts and patient age could not be used to predict the MSC proportion in the BMAC based on current data. Future work aims to look at the biomolecule profile of BMAC plasma, and to correlate them to patient clinical outcomes. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 322 - 323
1 Sep 2005
Zheng M Kirilak L Han R Xu J Wood D Asolananthan N Stewart G Henry P
Full Access

Introduction and Aims: Fibrin-sealant has been recommended as a tissue glue for autologous chondrocyte implantation. It is known that the active compound of fibrin-sealant is thrombin, but its effect on chondrocytes is still unclear. The aims of this study are to examine if fibrin-sealant stimulates proliferation and survival of human chondrocytes. Method: To determine if human chondrocytes express thrombin receptors, we have conducted immunoconfocal analyses and RT-PCR for the detection of PAR type I, II, III and IV. To examine if thrombin activates intracellular signalling of chondrocytes, we have examined the intracellular calcium signalling by thrombin. Proliferation of chondrocytes was also tested with various concentrations of thrombin. The migration of chondrocytes was monitored by co-culturing of the cells with fibrin-sealant for up to 15 days. Results: Primary human chondrocytes express thrombin receptor PAR types I, II, II and IV as evidenced by immunohistochemistry and RT-PCR. Induction of intracellular calcium signals was evidenced in majority of chondrocytes at 100 seconds after addition of thrombin. To confirm if evaluation of calcium signal activation is by a specific PAR receptor, we have examined the effect of specific peptides, which mimic the receptor activation on calcium signalling. The result showed that expression of PAR I and II receptor in chondrocytes is responsible for the activation of intracellular calcium. When human chondrocytes were co-cultured with thrombin at a dose between 1u/mL to 10u/mL, there was no effect on cellular proliferation at 24 hours. However at 48 hours, thrombin stimulated proliferation and survival of chondrocytes in a dose-dependent manner. A maximum of threefolds induction was evidenced at a dose of 10u/mL (p< 0001). Co-culture of chondrocytes with fibrin-sealant showed that after 12 hours only a few cells had migrated from the membrane to the fibrin-sealant, but after 36 hours many cells had formed a layer on the surface of the fibrin-sealant. By 15 days of co-culture, it was evidenced that the majority of chondrocytes were migrating into the fibrin-sealant. Conclusion: The results of this study show that human chondrocytes express thrombin receptor and fibrin-sealant is capable of inducing chondrocyte proliferation and migration


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 480 - 480
1 Apr 2004
Zheng M Kirilak L Han R Xu J Asokananthan N Stewart G Henry P Wood D
Full Access

Introduction Fibrin-sealant has been widely used clinically for the protection of haemorrhage, wounds and tissue fluid leakage. Recently fibrin-sealant has been recommended as a tissue glue for autologous chondrocyte implantation. It is known that the active compound of fibrin-sealant is thrombin but its effect on chondro-cyte is still unclear. The aims of this study are to examine if fibrin-sealant stimulates proliferation and survival of human chondrocytes. Methods Primary human chondrocytes derived from articular cartilage were used for the detection of thrombin receptors RAR type I, II, III and IV by immunohistochemistry and RT-PCR. To examine the effect of thrombin on chondrocytes, the changes in free intra-cellular calcium were monitored after the addition of thrombin. Proliferation of chondrocytes were also tested with various concentrations of thrombin. The survival of chondrocytes was monitored by co-culturing of the cells with fibrin-sealant for up to 15 days. Primary human chondrocytes express thrombin receptor RAR types I, II, III and IV as evidenced by immunohistochemistry and RT-PCR. However, the level of expression appears to be varied between cells. This has been reflected by the measurement of intracellular calcium signal in chondrocytes. Results Induction of intracellular calcium signals was evidenced in the majority of chondrocytes at 100 seconds after addition of thrombin. When human chondrocytes were co-cultured with thrombin at a dose between 1u/ml to 10u/ml, there was no effect on cellular proliferation at 24 hours. However, at 48 hours thrombin stimulated proliferation and survival of chondrocytes in a dose dependent manner. A maximum of three folds induction was evidenced at a dose of 10u/ml (p< 0001). Co-culture of chondrocytes with fibrin-sealant showed that after 12 hours only a few cells had migrated from the membrane to the fibrin-sealant, but after 36 hours many cells had formed a layer on the surface of fibrin-sealant. By 15 days of co-culture, it was evidenced that majority of chondrocytes were migrating into the fibrin-sealant. Immunohistology study showed that these cells express type II collagen, suggesting that they maintain the phenotype of chondrocytes. Conclusions The results of this study show that human chondrocytes express thrombin receptor and fibrin-sealant is capable of inducing chondrocyte proliferation and maintain the survival of chondrocytes. In relation to the conduct of this study, one or more of the authors is in receipt of a research grant from a non-commercial source


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 136 - 136
11 Apr 2023
Glatt V Woloszyk A Agarwal A
Full Access

Our previous rat study demonstrated an ex vivo-created “Biomimetic Hematoma” (BH) that mimics the intrinsic structural properties of normal fracture hematoma, consistently and efficiently enhanced the healing of large bone defects at extremely low doses of rhBMP-2 (0.33 μg). The aim of this study was to determine if an extremely low dose of rhBMP-2 delivered within BH can efficiently heal large bone defects in goats. Goat 2.5 cm tibial defects were stabilized with circular fixators, and divided into groups (n=2-3): 2.1 mg rhBMP-2 delivered on an absorbable collagen sponge (ACS); 52.5 μg rhBMP-2 delivered within BH; and an empty group. BH was created using autologous blood with a mixture of calcium and thrombin at specific concentrations. Healing was monitored with X-rays. After 8 weeks, femurs were assessed using microCT. Using 2.1 mg on ACS was sufficient to heal 2.5 cm bone defects. Empty defects resulted in a nonunion after 8 weeks. Radiographic evaluation showed earlier and more robust callus formation with 97.5 % (52.5 μg) less of rhBMP-2 delivered within the BH, and all tibias were fully bridged at 3 weeks. The bone mineral density was significantly higher in defects treated with BH than with ACS. Defects in the BH group had smaller amounts of intramedullary and cortical trabeculation compared to the ACS group, indicating advanced remodeling. The results confirm that the delivery of rhBMP-2 within the BH was much more efficient than on an ACS. Not only did the large bone defects heal consistently with a 40x lower dose of rhBMP-2, but the quality of the defect regeneration was also superior in the BH group. These findings should significantly influence how rhBMP-2 is delivered clinically to maximize the regenerative capacity of bone healing while minimizing the dose required, thereby reducing the risk of adverse effects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 33 - 33
11 Apr 2023
Ruksakulpiwat Y Numpaisal P Jeencham R
Full Access

Currently, fibrin glue obtained from fibrinogen and thrombin of human and animal blood are widely investigated to use as injectable hydrogel for tissue engineering which contributes to minimally invasive surgery, superior biodegradability, cell attachment, proliferation and regenerating new tissue. However, most of them fail to achieve to be used for tissue engineering application because of a risk of immune response and poor mechanical properties. To overcome the limitation of fibrin glue and to reduce the usage of products from human and animal blood, the artificial fibrin glue materials were developed. Recently, cellulose nanofiber (CNF) as reinforcing agent has been explored for many tissue engineering applications such as bone and cartilage due to its impressive biological compatibility, biodegradability and mechanical properties. CNF was extracted from cassava pulp. PEO-PPO-PEO diacrylate block copolymer is a biodegradable synthetic polymers which is water insoluble hydrogel after curing by UV light at low intensity. To enhance the cell adhesion abilities, gelatin methacrylate (GelMA), the denature form of collagen was used to incorporate into hydrogel. The aim of this study was to develop the artificial fibrin glue from CNF reinforced PEO-PPO-PEO diacrylate block copolymer/GelMA injectable hydrogel. CNF/PEO-PPO-PEO diacrylate block copolymer/GelMA injectable hydrogels were prepared with 2-hydroxy-1-(4-(hydroxy ethoxy) phenyl)-2-methyl-1-propanone (Irgacure 2959) as a photoinitiator. The physicochemical properties were investigated by measuring various properties such as thickness, gel fraction, mechanical properties and water uptake. At optimal preparation condition, CNF reinforced injectable hydrogel was successful prepared after curing with UV light within 7 minutes. This hydrogel showed gel fraction and water uptake of 81 and 85%, respectively. The cytotoxicity, cell adhesion and proliferation of CNF reinforced injectable hydrogel was presented. Cellulose nanofiber from casava pulp was successfully used to prepare injectable hydrogel as artificial fibrin glue for tissue engineering. The hydrogel showed good physical properties which can be applied to use for tissue engineering application


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 307 - 307
1 Jul 2011
Getgood A Brooks R Fortier L Rushton N
Full Access

Introduction: Platelet rich plasma (PRP) has been hypothesised to be of potential benefit to articular cartilage tissue engineering, through its release of autologous growth factors. The aim of this study was to ascertain whether the addition of thrombin is required to achieve platelet activation and sustained growth factor release in-vitro, when PRP is applied to a collagen based osteochondral scaffold. Methods: Collagen/glycosaminoglycan scaffolds were fashioned, to which equal combined volumes of test substances were added (n=3): 500μl PRP; 375μl PRP + 125μl autologous thrombin (3:1); 455μl PRP + 45μl bovine thrombin (10:1). One ml of DMEM/F12 medium was added to each scaffold and changed completely at 12/24 hours, and 3/10 days, following which release of TGF-β1, PDGF-AB and bFGF were measured using ELISA. Secondly, equal sized collagen/glycosaminoglycan and polylactide co-glycolide scaffolds were fashioned to which 500μl of PRP were added (n=3). Similar conditions were followed as previously except that only PDGF-AB was assayed. Results: A similar cumulative release profile of all growth factors was found over the 10 day period. An increase in growth factor release was seen in the PRP only group at all time points with PDGF-AB in particular reaching statistical significance at all time points (p< 0.006). These findings remained apparent when a correction for volume was made (p< 0.028) suggesting a particular role of the collagen in platelet activation. This was shown in the second experiment, in which a significantly increased cumulative volume of PDGF-AB was released from the collagen/glycosaminoglycan scaffold without thrombin activation (p< 0.04). Discussion: This study shows that collagen is a potent activator of platelets, requiring no further addition to achieve satisfactory growth factor release when applied clinically. These results suggest that if PRP is combined with polymer scaffolds, it should be activated with thrombin to achieve optimum growth factor release


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 70 - 71
1 Jan 2011
Getgood A Brooks R Fortier L Rushton N
Full Access

Introduction: Platelet rich plasma (PRP) has been hypothesised to be of potential benefit to articular cartilage tissue engineering, through its release of autologous growth factors. The aim of this study was to ascertain whether the addition of thrombin is required to achieve platelet activation and sustained growth factor release in-vitro, when PRP is applied to a collagen based osteochondral scaffold. Methods: Collagen/glycosaminoglycan scaffolds were fashioned, to which equal combined volumes of test substances were added (n=3): 500μl PRP; 375μl PRP + 125μl autologous thrombin (3:1); 455μl PRP + 45μl bovine thrombin (10:1). One ml of DMEM/F12 medium was added to each scaffold and changed completely at 12/24 hours, and 3/10 days, following which release of TGF-β1, PDGF-AB and bFGF were measured using ELISA. Secondly, equal sized collagen/glycosaminogly-can and polylactide co-glycolide scaffolds were fashioned to which 500μl of PRP were added (n=3). Similar conditions were followed as previously except that only PDGF-AB was assayed. Results: A similar cumulative release profile of all growth factors was found over the 10 day period. An increase in growth factor release was seen in the PRP only group at all time points with PDGF-AB in particular reaching statistical significance at all time points (p< 0.006). These findings remained apparent when a correction for volume was made (p< 0.028) suggesting a particular role of the collagen in platelet activation. This was shown in the second experiment, in which a significantly increased cumulative volume of PDGF-AB was released from the collagen/glycosaminoglycan scaffold without thrombin activation (p< 0.04). Discussion: This study shows that collagen is a potent activator of platelets, requiring no further additive to achieve satisfactory growth factor release when applied clinically. These results suggest that if PRP is combined with polymer scaffolds, it should be activated with thrombin to achieve optimum growth factor release


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 412 - 412
1 Jul 2010
Getgood A Brooks R Fortier L Rushton N
Full Access

Introduction: Platelet rich plasma (PRP) has been hypothesised to be of potential benefit to articular cartilage tissue engineering, through its release of autologous growth factors. The aim of this study was to ascertain whether the addition of thrombin is required to achieve platelet activation and sustained growth factor release in-vitro, when PRP is applied to a collagen based osteochondral scaffold. Methods: Collagen/glycosaminoglycan scaffolds were fashioned, to which equal combined volumes of test substances were added (n=3): 500μl PRP; 375μl PRP + 125μl autologous thrombin (3:1); 455μl PRP + 45μl bovine thrombin (10:1). One ml of DMEM/F12 medium was added to each scaffold and changed completely at 12/24 hours, and 3/10 days, following which release of TGF-β1, PDGF-AB and bFGF were measured using ELISA. Secondly, equal sized collagen/glycosaminogly-can and polylactide co-glycolide scaffolds were fashioned to which 500μl of PRP were added (n=3). Similar conditions were followed as previously except that only PDGF-AB was assayed. Results: A similar cumulative release profile of all growth factors was found over the 10 day period. Greater growth factor release was seen in the PRP only group at all time points with PDGF-AB in particular reaching statistical significance at all time points (p< 0.006). These findings remained apparent when a correction for volume was made (p< 0.028) suggesting a particular role of the collagen in platelet activation. This was shown in the second experiment, in which a significantly increased cumulative volume of PDGF-AB was released from the collagen/glycosaminoglycan scaffold without thrombin activation (p< 0.04). Discussion: This study shows that collagen is a potent activator of platelets, requiring no further addition to achieve satisfactory growth factor release when applied clinically. These results suggest that if PRP is combined with polylactide co-glycolide scaffolds, it should be activated with thrombin to achieve optimum growth factor release


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 124 - 124
1 Nov 2018
Costa-Almeida R Calejo I Domingues RMA Reis RL Gomes ME
Full Access

Tendon injuries constitute a major healthcare burden owing to the limited healing ability of these tissues and the poor clinical outcomes of surgical repair treatments. Recent advances in tendon tissue engineering (TTE) strategies, particularly through the use of biotextile technologies, hold great promise toward the generation of artificial living tendon constructs. We have previously developed a braided construct based on suture threads coated with gelMA:alginate hydrogel encapsulating human tendon cells. These cell-laden composite fibers enabled the replication of cell and tissue-level properties simultaneously. Based on this concept, in this study we explored the use of platelet lysate (PL), a pool of supra-physiological concentrations of growth factors (GFs), to generate a hydrogel layer, which is envisioned to act as a depot of therapeutic factors to induce tenogenic differentiation of encapsulated human adipose stem cells (hASCs). For this purpose, commercially available suture threads were first embedded in a thrombin solution and then incubated in PL containing hASCs. Herein, thrombin induces the gelation of PL and consequent hydrogel formation. After coating suture threads with the mixture of PL-ASCs, cells were found to be viable and homogeneously distributed along the fibers. Strikingly, hASCs encapsulated within the PL hydrogel layer around the suture thread were able to sense chemotactic factors present in PL and to establish connections between adjacent independent fibers, suggesting a tremendous potential of PL cell-laden hydrogel fibers as building blocks in the development of living constructs aimed at tendon repair applications


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 314 - 314
1 Mar 2013
Rocos B
Full Access

The introduction of direct thrombin inhibitors in arthroplasty surgery has reignited the debate on the risk of wound complications when using chemical thromboprophylaxis. It has been suggested that direct thrombin inhibitors might lead to an increased risk of systemic and operative site bleeding and wound sepsis when compared to low molecular weight heparin. In July 2009, departmental thromboprophylaxis policy for patients undergoing hip and knee replacement surgery (including revision) was changed from subcutaneous enoxaparin for the duration of inpatient stay to dabigatran for 10 days (knees) or 28 days (hips) unless contraindicated. In the 2 years prior to policy change, 1091 patients underwent hip or knee arthroplasty (Group A), with 1150 patients undergoing the same procedures in the 2 years following July 2009 (Group B). A minority of patients were already on warfarin (2% in group 1, 3% in group 2). This study presents a retrospective analysis of all patients who returned to theatre within 30 days of joint replacement surgery to assess whether the change in unit policy caused any discernible increase in bleeding-related complications. In group A, 20 / 1091 patients (1.8%) returned to theatre within 30 days. 9 were for reasons unrelated to thromboprophylaxis (mainly dislocated hips), 4 for gastrointestinal bleeding and 7 for wound complications (haematoma, wound breakdown, or infection). In group B, 22 / 1150 patients (1.9%) returned to theatre within 30 days. 13 were for unrelated reasons, 4 for gastrointestinal bleeding, and 5 for wound complications. One patient with a wound complication was on warfarin and therefore did not receive dabigatran. The lower wound complication rate in group B was not statistically different. This study, in a large heterogeneous group of patients, suggests that a change from enoxaparin to dabigatran does not increase the incidence of early infection, or the risk of bleeding at the operative site or the gastrointestinal tract


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_12 | Pages 32 - 32
1 Mar 2013
Rocos B Lankester B
Full Access

The introduction of direct thrombin inhibitors in arthroplasty surgery has reignited the debate on the risk of wound complications when using chemical thromboprophylaxis. It has been suggested that direct thrombin inhibitors might lead to an increased risk of systemic and operative site bleeding and wound sepsis when compared to low molecular weight heparin. In July 2009, departmental thromboprophylaxis policy for patients undergoing hip and knee replacement surgery (including revision) was changed from subcutaneous enoxaparin for the duration of inpatient stay to dabigatran for 10 days (knees) or 28 days (hips) unless contraindicated. In the 2 years prior to policy change, 1091 patients underwent hip or knee arthroplasty (Group A), with1150 patients undergoing the same procedures in the 2 years following July 2009 (Group B). A minority of patients were already on warfarin (2% in group 1, 3% in group 2). This study presents a retrospective analysis of all patients who returned to theatre within 30 days of joint replacement surgery to assess whether the change in unit policy caused any discernible increase in bleeding-related complications. In group A, 20/1091 patients (1.8%) returned to theatre within 30 days. 9 were for reasons unrelated to thromboprophylaxis (mainly dislocated hips), 4 for gastrointestinal bleeding and 7 for wound complications (haematoma, wound breakdown, or infection). In group B, 22/1150 patients (1.9%) returned to theatre within 30 days. 13 were for unrelated reasons, 4 for gastrointestinal bleeding, and 5 for wound complications. One patient with a wound complication was on warfarin and therefore did not receive dabigatran. The lower wound complication rate in group B was not statistically different. This study, in a large heterogeneous group of patients, suggests that a change from enoxaparin to dabigatran does not increase the incidence of local or systemic complications of sufficient severity to warrant return to theatre


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 22 - 22
1 Feb 2013
Rocos B Lankester B
Full Access

The introduction of direct thrombin inhibitors in arthroplasty surgery has reignited the debate on the risk of wound complications when using chemical thromboprophylaxis. It has been suggested that direct thrombin inhibitors might lead to an increased risk of systemic and operative site bleeding and wound sepsis when compared to low molecular weight heparin. In July 2009, departmental thromboprophylaxis policy for patients undergoing hip and knee replacement surgery (including revision) was changed from subcutaneous enoxaparin for the duration of inpatient stay to dabigatran for 10 days (knees) or 28 days (hips) unless contraindidated. In the 2 years prior to policy change, 1091 patients underwent hip or knee arthroplasty (Group 1), with1150 patients undergoing the same procedures in the 2 years following July 2009 (Group 2). A minority of patients were already on warfarin (2% in group 1, 3% in group 2). This study presents a retrospective analysis of all patients who returned to theatre within 30 days of joint replacement surgery to assess whether the change in unit policy caused any discernible increase in bleeding-related complications. In group 1, 23/1091 patients (2.1%) returned to theatre within 30 days. 8 were for reasons unrelated to thromboprophylaxis (mainly dislocated hips), 5 for gastrointestinal bleeding (mainly upper GI endoscopy) and 10 for wound complications (haematoma, wound breakdown, or washout of early infection). In group 2, 22 / 1150 patients (1.9%) returned to theatre within 30 days. 12 were for unrelated reasons, 5 for GI bleeding, and 5 for wound complications. The lower return to theatre rate in the second group was not statistically different. This study, in a large heterogeneous group of patients, suggests that a change from enoxaparin to dabigatran does not increase the incidence of early infection, or the risk of bleeding at the operative site or the gastrointestinal tract


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 6 - 6
1 Mar 2006
Dahl OE
Full Access

Major bone surgery causes damage to the bone marrow cells and destruction of blood vessels. This induces a tremendous local and systemic thrombin generation. This may trigger vascular instability during surgery that in seldom cases may be fatal in susceptible patients in particular if bone cement is implanted. The overall mortality following elective hip replacement is low since the patients are selected for the procedure and medically optimized. Following emergency hip fracture surgery the patients are substantially older, many have co-morbid conditions and the mortality is markedly higher. Vascular events dominate. Pulmonary embolism, and myocardial infarction are prominent together with pneumonia (a condition that trigger the coagulation system). Postoperatively, thrombin continues to be generated for a long time after surgery as a part of the inflammatory healing process. Vascular complications dominate and epidemiological studies have shown a general complication risk period lasting for nearly 3 months and significantly longer in subgroups. Although, mortality has decreased in recent years, morbidity continues to play an important and less focused role although with substantial health economic implications


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 195 - 195
1 Jul 2014
Malhotra A Pelletier M Yu Y Christou C Walsh W
Full Access

Summary Statement. An autologous thrombin activated 3-fold PRP, mixed with a biphasic calcium phosphate at a 1mL:1cc ratio, is beneficial for early bone healing in older age sheep. Introduction. The management of bone defects continues to present challenges. Upon activation, platelets secrete an array of growth factors that contribute to bone regeneration. Therefore, combining platelet rich plasma (PRP) with bone graft substitutes has the potential to reduce or replace the reliance on autograft. The simple, autologous nature of PRP has encouraged its use. However, this enthusiasm has failed to consistently translate to clinical expediency. Lack of standardisation and improper use may contribute to the conflicting outcomes reported within both pre-clinical and clinical investigations. This study investigates the potential of PRP for bone augmentation in an older age sheep model. Specifically, PRP dose is controlled to provide clearer indications for its clinical use. Methods. Eighty 11mm diameter defects of 20mm in depth were created in the cancellous bone within the epiphyseal region of the medial proximal tibia and distal femur of twenty five-year-old sheep. The defects were treated with three doses of an autologous thrombin activated PRP combined with a biphasic calcium phosphate (BCP). Activated platelet poor plasma (PPP) and the BCP alone provided reference groups, while the autograft and empty defects served as controls. All animals were sacrificed at four weeks post-operatively for radiographic assessment, micro-computed tomography quantification, histological assessment, histomorphometric quantification of new bone area and bone ingrowth, and weekly fluorochrome bone label quantification. TGF-β1 concentrations were quantified using enzyme-linked immunosorbent assays. Results. The PRP had a 2.9-fold (0.4) increase in platelet concentration, a 0.57-fold (0.09) decrease in leukocytes, and a 0.65-fold (0.11) decrease in fibrinogen. After activation, the PRP had an 8.9-fold (1.5) increase in TGF-β1 serum concentration above baseline. Eleven (11) mm diameter cancellous bone defects in the hind legs of five-year-old sheep do not spontaneously heal within four weeks. PRP dose had a significant effect on the radiographic grade. The highest dose of PRP treatment had a significantly greater micro-CT BV/TV over the BCP alone (PRP: 30.6±1.8%; BCP: 24.5±0.1%). All doses of PRP treatment were significantly greater than the BCP alone for both the histomorphometric new bone area (PRP: 14.5±1.3%; BCP: 9.7±1.5%) and bone ingrowth depth (PRP: 2288±210µm; BCP:1151±268µm). From week two onwards, PRP had a significant effect on the weekly bone ingrowth over BCP, however, autograft had the greatest amount of fluorescently labelled bone within the first three weeks. PRP has a significant effect on the shape and density of osteoblasts within the central region of the defect compared to the BCP alone, however, was not significantly different to autograft. TGF-β1 appeared a better predictor of healing outcomes than platelet concentration, however both had relatively weak correlations (r<.324). Conclusion. PRP induces new bone formation with a dose dependant response at four weeks when used with a biphasic calcium phosphate in older age sheep