Background and Purpose: Retrospective evaluation of short-term (8 weeks) and long-term (54 weeks) radiologic follow-up of vertebral
Introduction. Porous scaffolds for bone ingrowth have numerous applications, including correcting deformities in the foot and ankle. Various materials and shapes may be selected for bridging an osteotomy in a corrective procedure. This research explores the performance of commercially pure Titanium (CPTi) and Tantalum (Ta) porous scaffold materials for use in foot and ankle applications under simplified compression loading. Methods. Finite element analysis was performed to evaluate von Mises stress in 3 porous implant designs: 1) a CPTi foot and ankle implant (Fig 1) 2) a similar Ta implant (wedge angle = 5°) and 3) a similar Ta implant with an increased
Study Design: Retrospective Series. Objectives: To analyse loss of correction of the anterior
Introduction. Osteoporotic vertebral fractures can cause severe vertebral wedging and kyphotic deformity. This study tested the hypothesis that kyphoplasty restores vertebral height, shape and mechanical function to a greater extent than vertebroplasty following severe wedge fractures. Methods. Pairs of thoracolumbar “motion segments” from seventeen cadavers (70–97 yrs) were compressed to failure in moderate flexion and then cyclically loaded to create severe wedge deformity. One of each pair underwent vertebroplasty and the other kyphoplasty. Specimens were then creep loaded at 1.0kN for 1 hour. At each stage of the experiment the following parameters were measured: vertebral height and
High tibial osteotomy (HTO) is a common surgical procedure for treatment of patients with varus mal-alignment. The success rate of the procedure is strongly dependent on the quality of the correction. Thus, an accurate pre-planning is essential to ensure that the precise amount of alignment is achieved postoperatively. The purpose of this study was to simulate the HTO in a patient with varus deformity in order to explore the interactions between the
Eight consecutive patients with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation. The osteotomy was fixed with locking plates and screws. Post-operative assessment included planar X-rays, CT-scan and full leg standing X-rays. One three-planar, three bi-planar and four single-plane osteotomies were performed. Maximum weightbearing mechanical femoro-tibial coronal malalignment varied between 7° varus and 14° valgus (mean 7.6°, SD 3.1). Corrective angles varied from 7°–15°(coronal), 0°–13°(sagittal) and 0°–23°(horizontal). The maximum deviation between the planned pre-operative
Osteotomies around the knee are traditionally templated on 2D plain X-rays. Results are often inaccurate and inconsistent and multiplanar osteotomies are hard to perform. The aim of this study is to evaluate the feasibility and accuracy of virtual three-dimensional CT-based planning and correct execution of osteotomies around the knee with the aid of patient specific surgical guides and locking plates. Eight consecutive patients with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation. The osteotomy was fixed with locking plates and screws. Post-operative assessment included planar X-rays, CT-scan and full leg standing X-rays. One three-planar, three bi-planar and four single-plane osteotomies were performed. Maximum weightbearing mechanical femoro-tibial coronal malalignment varied between 7° varus and 14° valgus (mean 7.6°, SD 3.1). Corrective angles varied from 7°–15° (coronal), 0°–13° (sagittal) and 0°–23° (horizontal). The maximum deviation between the planned pre-operative
Introduction. Osteotomies around the knee are traditionally templated on 2D plain X-rays. Results are often inaccurate and inconsistent and multiplanar ostetomies are hard to perform. The aim of this study is to evaluate the feasibility and accuracy of virtual three-dimensional CT-based planning and correct execution of osteotomies around the knee with the aid of patient specific surgical guides and locking plates. Methods. Eight consecutive patients with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation. The osteotomy was fixed with locking plates and screws. Post-operative assessment included planar X-rays, CT-scan and full leg standing X-rays. Results. One three-planar, three bi-planar and four single-plane osteotomies were performed. Maximum weightbearing mechanical femoro-tibial coronal malalignment varied between 7° varus and 14° valgus (mean 7.6°, SD 3.1). Corrective angles varied from 7°-15°(coronal), 0°–13°(sagittal) and 0°–23°(horizontal). The maximum deviation between the planned pre-operative
Background. Osteotomies around the knee have been used to correct lower limb mal-alignment for over 50 years. The procedure is technically demanding and carries specific risks of neurovascular injury, incorrect planning and execution, and insufficient fixation. In recent years, with the advent of locking plates, fixation techniques have improved significantly but the correct planning and execution of the operation remains difficult. Despite the availability of CT and MRI 3D imaging, surgical planning is still traditionally performed on 2D plain X-rays [1]. Especially with multi-planar deformities, this technique is prone to error. The aim of this clinical pilot study is to evaluate the feasibility of virtual pre-operative three-dimensional planning and correct execution of osteotomies around the knee with the aid of patient specific surgical guides and locking plates. Patients and methods. Eight consecutive patients, presenting with significant malalignment of the lower limb were included in the study. Pre-operative CT scans of the affected limb and the normal contra-lateral side were obtained and 3D models of the patient's anatomy were created, using dedicated software (Mimics® 3-matic®, Materialise, Leuven Belgium) [2]. These models were used to evaluate the required surgical correction. The healthy contralateral limb was mirrored and geometrically matched to the distal femur or proximal tibia of the healthy side. A virtual opening wedge correction of the affected bone was used to match the geometry of the healthy contralateral bone. Standard lower limb axes measurements confirmed correction of the alignment [3]. Based on the virtual plan, surgical guides were designed to perform the planar osteotomy and achieve the planned wedge opening and hinge axis orientation (see figure 1). Apart from guiding the osteotomy, the patient specific surgical guide also guided drilling of the planned screw holes. Post-operative assessment of the correction was obtained through planar X-rays, CT-scan and full leg standing X-ray. Results. One three-planar, three bi-planar and four single-plane osteotomies were performed. All guides could be used during surgery and served accurate guidance of the osteotomy plane and screwholes. The guides matched the bone very well in all cases without remaining toggle. The maximum deviation between the planned pre-operative
Total hip arthroplasty (THA) is considered the preferred treatment for displaced proximal femoral neck fractures. However, in many countries this option is economically unviable. To improve outcomes in financially disadvantaged populations, we studied the technique of concomitant valgus hip osteotomy and operative fixation (VOOF). This prospective serial study compares two treatment groups: VOOF versus operative fixation alone with cannulated compression screws (CCSs). In the first series, 98 hip fixation procedures were performed using CCS. After fluoroscopic reduction of the fracture, three CCSs were placed. In the second series, 105 VOOF procedures were performed using a closing wedge intertrochanteric osteotomy with a compression lag screw and lateral femoral plate. The alignment goal was to create a modified Pauwel’s fracture angle of 30°. After fluoroscopic reduction of fracture, lag screw was placed to achieve the calculated correction angle, followed by inter-trochanteric osteotomy and placement of barrel plate. Patients were followed for a minimum of two years.Aims
Methods
Introduction. Senile kyphosis arises from anterior ‘wedge’ deformity of thoracolumbar vertebrae, often in the absence of trauma. It is difficult to reproduce these deformities in cadaveric spines, because a vertebral endplate usually fails first. We hypothesise that endplate fracture concentrates sufficient loading on to the anterior cortex that a wedge deformity develops subsequently under physiological repetitive loading. Methods. Thirty-four cadaveric thoracolumbar “motion segments,” aged 70–97 yrs, were overloaded in combined bending and compression. Physiologically-reasonable cyclic loading was then applied, at progressively higher loads, for up to 2 hrs. Before and after fracture, and again after cyclic loading the distribution of compressive loading on the vertebral body was assessed from recordings of compressive stress along the sagittal mid-plane of the adjacent intervertebral disc. Vertebral deformity was assessed from radiographs at the beginning and end of testing. Results. Initial overload usually fractured a vertebral endplate, at 2.31 kN (STD 0.85). There was minimal anterior wedging, but pressure in the nucleus of the adjacent disc was reduced by 65.2% on average, and relatively elevated in the annulus and neural arch. Subsequent cyclic loading then caused anterior wedge deformity of the vertebral body, with the height of the anterior and posterior cortex decreasing by 34.3% (13.2) and 12.7% (7.5) respectively, and
Introduction. Senile kyphosis arises from anterior ‘wedge’ deformity of thoracolumbar vertebrae, often in the absence of trauma. It is difficult to reproduce these deformities in cadaveric spines, because a vertebral endplate usually fails first. We hypothesise that endplate fracture concentrates sufficient loading on to the anterior cortex that a wedge deformity develops subsequently under physiological repetitive loading. Methods. Thirty-four cadaveric thoracolumbar “motion segments,” aged 70–97 yrs, were overloaded in combined bending and compression. Physiologically-reasonable cyclic loading was then applied, at progressively higher loads, for up to 2 hrs. Before and after fracture, and again after cyclic loading the distribution of compressive loading on the vertebral body was assessed from recordings of compressive stress along the sagittal mid-plane of the adjacent intervertebral disc. Vertebral deformity was assessed from radiographs at the beginning and end of testing. Results. Initial overload usually fractured a vertebral endplate, at 2.31 kN (STD 0.85). There was minimal anterior wedging, but pressure in the nucleus of the adjacent disc was reduced by 65.2% on average, and relatively elevated in the annulus and neural arch. Subsequent cyclic loading then caused anterior wedge deformity of the vertebral body, with the height of the anterior and posterior cortex decreasing by 34.3% (13.2) and 12.7% (7.5) respectively, and
Purpose of the study: The purpose of this study was to confirm long-term changes in frontal alignment after wedge osteotomy(even for with an «ideal» postoperative
Introduction: Painful anterior vertebral wedge “fractures” can occur without any remembered trauma, suggesting that vertebral deformity could accumulate gradually through sustained loading by the process of “creep”. If the adjacent intervertebral discs are degenerated, they press unevenly on the vertebral body in a posture- dependent manner, producing differential creep of the vertebra. We hypothesise that differential creep due to sustained asymmetrical loading of a vertebral body can cause anterior vertebral wedge deformity. Materials And Methods: Eleven thoracolumbar motion segments aged 64–88 yrs were subjected to a 1.5 kN compressive force for 2 hrs, applied via plaster moulded to its outer surfaces. Specimens were positioned in 2° flexion to simulate a stooped posture. Reflective markers attached to pins inserted into the lateral cortex of each vertebral body enabled anterior, middle and posterior vertebral body heights to be measured at 1Hz using an optical tracking device. Compressive ‘stress’ acting vertically on the vertebral body was quantified by pulling a miniature pressure transducer along the midsagittal diameter of adjacent discs. Results: Elastic deformation (strain) was higher anteriorly (−2018 ± 2983 μ strain) than posteriorly (−1675 ± 1305 μ strain). Creep strain (−2867 ± 2527 μ strain) was significantly higher anteriorly (p<
0.05) than posteriorly (−1164 ± 1026 μ strain), and was associated with a higher compressive stress in the anterior annulus of the adjacent disc. Non-recoverable creep deformations were significantly higher anteriorly (p<
0.05), and were equivalent to a
BACKGROUND. Osteoporosis with subsequent osteoporotic vertebral compression fractures is an increasingly important disease due not only to its significant economic impact but also to the increasing age of our population. Pain reduction and stabilization are of primary importance with osteoporotic vertebral compression fractures. OBJECTIVE. To compare the efficacy and safety of balloon kyphoplasty and vertebroplasty for the treatment of vertebral compression fractures. MATERIALS & METHODS. From January 2004 to December 2009, 142 patients (32 males and 110 females), from 54 to 84 years old (mean age 67.4) were treated for 185 osteoporotic vertebral fractures of the thoracic or lumbar spine (level of fracture at Th5 or lower), with back pain for more than 8 weeks, and a visual analogue scale (VAS) score of 5 or more. Twenty-two patients (29 fractures) were lost at follow-up period and excluded. Patients were randomly allocated to percutaneous kyphoplasty (64%) or vertebroplasty (36%). All fractures were analyzed for improvement in sagittal alignment (Cobb angle, kyphotic angle, sagittal index, vertebral height). The patients were evaluated using the visual analog scale (VAS) and the Oswestry Disability Score. Radiographs were performed postoperatively, and at 1, 3, 6, and 12 months. RESULTS. The score according to pain, the patient's ability to ambulate independently and without difficulty, and the need for medications improved significantly (P < 0.001) after kyphoplasty or vertebroplasty. No significant difference could be found between both groups for the mean VAS and ODI preoperative and postoperative. Vertebral body height and kyphotic
Purpose: Analysis of the sagittal balance of the spine is a fundamental step in understanding spinal disease and proposing appropriate treatment. The objectives of this prospective study were to establish the physiological values of pelvic and spinal parameters of sagittal spinal balance and to study their interrelations. Material and methods: Two hundred fifty lateral views of the spine taken in the standing position and including the head, the spine and the pelvis were studied. The following variables were noted: lumbar lordosis, thoracic kyphosis, sagittal tilt at 9, sacral slope, pelvic incidence, pelvic version, intervertebral angle, and the vertebral