Advertisement for orthosearch.org.uk
Results 1 - 20 of 68
Results per page:
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 207 - 207
1 May 2011
Malhotra R Kancherla R Kumar V Jayaswal A
Full Access

Introduction: Spine fractures are common manifestation of osteoporosis. After an acute osteoporotic vertebral compression fracture pain persisting even after 3 months and clinical tenderness should raise the suspicion of pseudarthrosis. Pseudarthrosis is not a rare complication of a benign osteoporotic vertebral collapse occurs in about 10% of cases after an acute collapse. Treatment plan needs to be individualized. Cement augmentation procedures such as kyphoplasty and vertebroplasty can be performed in the absence of neurological deficit, whereas decompression and stabilization is necessary in presence of neurological deficit. Study Design: Prospective cohort study. Methods: 31 patients who were diagnosed to have an acute osteoporotic vertebral compression fracture were managed conservatively. Pain persisting after 3 months and clinical tenderness in 5 patients prompted further investigation, revealing pseudarthrosis. None of them had neurological deficit. Imaging of two patients revealed vacuum sign with intravertebral cleft on plain radiographs and on MRI. All of them were at the Dor-solumbar junction and of crush typeof VCF. Results: The incidence of pseudoarthrosis after an oste-porotic VCF was found to be 16.12%. One patient was treated with kyphoplasty, one with vertebroplasty with good pain relief and restoration of functional ability, and rest three are awaiting kyphoplasty. Conclusion: High suspicion of pseudarthrosis is to be kept in mind as it is not an uncommon complication of benign osteoporotic collapse. Vertebral augmentation procedures such as kyphoplasty and vertebroplasty are promising procedures for treatment in absence of neurological deficit


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 43 - 43
1 Apr 2013
Boey J Tow B Yeo W Guo CM Yue WM Chen J Tan SB
Full Access

Introduction. The risk factors for new adjacent vertebral compression fracture (NAVCF) after Vertebroplasty (VP) or Kyphoplasty (KP) for osteoporotic vertebral compression fractures (VCFs) were investigated. Materials and methods. The authors retrospectively analyzed the incidence of NAVCFs in 135 patients treated with VP or KP for osteoporotic VCFs. Study period was from 2004 to 2008 with minimum follow-up of 2 years. Possible risk factors were documented: age, gender, body mass index, bone mineral density (BMD), co-morbidities, location of treated vertebra, treatment modality and amount of bone cement injected. Anterior-posterior vertebral body height ratio, intra-discal cement leakage into the disc space and pattern of cement distribution of the initial VCF and adjacent vertebral bodies were assessed on lateral thoracolumbar radiographs by 2 independent assessors. Results. 21 patients (15.6%) had subsequent symptomatic NAVCFs with a median time to new fracture was of 125 days. There was no difference in incidence of NAVCF between VP and KP groups (P>0.05). Significant differences were found between patients with and without NAVCF in terms of age, BMD, and the proportion of cement leakage into the disc space (P < 0.05). Greater age, intra-discal cement leakage and low BMD were found in patients with NAVCF. Conclusion. The most important risk factors affecting NAVCFs were age, osteoporosis and intra-discal cement leakage


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 150 - 150
1 Mar 2006
Gaitanis I Carandang G Ghanayem A Voronov L Phillips F Havey R Zindrick M Hadjipavlou A Patwardhan A
Full Access

Purpose: The purpose of this biomechanical study was to assess: (1) the effect of thoracic vertebral compression fracture (VCF) on kyphosis and physiologic compressive load path, and (2) the effect of balloon kyphoplasty and spinal extension on restoration of normal geometric and loading alignment. Methods: Six fresh human thoracic specimens, each consisting of three adjacent vertebrae were used. In order to create a VCF, IBTs were placed transpedicularly into the middle VB and cancellous bone was disrupted by inflation of IBTs. After cancellous bone disruption the specimens were compressed using bilateral loading cables until a fracture was observed. Fracture reduction by spinal extension, and then by balloon kyphoplasty was performed under a physiologic compressive preload of 250 N. The vertebral body heights, kyphotic deformity, and location of compressive load path were measured on video-fluoroscopy images. Results: The VCF caused anterior VB height loss of 3715%, middle-height loss of 3416%, segmental kyphosis increase of 147.0 degrees, and vertebral kyphosis increase of 135.5 degrees (p< 0.05). The compressive load path shifted anteriorly by 20% of A-P endplate width in the fractured and adjacent VBs (p=0.01). IBT inflation alone restored anterior VB height to 918.9%, middle-height to 9114%, and segmental kyphosis to within 5.65.9 degrees of pre-fracture values. The compressive load path returned posteriorly in all three VBs (p=0.00): the load path remained anterior to the pre-fracture location by 9–11% of the A-P endplate width. The extension moment fully restored the compressive load path to its pre-fracture location. Under this moment, the anterior and middle VB heights were restored to 858.6% and 749.4% of pre-fracture values, respectively. The segmental kyphosis was fully restored to its pre-fracture value; however, the middle height and kyphotic deformity of the fractured VB remained smaller than the pre-fracture values (p< 0.05). Conclusions: An anterior shift of the compressive load path in VBs adjacent to VCF can induce additional flexion moments. The eccentric loading may contribute to the increased risk of new VB fractures adjacent to an uncorrected VCF deformity. Extension moment could fully correct the segmental kyphosis but could not restore the middle height of the fractured vertebral body. Balloon kyphoplasty reduced the VCF deformity and partially restored the compressive load path to normal alignment


Bone & Joint Research
Vol. 5, Issue 11 | Pages 544 - 551
1 Nov 2016
Kim Y Bok DH Chang H Kim SW Park MS Oh JK Kim J Kim T

Objectives. Although vertebroplasty is very effective for relieving acute pain from an osteoporotic vertebral compression fracture, not all patients who undergo vertebroplasty receive the same degree of benefit from the procedure. In order to identify the ideal candidate for vertebroplasty, pre-operative prognostic demographic or clinico-radiological factors need to be identified. The objective of this study was to identify the pre-operative prognostic factors related to the effect of vertebroplasty on acute pain control using a cohort of surgically and non-surgically managed patients. Patients and Methods. Patients with single-level acute osteoporotic vertebral compression fracture at thoracolumbar junction (T10 to L2) were followed. If the patients were not satisfied with acute pain reduction after a three-week conservative treatment, vertebroplasty was recommended. Pain assessment was carried out at the time of diagnosis, as well as three, four, six, and 12 weeks after the diagnosis. The effect of vertebroplasty, compared with conservative treatment, on back pain (visual analogue score, VAS) was analysed with the use of analysis-of-covariance models that adjusted for pre-operative VAS scores. Results. A total of 342 patients finished the 12-week follow-up, and 120 patients underwent vertebroplasty (35.1%). The effect of vertebroplasty over conservative treatment was significant regardless of age, body mass index, medical comorbidity, previous fracture, pain duration, bone mineral density, degree of vertebral body compression, and canal encroachment. However, the effect of vertebroplasty was not significant at all time points in patients with increased sagittal vertical axis. Conclusions. For single-level acute osteoporotic vertebral compression fractures, the effect of vertebroplasty was less favourable in patients with increased sagittal vertical axis (> 5 cm) possible due to aggravation of kyphotic stress from walking imbalance. Cite this article: Y-C. Kim, D. H. Bok, H-G. Chang, S. W. Kim, M. S. Park, J. K. Oh, J. Kim, T-H. Kim. Increased sagittal vertical axis is associated with less effective control of acute pain following vertebroplasty. Bone Joint Res 2016;5:544–551. DOI: 10.1302/2046-3758.511.BJR-2016-0135.R1


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 72 - 72
17 Apr 2023
Hsieh Y Hsieh M Shu Y Lee H
Full Access

A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic polymer. We used thermoplastic biocompatible polymers Polycaproactone (PCL) to encapsulate calcium-based bone substitutes hydroxyapatite (Ca10(PO4)6(OH)2, HA) and tricalcium phosphate (TCP) to form a biodegradable injectable bone composite material. The space occupation ration PCL:HA/TCP is 1:9. After heating process, it can be injected to fracture site by specific instrument and then self-setting to immediate reinforce the vertebral body. The thermoplastic injection bone substitute can obtain good injection properties after being heated by a heater at 90˚C for three minutes, and has good anti-washout property when injected into normal saline at 37˚C. After three minutes, solidification is achieved. Mechanical properties were assessed using the material compression test system and the mechanical support close to the vertebral spongy bone. In vitro cytotoxicity MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed and no cell cytotoxicity was observed. In vivo study with three New Zealand rabbits was performed, well bone growth into bone substitute was observed and can maintain good mechanical support after three months implantation. The novel type thermoplastic injection bone substitute can achieve (a) adequate injectability and viscosity without the risk of cement leakage; (b) adequate mechanical strength for immediate reinforcement and prevent adjacent fracture; (c) adequate porosity for new bone ingrowth; (e) biodegradability. It could be developed as a new option for treating vertebral compression fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 32 - 32
7 Aug 2024
Raftery K Tavana S Newell N
Full Access

Introduction. Vertebral compression fractures are the most common type of osteoporotic fracture. Though 89% of clinical fractures occur anteriorly, it is challenging to replicate these ex vivo with the underlying intervertebral discs (IVDs) present. Furthermore, the role of disc degeneration in this mechanism is poorly understood. Understanding how disc morphology alters vertebral strain distributions may lead to the utilisation of IVD metrics in fracture prediction, or inform surgical decision-making regarding instrumentation type and placement. Aim. To determine the effect of disc degeneration on the vertebral trabecular bone strain distributions in axial compression and flexion loading. Methods. Eight cadaveric thoracolumbar segments (T11-L3) were prepared (N=4 axial compression, N=4 flexion). µCT-based digital volume correlation was used to quantify trabecular strains. A bespoke loading device fixed specimens at the resultant displacement when loaded to 50N and 800N. Flexion was achieved by adding 6° wedges. Disc degeneration was quantified with Pfirrmann grading and T2 relaxation times. Results. Anterior axial strains were 80.9±39% higher than the posterior region in flexion (p<0.01), the ratio of which was correlated with T2 relaxation time (R. 2. =0.80, p<0.05). In flexion, the central-to-peripheral axial strain ratio in the endplate region was significantly higher when the underlying IVDs were non-degenerated relative to degenerated (+38.1±12%, p<0.05). No significant differences were observed in axial compression. Conclusion. Disc degeneration is a stronger determinant of the trabecular strain distribution when flexion is applied. Load transfer through non-degenerate IVDs under flexion appears to be more centralised, suggesting that disc degeneration predisposes flexion-type compression fractures by shifting high strains anteriorly. Conflicts of interest. The authors declare none. Sources of funding. This work was funded by the Engineering & Physical Sciences Research Council (EP/V029452/1), and Back-to-Back


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 428 - 428
1 Sep 2012
Nikolopoulos D Sergides N Safos G Karagiannis A Tsilikas S Papagiannopoulos G
Full Access

BACKGROUND. Osteoporosis with subsequent osteoporotic vertebral compression fractures is an increasingly important disease due not only to its significant economic impact but also to the increasing age of our population. Pain reduction and stabilization are of primary importance with osteoporotic vertebral compression fractures. OBJECTIVE. To compare the efficacy and safety of balloon kyphoplasty and vertebroplasty for the treatment of vertebral compression fractures. MATERIALS & METHODS. From January 2004 to December 2009, 142 patients (32 males and 110 females), from 54 to 84 years old (mean age 67.4) were treated for 185 osteoporotic vertebral fractures of the thoracic or lumbar spine (level of fracture at Th5 or lower), with back pain for more than 8 weeks, and a visual analogue scale (VAS) score of 5 or more. Twenty-two patients (29 fractures) were lost at follow-up period and excluded. Patients were randomly allocated to percutaneous kyphoplasty (64%) or vertebroplasty (36%). All fractures were analyzed for improvement in sagittal alignment (Cobb angle, kyphotic angle, sagittal index, vertebral height). The patients were evaluated using the visual analog scale (VAS) and the Oswestry Disability Score. Radiographs were performed postoperatively, and at 1, 3, 6, and 12 months. RESULTS. The score according to pain, the patient's ability to ambulate independently and without difficulty, and the need for medications improved significantly (P < 0.001) after kyphoplasty or vertebroplasty. No significant difference could be found between both groups for the mean VAS and ODI preoperative and postoperative. Vertebral body height and kyphotic wedge angle of the T-L spine were also improved (p < 0.001); although kyphosis correction seems to be improved better in kyphoplasty than vertebroplasty. The rate of leakage was 12% for kyphoplasty and 32% for vertebroplasty; nevertheless most of the leakage was clinically asymptomatic and the rate of serious problems remained low (pulmonary embolism 0.01% kyphoplasty vs 0.6% vertebroplasty). New fractures in the next 6 months at the adjacent vertebrae were observed ∼ 15% in both groups. More PMMA was used in the kyphoplasty group than in the vertebroplasty group (5.5 +/− 0.8 vs. 4.1 +/− 0.5 mL, p < 0.001). Operation time was longer in balloon kyphoplasty compared to vertebroplasty (mean time 20±5min/vertebral fracture in group B vs 30±5min in group A). CONCLUSION. Both balloon kyphoplasty and vertebroplasty provided a safe and effective treatment for pain and disability in patients with vertebral compression fractures due to trauma or osteoporosis. Balloon kyphoplasty led to an ongoing reduction of fractured vertebrae and was followed by a lower rate of cement leakage


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 491 - 491
1 Apr 2004
Darwono A
Full Access

Introduction The aim of this study was to assess the effectiveness of percutaneous vertebroplasty as an invervention therapy in symptomatic vertebral compression fractures on pain relief and improvement of the quality of life of the patients. The increasing elderly population is assumed to be associated with an increased incidence of osteoporotic vertebral compression fractures. These fractures lead to a severe morbidity, decreasing quality of life, worsening co-morbidity and sometimes resulting in death. It is justifiable to treat stable vertebral compression fractures by non-operative therapy. Previous studies have shown that vertebroplasty as a non-operative treatment increases the vertebral body strength, restores vertebral body stiffness, reinforces fractured bone, prevents further deformity and alleviates the local pain. Complication rates are reputed to be low. Methods This is a prospective clinical study of percutaneous vertebroplasty in treating stable vertebral compression fractures. Since January 2001, 30 patients were treated by percutaneous vertebroplasty for 58 osteoporotic compression vertebral fractures, four non-osteoporotic stable compression fractures, two compression vertebral fractures due to metastatic carcinoma of the prostate and one due to metastatic carcimona of the cervix. Bone cement PMMA (Howmedica) mixed with Vancomycin antibiotic, and Tantalum Dust Powder (Cook Medical Co) was inserted to the facture site using Oseo-Site Bone Biopsy needle (Cook Medical Co). Pre and post treatment pain, morbidity, quality of life, hospital stay, complication and long term results were evaluated. Results The average hospital stay after vertebroplasty was 2.2 days. Signficant pain relief from 9.9 (pain scale) to 1.8. Improvement of the quality of life: siting, standing, walking without a lumbar brace was achieved one day after the treatment. In some cases the delay of improvement was influenced by the co-morbidity of the patients. No complications were found during the procedure of this treatment. Conclusions Vertebroplasy provided a promisingly good result in alleviating the local pain and improving the quality of life in osteoporotic thoraco-lumbar compression fractures. Prospective and long term results should be evaluated in greater sample size for non osteoporotic stable compression fractures. Although vertebroplasty does not change the nature of carcinoma, it improves the rest of the quality of life of someone suffering from metastatic fractures. In relation to the conduct of this study, one or more of the authors has received, or is likely to receive direct material benefits


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 482 - 482
1 Sep 2012
Popa I Negoescu D Poenaru D Faur C Florescu S
Full Access

BACKGROUND CONTEXT. Osteoporosis causes decreased bone mineral density, which predisposes to fragility fractures. Low-energy vertebral compression fractures are the most common type of osteoporotic fragility fracture. Prior studies have shown that only one-quarter of patients diagnosed with an osteoporotic fracture are referred or treated for osteoporosis. PURPOSE. To identify the rate of recurrent fractures after vertebroplasty and after the conservative treatment for patients aged 50 years and older who sustained low impact vertebral compressions fractures over a 6-month period. STUDY DESIGNED/SETTING. Prospective study. PATIENT SAMPLE. The sample included patients 50 years or older who had a low-energy vertebral compression fracture. The patients were divided into two groups: first group (n=24) - patients teated by vertebroplasty and the second group (n=34) - patients treated conservatory. There was no significant difference among the groups in terms of the vertebral levels or BMD. METHODS. Patients records were reviewed for fracture recurrence and in the same time we examined medical records for osteoporotic medication prescriptions, refferals to endocrinology and to dual-energy X-ray absorptiometry (DEXA) scans. RESULTS. Confounding factors of age at the procedure, sex and chronic steroids use were considered and found to have no statistically significant difference between the two groups and between those with fracture recurrence and those without fracture recurrence. Four vertebroplasty procedure resulted in a recurrent fracture within the first 6 months. In the patient group treated conservatory 8 patients sustained recurrent fractures. Patients with recurrent vertebral fracture didn't receive active osteoporosis treatment. Within 6 months after the fracture only 21% of patients were receiving active osteoporosis treatment. CONCLUSIONS. The incidence of recurrent fracture after vertebroplasty or after conservative treatment is substantial but have no statistically significant difference between the two groups. We consider that the recurrence rate is not related with the surgical intervention but is the result of natural history of the patient's osteoporosis because the patients do not understand the importance of initiating active therapeutic intervention for osteoporosis recommended by physicians


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 135 - 135
1 Mar 2010
Zaulan Y Alexandrovsky V Zilberstein B Shoham M Roffman M Bruskin A
Full Access

Background: Vertebral compression fractures can affect both sexes and constitute a major health care problem, due to negative impact on the patient’s function, quality of life and the costs to the health care system. Patients can be treated conservatively or by conventional vertebroplasty. Conventional vertebroplasty imposes technical challenges with possible complications including cement extravasations, nerve root compression, breaching the walls of the pedicle by the osteoplasty needle and prolonged fluoroscopic radiation exposure of the surgeon and the medical team at large. Methods: Retrospective comparative study of 20 cases of thoraco-lumbar vertebral compression fracture, treated with robotic assisted vertebroplasty (research group) versus 30 cases of fractures treated by conventional fluoroscopic vertebroplasty (compared group). All patients were diagnosed as suffering from acute vertebral compression fractures (up to 3 weeks from the traumatic event) and were scored 7 and above in the VAS. Results: The mean overall operation time of the fluoroscopic assisted vertebroplasty was 35 minutes compared to a mean operation time of 45 minutes at the robotic assisted vertebroplasty. There was a significant difference in the fluoroscopic time and subsequent exposure time to radiation between the groups: in the research group we used only an average of 3 seconds of fluoroscopic exposure (an average of 5 fluoroscopic images) compared to an average of 7 seconds of exposure (an average of 12 fluoroscopic images). No difference was found between the groups in regard with overall admission time or with the time between the operation and physiotherapy. Conclusions: Robotic assisted vertebroplasty is a new and safe approach aiming to shorten the duration of fluoroscopic exposure and radiogenic dose of the patient and surgeon. This novel procedure, promotes better accuracy with regard to the cement injected thus reducing the potential complication of the operation


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 390 - 390
1 Sep 2009
Zaulan Y Alexandrovsky V Zilberstein B Shoham M Roffman M Bruskin A
Full Access

Vertebral compression fractures can affect both sexes and constitute a major health care problem, due to negative impact on the patient’s function, quality of life and the costs to the health care system. Patients can be treated conservatively or by conventional fluoroscopic assisted vertebroplasty – injection of polymethylmethacrylate PMMA into the fractured vertebral body. Conventional vertebroplasty imposes technical challenges with possible complications including cement extravasations, nerve root compression, the possibility of breaching the walls of the pedicle by the osteoplasty needle and prolonged fluoroscopic radiation exposure of the surgeon and the medical team at large. We present here a comparative study of 20 cases of thoraco-lumbar vertebral compression fracture, treated with robotic assisted vertebroplasty (research group) versus 30 cases of fractures treated by conventional fluoroscopic vertebroplasty (compared group). All patients were diagnosed as suffering from acute vertebral compression fractures (up to 3 weeks from the traumatic event) and were scored 7 and above in the VAS. The mean overall operation time of the fluoroscopic assisted vertebroplasty was 35 minutes compared to a mean operation time of 45 minutes at the robotic assisted vertebroplasty. There was a significant difference in the fluoroscopic time and subsequent exposure time to radiation between the groups: in the research group we used only an average of 3 seconds of fluoroscopic exposure (an average of 5 fluoroscopic images) compared to an average of 7 seconds of exposure (an average of 12 fluoroscopic images). No difference was found between the groups in regard with overall admission time or with the time between the operation and physiotherapy. Conclusion: robotic assisted vertebroplasty is a new and safe approach aiming to shorten the duration of fluoroscopic exposure of the patient and surgeon thus reducing the exposure to radiogenic dose. This novel procedure, promotes better accuracy with regard to the cement injected thus reducing the potential complication of the operation


Abstract. Objectives. The principle of osteoporotic vertebral compression fracture (OVCF) is fixing instability, providing anterior support, and decompression. Contraindication for vertebroplasty is anterior or posterior wall fracture. The study objectives was to evaluate the efficacy and safety of vertebroplasty with short segmented PMMA cement augmented pedicle screws for OVCF with posterior/anterior wall fracture patients. Methods. A retrospective study of 24 patients of DGOU type-4 (vertebra plana) OVCF with posterior/anterior wall fracture, were treated by vertebroplasty and short segment PMMA cement augmented pedicle screws fixation. Radiological parameters (kyphosis angle and compression ratio) and clinical parameters Visual analogue scale (VAS) and Oswestry disability index (ODI) were analysed. Results. A significant improvement was noted in VAS (preoperative, 7.90 ±0.60; final follow-up 2.90 ± 0.54) and ODI (77.10 ± 6.96 to 21.30 ± 6.70), (P < 0.05). Neurological improvement was noted in all patients. Kyphosis corrected significantly from preoperative 23.20±5.90 to 5.30±1.40 postoperative with 5% (3.30± 2.95) loss of correction at final follow-up. Anterior vertebral height restored significantly from 55.80±11.9% t0 87.6±13.1% postoperative with 4.5±4.0% loss at final follow-up. One case had cement leakage was found, but the patient is asymptomatic. No implant-related complication was seen. No iatrogenic dural or nerve injury. Conclusions. Treatment with vertebroplasty with cement augmented screw fixation and direct decompression is a great option in treating such a complex situation in fragile age with fragile bones because It provides anterior support with cementing that avoids corpectomy. Short segment fixation has less stress risers at the junctional area


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 68 - 68
1 Mar 2008
Simmons E Huckell C Zheng Y
Full Access

Fifty-two patients older than sixty years had undergone multilevel lumbar decompression and fusion with instrumentation and reached a minimum two-year follow up. The relationship between abnormal sagittal plane configuration of the proximal segments and the number of lumbar fusion segments was radiographically analyzed. Group A (L1-L5 or S1) patients had two (20%) proximal vertebral compression fractures and four (40%) focal kyphosis. Group B (L2-L5 or S1) patients had one (6%) proximal vertebral compression fractures, five (33%) retrolisthesis and two (13%) focal kyphosis. Group C (L3-S1) had seven (39%) retrolisthesis. Group D had only one retrolisthesis and two disc height loss. Radiographically analyze the relationship between abnormal sagittal plane configuration of the proximal segments and the number of lumbar fusion segments in patients older than sixty years old. It appears that lumbar fusion up to L1 causes more kyphotic changes and topping off syndrome in the elderly. Fusion L2-L5 or S1 seems having less severe adjacent level degeneration. Retrolisthesis is a significant problem in fusion from L3-L5 or S1. The least adjacent level degenerative changes were seen in L4-S1 fusion. Selected limited instrumentation avoiding kyphotic segments or extending the fusion above the thoracolumbar junction may be the needed. Solid fusion was seen in 46 (88%) patients. There were ten patients in group A, and two (20%) had vertebral compression fractures in the most cranial vertebrae and four (40%) focal kyphosis. Of fifteen patients in group B, one (6%) had compression fracture, five (33%) retrolisthesis, and two (13%) focal kyphosis. Of eighteen patients in group C, retrolisthesis was seen in seven (39%) patients. Group D had nine patients with only one patient having retrolisthesis and two having disc height loss. Since January 1997, there were fifty-two consecutive patients with an average age of seventy years who have undergone multilevel lumbar decompression and posterolateral fusion with pedicle screw-rod instrumentation, and have reached a minimum two-year follow up. Postoperative radiographs of lumbar fusion were classified into group A (L1-L5 or S1), group B (L2-L5 or S1), group C (L3-L5 or S1) and group D (L4-S1)


Abstract. Objectives. To evaluate the safety and efficacy of vertebroplasty with short segmented cement augmented pedicle screws fixation for severe osteoporotic vertebral compression fractures (OVCF) with posterior/anterior wall fractured patients. Methods. A retrospective study of 24 patients of DGOU type-4 (vertebra plana) OVCF with posterior/anterior wall fracture, were treated by vertebroplasty and short segment PMMA cement augmented pedicle screws fixation. Radiological parameters (kyphosis angle and compression ratio) and clinical parameters Visual analogue scale (VAS) and Oswestry disability index (ODI) were analysed. Results. A significant improvement was noted in VAS (preoperative, 7.90 ± 0.60; final follow-up 2.90 ± 0.54) and ODI (77.10 ± 6.96 to 21.30 ± 6.70), (P < 0.05). Neurological improvement was noted in all patients. Kyphosis corrected significantly from preoperative 23.20 ± 5.90 to 5.30 ± 1.40 postoperative with 5% (3.30 ± 2.95) loss of correction at final follow-up. Anterior vertebral height restored significantly from 55.80 ± 11.9% to 87.6 ± 13.1% postoperative with 4.5 ± 4.0% loss at final follow-up. One case had cement leakage was found, but the patient is asymptomatic. No implant-related complication was seen. No iatrogenic dural or nerve injury. Conclusions. Treatment with vertebroplasty with cement augmented screw fixation and direct decompression is a great option in treating such a complex situation in fragile age with fragile bones because. Vertebroplasty is viable option for restoring vertebral anterior column in patients who are considered as contraindications for vertebroplasty, like DGOU-4. It provides anterior support avoiding corpectomy, minimise blood loss and also duration of surgery. Addition of short segment fixation gives adequate support with less stress risers at the junctional area


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 41 - 41
1 Jun 2012
Clamp J Klezl Z
Full Access

Vertebral compression fractures are very common. 250,000 are diagnosed annually in the United States with 80% due to osteoporosis. 1. Symptomatic relief with conservative therapy is often difficult to achieve. The consequence of significant pain is deterioration in quality of life and often in level of function. They independently increase mortality rate. 1. . Balloon kyphoplasty is a relatively new technique which stabilises the vertebral body and restores saggital spinal alignment. Excellent pain relief and improved functional outcome is reported. 2,3. We aim to confirm this. All patients receiving balloon kyphoplasty treatment at Derby Hospitals NHS Trust from April 2006 to August 2010 were entered prospectively onto a database. Visual Analogue Score (VAS) for pain and Oswestry Disability Index (ODI) for function were recorded. Technical data including number of levels, cement volume, screening time and kyphosis correction was recorded. 198 patients underwent balloon kyphoplasty between April 2006 and August 2010. Some data was incomplete. 105 patients had sufficient data for meaningful analysis. 170 levels were operated on in 105 patients. 65% (n=68) of patients were female and the average age was 74. The average pre-operative visual analogue score (VAS) was 8.2. This decreased to 4.0 in the immediate postoperative period. This dramatic improvement remained and was 4.1 at 6 weeks, 3.3 at 6 months and 3.6 at 1 year. The average pre-operative Oswestry disability index (ODI) was 58. This improved to 47 in the immediate post-operative period. At 6 weeks this had improved further to 40 and further improvements were seen at 6 months (ODI 37) and 1 year (ODI 38). Balloon kyphoplasty should be considered in all patients with ongoing pain following an acute vertebral compression fracture that doesn't respond to conservative treatment


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 485 - 485
1 Aug 2008
Oakland R Furtado N Wilcox R Hall R
Full Access

Introduction: A feature of osteoporosis is vertebral compression fractures (VCF). Experiments looking at predicting compressive strength of human lumbar vertebrae have showed a correlation between compressive strength, bone density and size of vertebral endplates. The objective of this study was to compare the actual versus predicted failure strength of osteoporotic human vertebrae in relation to creating a validated experimental model for a vertebral compression fracture. Methods: Twenty-six human vertebrae underwent CT scanning to evaluate bone mineral density (BMD) from a large and small region of interest (ROI) within the vertebral body (VB). Cranial, caudal and verage endplate surface area (SA) measurements were recorded. Specimens were axially compressed to failure and a regression analysis undertaken in which the failure load was fitted using both BMD alone and the product of the BMD and endplate SA. Results: Measurements of BMD from a large or small ROI showed a poor correlation when compared to vertebral failure strength. The product of BMD and endplate SA showed significant correlations with failure strength. The regression explains a significant proportion of the variation of the response variable. Discussion: Results from this study are consistent with published data which have established a good correlation between the product of endplate SA and BMD to vertebral compressive strength. BMD values from a large ROI and average or caudal endplate area provide the best prediction of failure strength. Experience from this study suggests that the experimental model is reproducible and accurate, however, further work is required on a larger data set to verify initial findings


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 494 - 494
1 Sep 2009
Quraishi NA Buchanan E Al-Ali S
Full Access

Background: Guidelines for the management of Low Back Pain (LBP) consistently recommend that the initial assessment focuses on the detection of serious spinal pathologies. In 1994 the UK Clinical Standards Advisory Group introduced the concept of “red flags”. One of these red flags is the first presentation of LBP in people over the age of 55 years. The aim of this study was to investigate the incidence of serious spinal pathologies in patients presenting with new onset of LBP over the age of 55 years. Method/Results: This was a prospective analysis of all patients presenting to a secondary care spinal triage service over a 3 year period (2005–2008). During the study period, in excess of 3000 patients were seen. Of these, a total of 70 patients presented with a first onset of LBP aged over 55 years and had no other red flags. Analysis of this group of patients revealed 2 serious spinal pathologies. Both of which were osteoporotic vertebral compression fractures. Both patients were over age 75. In addition 1 patient had severe central lumbar canal stenosis. Therefore, 2.3% of patients presented with the first onset of LBP > 55 years, of which 2.9% has serious pathology. Patients > 55 years with cancer or infection had other red flags in addition. Conclusion: In isolation the first onset of LBP over the age > 55 accounts for a small percentage of this secondary care population, of which 2.9% had vertebral compression fractures. Further research into the clinical value of this independent red flag or its added value in combination with other red flags is recommended


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 370 - 370
1 Mar 2004
Deramond H Palussi•re J
Full Access

Aims: To assess prospectively the effectiveness and safety of Cortossª, a new synthetic, biocompatible, highly radiopaque composite in the percutaneous augmentation of vertebral compression fractures. Methods: Patients with severe pain (> 50mm VAS) associated to radiographic evidence of osteoporotic or malignant vertebral compression fracture(s). Cortoss was injected with the help of a syringe-catheter system introduced into a 10 to 11-gauge needle under continuous ßuoroscopic control. All leakages and adverse events were to be reported. Assessments were made before vertebroplasty (bv) and after 3 days (3d), 1 week (1w), 1 month (1m), 3 (3m) and 6 months (6m). Results: Fifty-eight interventions were performed in 53 patients. Mean pain scores (mm VAS) decreased from 69 (bv) to 39 (3d), 39 (1w), 31 (1m), 23 (3m), 26 (6m). A mean (range) of 4.3 (1.5–8) mL of Cortoss was injected per vertebral body. Augmented vertebral bodies remained stable over time. Leakage of Cortoss occurred in 76% of interventions. No pulmonary emboli or persistent nerve root or medullary irritation occurred in association to leakage of Cortoss. One patient required local corticosteroid injection for pain associated to soft tissue leakage. The visibility of Cortoss on all imaging techniques was excellent and its use generally considered to be easy. Conclusions: The use of Cortoss for augmentation of vertebral compression fractures appears to be safe and effective and represents a promising biocompatible alternative to PMMA thanks to its radiopacity and ease of use


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 41 - 41
1 Mar 2010
Becker SWJ Wardlaw D Bastian L Van Meirhaeghe J Ranstam J Cummings S Boonen S
Full Access

Purpose: Balloon kyphoplasty (BKP) is a minimally invasive treatment for acute vertebral compression fractures (VCF) that aims both to correct associated vertebral deformity (reduce) and stabilize the fracture by injecting bone cement. We performed the first multicenter randomized trial to assess the effect of BKP. Method: Patients with 1–3 non-traumatic vertebral compression fractures diagnosed within 3 months were randomly assigned to receive either BKP (N=149) or usual nonsurgical care (NSC) (N=151). Measurements of quality of life, back pain and function, days of disability and bed rest were assessed at baseline, 1, 3, 6 and 12 months. Results: The primary outcome measure, the difference between groups in change from baseline scores in the physical component summary of the SF-36 questionnaire, improved 3.5 points (95% CI, 1.6 to 5.4; p=0.0004) more in the BKP group when averaged across 12 months of follow-up. Compared with the NSC group, those assigned to BKP also had greater improvement in quality of life and back function throughout 12 months of follow-up as measured by the EuroQol and Roland-Morris scales; a difference of 0.14 points (95% CI, 0.05 to 0.23; p=0.0023) more and 3.2 points (95% CI, 1.7 to 3.8; p< 0.0001) and reported fewer days of limited activity in the previous 2 weeks due to back pain (2.5 fewer days; 95% CI, 1.2 to 3.8; p=0.0001). New radiographically detected vertebral fractures occurred in 41.8% of subjects in the kyphoplasty and 37.8% in the nonsurgical group (4% difference; 95% CI −7.5 to 15.6; p=0.5). Conclusion: Compared to nonsurgical treatment, balloon kyphoplasty improved multiple measurements of quality of life, back pain and disability that last at least one year after the procedure. No difference is seen between groups in radiographically detected VCF’s (Clinicaltrials.gov number, NCT00211211)


Background. Balloon kyphoplasty (BKP) is a minimally invasive cementing procedure, occasionally used in patients with painful vertebral compression fractures (VCF). In this multicenter Swedish RCT, we evaluated the cost-effectiveness of BKP compared with standard medical treatment, Control, in osteoporotic patients with acute/sub-acute VCF (<3 months). In a multicenter European clinical study (FREE trial) including 300 patients and FU after one year, BKP was suggested to be a safe and effective procedure in selected patients. The current study includes the Swedish patients in the FREE trial Method: Hospitalized patients with a back pain level of at least 4/10 on a visual analogue scale due to of VCF between Th5–L5 (confirmed by MRI) were randomized to either BKP or Control treatment (standard medical treatment with pain medication and functional support). All VCF-associated costs (hospital, primary care, rehabilitation, community care, private care, pharmaceuticals, assistance by relatives, work absenteeism) were identified and reported from the perspectives of cost to society, and costs to the healthcare system. Primary outcome was quality of life change (QoL) measured with the preference based EQ-5D instrument. The accumulated quality adjusted life years gained (QALYs) and costs per QALY gained was assessed. Willingness to pay (WTP) for a QALY gained in Sweden was estimated at approximately SEK 600,000 (EURO 62,500). Sensitivity analyses were performed. Results. Between February 2003 and December 2005, 70 patients were randomized to BKP (n=35) or to standard medical treatment (n=35). Three patients in the Control group declined to participate in an economic evaluation, and only patients answering EQ-5D at all FU occasions (1-3-6-12-24 months) were included in the analyses, leaving in all 63 patients, BKP=32, Control=31. Baseline data were similar. The mean age in the BKP group was 72 years (71% women) vs. 75 years (78% women) in the Control group. Baseline difference in QoL was adjusted for using statistical methods. There were no cross overs. Four patients in the BKP group and three patients in the Control group died within two years of causes not related to the VCF. Costs were collected using “cost diaries” in mailed questionnaires after 1-3-6-12-18-24 months. Costs and EQ-5D values (0 at FU after death) were carried forward. Total mean societal cost per patient for BKP and Control was SEK 160,017 (SD 151,083) and SEK 84,816 (SD 40,954), respectively. The difference was significant 75,198 (95% CI 16,037 to 120,104). The accumulated mean difference in QALYs was 0.085 (−0.132 to 0.306) units in favour of BKP. Cost per QALY gained using BKP was SEK 884,682 (EURO 92,154) with high uncertainty assessed using the bootstrapping technique, and demonstrated on the cost-effectiveness plane and on the acceptability curve. When the EQ-5D values from all patients in the FREE trials were included in a sensitivity analysis, cost/QALY was SEK 359,146 (EURO 37,411) Conclusion: Costs were significantly higher for BKP compared with standard medical treatment, with no significant difference in QALYs gained. In this selected patient population with vertebral compression fracture due to osteoporosis, BKP could not be concluded as cost-effective after two years