Advertisement for orthosearch.org.uk
Results 1 - 20 of 853
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 81 - 81
1 Aug 2012
Hopkins S Smith C Toms A Brown M Welsman J Knapp K
Full Access

Weight-bearing is a known stimulus for bone remodelling and a reduction in weight-bearing is associated with reduced bone mineral density (BMD) in affected limbs post lower limb fracture. This study investigated short and long-term precision of a method for measuring relative left/right weight-bearing using two sets of identical calibrated scales. The effect of imbalance on BMD at the hip and on lower limb lean tissue mass (LLTM) was also assessed. 46 postmenopausal women, with no history of leg or ankle fracture, were measured three times whilst standing astride two scales (Seca, Germany). 34 of the participants were re-measured after 6 months by the same method. Bilateral hip and total body dual x-ray absorptiometry measurements were performed using a GE Lunar Prodigy (Bedford, MA). Precision errors in weight-bearing measures were calculated using the root mean square coefficient of variation (RMSCV%). The correlations at the first visit between left/right differences in weight-bearing and differences in BMD and LLTM were calculated. The short-term RMSCV% for left and right weights were 4.20% and 4.25% respectively and the long-term RMSCV% were 6.91% and 6.90%. Differences in left/right weight-bearing ranged from 0 to 24% (SD 8.63%) at visit 1 and 0 to 30% (SD 10.71%) at visit 2. Using data from visit 1, the relationship between hip BMD differences and left/right weight-bearing differences were investigated, with no significant correlations found. However, a weak, but statistically significant correlation of r=0.35 (p=0.02) was found for differences in LLTM and left/right weight-bearing differences. In conclusion, left/right weight-bearing measured using two scales is a precise method for evaluating differences in weight-bearing in the short and long-term. Differences in left/right weight-bearing in this population varied by up to 30%. Participants showed a high degree of consistency in their long-term balance in a natural standing posture. Inequalities in left/right weight-bearing did not correlate significantly with BMD at the hip, but demonstrated a weak but statistically significant correlation with lean tissue mass


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_1 | Pages 22 - 22
1 Jan 2022
Naskar R Oliver L Velazquez-Ruta P Dhinsa B
Full Access

Abstract. Objectives. This study aims to evaluate the functional outcomes of early weight-bearing in a functional orthosis for conservatively managed, complete AT ruptures. Also we tried to evaluate the patient reported outcome with this form of treatment. Design. In this prospective study, we have analysed data from 41 patients with ultrasound diagnosed compete AT ruptures, with a gap of less than 5 cm. Every patient was treated in a functional weight-bearing orthosis (VACOped®) for 8 weeks with early weight-bearing following a specific treatment protocol, followed by rehabilitation with a trained physiotherapist. Methods. Patients were followed up with foot and ankle trained physiotherapist for at least 1 year post-injury. At final follow up, the followings were measured: calf girth, single-leg heel raise height and repetitions. Furthermore, ATRS score and a patient feedback were taken on this final visit. Result. The mean ATRS score was 82.1, with a re-rupture rate of only 2% as compared to 5% in normal orthosis. The average calf bulk difference was 1.6 cm, the average heel raise height difference was 1.8cm and a heel raise repetition difference of 6. There was a statistically significant correlation between ATRS score and calf muscle girth (p=0.02). However, there was no significant correlation between ATRS and heel raise height or heel raise repetitions. Conclusion. Early weight-bearing in a functional orthosis provides excellent functional outcomes for conservatively managed, complete AT ruptures, and is associated with very low re-rupture rates. A multidisciplinary approach with a guided rehabilitation programme is essential for optimising functional outcome


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 38 - 38
2 Jan 2024
Frese J Schulz A Kowald B Gerlach U Frosch K Schoop R
Full Access

In a consecutive retrospective analysis of 190 patients treated with the Masquelet technique at the BG Klinikum Hamburg from January 2012 to January 2022, defect-specific features such as the extent and morphology of the defect were recorded, and their influence on the time to reach full weight-bearing of the affected limb was investigated. A total of 217 defects were treated in 190 patients using the Masquelet technique. 70% of all defects were located in the tibia, followed by 22% in the femur and only about 7% in the upper extremity. The average length of all defects was 58 mm (+/−31 mm), with the largest defect measuring 180 mm and the smallest measuring 20 mm. 89% of the patients achieved full weight-bearing at the end of therapy. The average time from initiation of therapy to reaching safe full weight-bearing was 589 days. There was a significant correlation between defect length and time to reach full weight-bearing (p = 0.0134). These results could serve as a basis for creating a score for prognostics and evaluation of bone healing after treatment with the Masquelet technique. Additionally, the results could help guide indications for secondary stabilization using internal fixation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 64 - 64
1 Nov 2021
Khojaly R Rowan FE Hassan M Hanna S Cleary M Niocaill RM
Full Access

Introduction and Objective. Postoperative management regimes vary following open reduction and internal fixation of unstable ankle fractures. There is an evolving understanding that poorer outcomes could be associated with non-weight bearing protocols and immobilisation. Traditional non-weight bearing cast immobilisation may prevent loss of fixation, and this practice continues in many centres. The aim of this systematic review and meta-analysis is to compare the complication rate and functional outcomes of early weight-bearing (EWB) versus late weight-bearing (LWB) following open reduction and internal fixation of ankle fractures. Materials and Methods. We performed a systematic review with a meta-analysis of controlled trials and comparative cohort studies. MEDLINE (via PubMed), Embase and the Cochrane Library electronic databases were searched inclusive of all date up to the search time. We included all studies that investigated the effect of weight-bearing following adults ankle fracture fixation by any means. All ankle fracture types, including isolated lateral malleolus fractures, isolated medial malleolus fractures, bi-malleolar fractures, tri-malleolar fractures and Syndesmosis injuries, were included. All weight-bearing protocols were considered in this review, i.e. immediate weight-bearing (IMW) within 24 hours of surgery, early weight-bearing (EWB) within three weeks of surgery, non-weight-bearing for 4 to 6 weeks from the surgery date (or late weight-bearing LWB). Studies that investigated mobilisation but not weight-bearing, non-English language publications and tibial Plafond fractures were excluded from this systematic review. We assessed the risk of bias using ROB 2 tools for randomised controlled trials and ROBINS-1 for cohort studies. Data extraction was performed using Covidence online software and meta-analysis by using RevMan 5.3. Results. After full-text review, fourteen studies (871 patients with a mean age ranged from 35 to 57 years) were deemed eligible for this systematic review; ten randomised controlled trials and four comparative cohort studies. Most of the included studies were rated as having some concern with regard to the risk of bias. There is no important difference in the infection rate between protected EWB and LWB groups (696 patients in 12 studies). The risk ratio (RR) is 1.30, [95% CI 0.74 to 2.30], I. 2. = 0%, P = 0.36). Other complications were rare. The Olerud-Molander Ankle Score (OMAS) was the widely used patient-reported outcome measure after ankle fracture fixation among the studies. The result of the six weeks OMAS analysis (three RCTs) was markedly in favour of the early weight-bearing group (MD = 10.08 [95% CI 5.13 to 15.02], I. 2. = 0%P = <0.0001). Conclusions. The risk of postoperative complications is an essential factor when considering EWB. We found that the overall incidence of surgical site infection was 6%. When comparing the two groups, the incidence was 5.2% and 6.8% for the LWB and EWB groups. This difference is not clinically important. On the other hand, significantly better early functional outcome scores were detected in the EWB group. These results are not without limitations. Protected early weight-bearing following open reduction and internal fixation of ankle fractures is potentially safe and improve short-term functional outcome. Further good-quality randomised controlled trials would be needed before we could draw a more precise conclusion


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 15 - 15
1 Apr 2018
Neuerburg C Pfeufer D Lisitano LA Schray D Mehaffey S Böcker W Kammerlander C
Full Access

Abstract. In aged trauma patients the basic prerequisite is early mobilization and full weight-bearing, as immobilization can trigger various complications such as pressure ulcers, pneumonia, urinary tract infections and others. Mortality of elderly patients increases significantly in fracture patients with partial weight-bearing compared to populations with total weight-bearing. Besides the limited physical strength in these patients, partial-weight bearing is however frequently used for the aftercare of hip fracture patients. Therefore, the present study aims to evaluate mobility of aged hip fracture patients with regards to weight-bearing and postoperative mobility. Methods. An insole mobile force sensor was used to measure the post-operative weight-bearing by assessing the compressive forces between foot and shoe. Only patients (n=15) that suffered a trochanteric fracture >75 years of age were included and compared to a study group of patients (n=18) with fractures of the lower limb <40 years of age. Patients with cognitive disorders such as delirium and other diseases limiting the realization of partial weight-bearing were excluded. Both groups were instructed to maintain partial weight bearing of the affected limb following surgery. Following five days of training by our department of physiotherapy, the patients were requested to perform a gait analysis with the insole mobile force sensor. During gait analysis the maximum load was measured (kg) and the time over which the partial load could be maintained was determined. Results. None of the aged patients in the test group could meet the partial load at all times. 73.33% of patients (11 out of 15) exceeded the specified load by more than twice (> 40 kg). In the control group, 55.56% (10 of 18) of the patients were able to meet the partial load. A further 22.22% of the young patients (4 out of 18) were able to exceed only slightly (<120%, <24 kg). It was also shown that only 11.11% (2 of 18) put more than double of the allowed weight (> 40 kg) on the affected leg in the younger group. Only one of the aged patients was able to exceed the pre-determined weight-bearing restrictions for less than 10% of the measured time. In comparison, significantly more patients in the control group (88,89%; 16 of 18; p<0,05) were able to maintain the partial load for more than 90.0% of the time of gait analysis. Conclusion. Elderly patients seem to be unable to follow partial weight-bearing restrictions as proven in the present trial. As early mobilization of geriatric trauma patients is an important element for a successful rehabilitation, the relict of postoperative partial weight-bearing in these patients should be abandoned. Thus, the surgical therapy should allow immediate full weight bearing following surgery of aged hip fracture patients


Bone & Joint Research
Vol. 2, Issue 12 | Pages 255 - 263
1 Dec 2013
Zhang Y Xu J Wang X Huang J Zhang C Chen L Wang C Ma X

Objective. The objective of this study was to evaluate the rotation and translation of each joint in the hindfoot and compare the load response in healthy feet with that in stage II posterior tibial tendon dysfunction (PTTD) flatfoot by analysing the reconstructive three-dimensional (3D) computed tomography (CT) image data during simulated weight-bearing. . Methods. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot were taken first in a non-weight-bearing condition, followed by a simulated full-body weight-bearing condition. The images of the hindfoot bones were reconstructed into 3D models. The ‘twice registration’ method in three planes was used to calculate the position of the talus relative to the calcaneus in the talocalcaneal joint, the navicular relative to the talus in talonavicular joint, and the cuboid relative to the calcaneus in the calcaneocuboid joint. Results. From non- to full-body-weight-bearing condition, the difference in the talus position relative to the calcaneus in the talocalcaneal joint was 0.6° more dorsiflexed (p = 0.032), 1.4° more everted (p = 0.026), 0.9 mm more anterior (p = 0.031) and 1.0 mm more proximal (p = 0.004) in stage II PTTD flatfoot compared with that in a healthy foot. The navicular position difference relative to the talus in the talonavicular joint was 3° more everted (p = 0.012), 1.3 mm more lateral (p = 0.024), 0.8 mm more anterior (p = 0.037) and 2.1 mm more proximal (p = 0.017). The cuboid position difference relative to the calcaneus in the calcaneocuboid joint did not change significantly in rotation and translation (all p ≥ 0.08). . Conclusion. Referring to a previous study regarding both the cadaveric foot and the live foot, joint instability occurred in the hindfoot in simulated weight-bearing condition in patients with stage II PTTD flatfoot. The method used in this study might be applied to clinical analysis of the aetiology and evolution of PTTD flatfoot, and may inform biomechanical analyses of the effects of foot surgery in the future. Cite this article: Bone Joint Res 2013;2:255–63


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 67 - 67
2 Jan 2024
Belvedere C
Full Access

3D accurate measurements of the skeletal structures of the foot, in physiological and impaired subjects, are now possible using Cone-Beam CT (CBCT) under real-world loading conditions. In detail, this feature allows a more realistic representation of the relative bone-bone interactions of the foot as they occur under patient-specific body weight conditions. In this context, varus/valgus of the hindfoot under altered conditions or the thinning of plantar tissues that occurs with advancing age are among the most complex and interesting to represent, and numerous measurement proposals have been proposed. This study aims to analyze and compare these measurements from CBCT in weight-bearing scans in a clinical population. Sixteen feet of diabetic patients and ten feet with severe adult flatfoot acquired before/after corrective surgery underwent CBCT scans (Carestream, USA) while standing on the leg of interest. Corresponding 3D shapes of each bone of the shank and hindfoot were reconstructed (Materialise, Belgium). Six different techniques found in the literature were used to calculate the varus/valgus deformity, i.e., the inclination of the hindfoot in the frontal plane of the shank, and the distance between the ground and the metatarsal heads was calculated along with different solutions for the identification of possible calcifications. Starting with an accurate 3D reconstruction of the skeletal structures of the foot, a wide range of measurements representing the same angle of hindfoot alignment were found, some of them very different from each other. Interesting correlations were found between metatarsal height and subject age, significant in diabetic feet for the fourth and fifth metatarsal bones. Finally, CBCT allows 3D assessment of foot deformities under loaded conditions. The observed traditional measurement differences and new measurement solutions suggest that clinicians should consider carefully the anatomical and functional concepts underlying measurement techniques when drawing clinical and surgical conclusions


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 99 - 99
1 Feb 2020
Schroder F Post C Simonis F Wagenaar F in'tVeld RH Verdonschot N
Full Access

Introduction. Instability, loosening, and patellofemoral pain belong to the main causes for revision of total knee arthroplasty (TKA). Currently, the diagnostic pathway requires various diagnostic techniques such as x-rays, CT or SPECT-CT to reveal the original cause for the failed knee prosthesis, but increase radiation exposure and fail to show soft-tissue structures around TKA. There is a growing demand for a diagnostic tool that is able to simultaneously visualize soft tissue structures, bone, and TKA without radiation exposure. MRI is capable of visualising all the structures in the knee although it is still disturbed by susceptibility artefacts caused by the metal implant. Low-field MRI (0.25T) results in less metal artefacts and offers the ability to visualize the knee in weight-bearing condition. Therefore, the aim of this study is to investigate the possibilities of low field MRI to image, the patellofemoral joint and the prosthesis to evaluate the knee joint in patients with and without complaints after TKA. Method. Ten patients, eight satisfied and two unsatisfied with their primary TKA, (NexGen posterior stabilized, BiometZimmer) were included. The patients were scanned in sagittal, coronal, and transversal direction on a low field MRI scanner (G-scan Brio, 0.25T, Esaote SpA, Italy) in weight-bearing and non-weight-bearing conditions with T1, T2 and PD-weighted metal artefact reducing sequences (TE/TR 12–72/1160–7060, slice thickness 4.0mm, FOV 260×260×120m. 3. , matrix size 224×216). Scans were analysed by two observers for:. - Patellofemoral joint: Caton-Descamps index and Tibial Tuberosity-Trochlear Groove (TT-TG) distance. - Prosthesis malalignment: femoral component rotation using the posterior condylar angle (PCA) and tibial rotation using the Berger angle. Significance of differences in parameters between weight-bearing and non-weight-bearing were calculated with the Wilcoxon rank test. To assess the reliability the inter and intra observer reliability was calculated with a two-way random effects model intra class correlation coefficient (ICC). The two unsatisfied patients underwent revision arthroplasty and intra-operative findings were compared with MRI findings. Results. In the satisfied group, a significant difference was found between TT-TG distance in non-weight-bearing and weight-bearing condition (p=0.018), with a good interrater reliability ICC=0.89. Furthermore, differences between weight-bearing and non-weight-bearing were found for the CD ratio, however, not significant (p=0.093), with a good interrater reliability ICC=0.89. The Berger angle could be measured with an excellent interrater reliability (ICC=0.94). The PCA was hard to assess with a poor interrater reliability (ICC=0.48). For one unsatisfied patient a deviation was found for tibial component rotation, according to the perioperative findings as, ‘malposition of the tibial component’. For the other unsatisfied patient revision surgery was performed due to aseptic loosening in which the MRI showed a notable amount of synovitis. Conclusion. It is possible to image the patellofemoral joint and knee prosthesis with low field MRI. Patellofemoral measurements and tibial component rotation measurements can reliably be performed. For the two patients with complaints MRI findings were consistent with intra-operative findings. Further research should focus on a larger group of patients with complaints after TKA to verify the diagnostic capacity of low field MRI for peri-prosthetic knee problems. For any figures or tables, please contact authors directly


Bone & Joint Research
Vol. 10, Issue 4 | Pages 277 - 284
1 Apr 2021
Funk GA Menuey EM Ensminger WP Kilway KV McIff TE

Aims. Poly(methyl methacrylate) (PMMA)-based bone cements are the industry standard in orthopaedics. PMMA cement has inherent disadvantages, which has led to the development and evaluation of a novel silorane-based biomaterial (SBB) for use as an orthopaedic cement. In this study we test both elution and mechanical properties of both PMMA and SBB, with and without antibiotic loading. Methods. For each cement (PMMA or SBB), three formulations were prepared (rifampin-added, vancomycin-added, and control) and made into pellets (6 mm × 12 mm) for testing. Antibiotic elution into phosphate-buffered saline was measured over 14 days. Compressive strength and modulus of all cement pellets were tested over 14 days. Results. The SBB cement was able to deliver rifampin over 14 days, while PMMA was unable to do so. SBB released more vancomycin overall than did PMMA. The mechanical properties of PMMA were significantly reduced upon rifampin incorporation, while there was no effect to the SBB cement. Vancomycin incorporation had no effect on the strength of either cement. Conclusion. SBB was found to be superior in terms of rifampin and vancomycin elution. Additionally, the incorporation of these antibiotics into SBB did not reduce the strength of the resultant SBB cement composite whereas rifampin substantially attenuates the strength of PMMA. Thus, SBB emerges as a potential weight-bearing alternative to PMMA for the local delivery of antibiotics. Cite this article: Bone Joint Res 2021;10(4):277–284


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 19 - 19
1 Dec 2022
Belvedere C Ruggeri M Berti L Ortolani M Durante S Miceli M Leardini A
Full Access

Biomedical imaging is essential in the diagnosis of musculoskeletal pathologies and postoperative evaluations. In this context, Cone-Beam technology-based Computed Tomography (CBCT) can make important contributions in orthopaedics. CBCT relies on divergent cone X-rays on the whole field of view and a rotating source-detector element to generate three-dimensional (3D) volumes. For the lower limb, they can allow acquisitions under real loading conditions, taking the name Weight-Bearing CBCT (WB-CBCT). Assessments at the foot, ankle, knee, and at the upper limb, can benefit from it in situations where loading is critical to understanding the interactions between anatomical structures. The present study reports 4 recent applications using WB-CBCT in an orthopaedic centre. Patient scans by WB-CBCT were collected for examinations of the lower limb in monopodal standing position. An initial volumetric reconstruction is obtained, and the DICOM file is segmented to obtain 3D bone models. A reference frame is then established on each bone model by virtual landmark palpation or principal component analysis. Based on the variance of the model point cloud, this analysis automatically calculates longitudinal, vertical and mid-lateral axes. Using the defined references, absolute or relative orientations of the bones can be calculated in 3D. In 19 diabetic patients, 3D reconstructed bone models of the foot under load were combined with plantar pressure measurement. Significant correlations were found between bone orientations, heights above the ground, and pressure values, revealing anatomic areas potentially prone to ulceration. In 4 patients enrolled for total ankle arthroplasty, preoperative 3D reconstructions were used for prosthetic design customization, allowing prosthesis-bone mismatch to be minimized. 20 knees with femoral ligament reconstruction were acquired with WB-CBCT and standard CT (in unloading). Bone reconstructions were used to assess congruency angle and patellar tilt and TT-TG. The values obtained show differences between loading and unloading, questioning what has been observed so far. Twenty flat feet were scanned before and after Grice surgery. WB-CBCT allowed characterization of the deformity and bone realignment after surgery, demonstrating the complexity and multi-planarity of the pathology. These applications show how a more complete and realistic 3D geometric characterization of the of lower limb bones is now possible in loading using WB-CBCT. This allows for more accurate diagnoses, surgical planning, and postoperative evaluations, even by automatisms. Other applications are in progress


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 3 - 3
1 Apr 2019
Seo SG Kim JI
Full Access

Introduction. Although weight-bearing CT of the foot definitely reflects the morphology and deformity of joint, it is hard to obtain the standing CT due to difficulty of availability. Although 3D imaging reconstruction using radiographs has been reported in other joints, there is no study about foot joint. The purpose of this study is to develop a semi-automatic method based on a deformable surface fitting for achieving the weight-bearing 3D model reconstruction from standing radiographs for foot. Methods. Our method is based on a Laplacian surface deformation framework using a template model of foot. As pre- processing step, we obtained template surface meshes having the average shapes of foot bones (talus, calcaneus) from standing CT images (Planmed Verity) in 10 normal volunteers. In the reconstruction step, the surface meshes are deformed following guided user inputs with geometric constraints to recover the target shapes of 30 patients while preserving average bone shape and smoothness. Finally, we compared reconstructed 3D model to original standing CT images. Analysis was performed using Dice coefficients, average shape distance, maximal shape distance. Results. The obtained reconstruction model is close to the actual standing foot geometry (Dice coefficients 0.89, average shape distance 0.88 mm, maximum shape distance 6.33 mm). We present the accuracy and robustness of our method via comparison between the reconstructed 3D models and the original bone surfaces. Conclusions. Weight-bearing 3D foot model reconstruction from standing radiographs is concise and the effective method for analysis of foot joint alignment and deformity


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_11 | Pages 7 - 7
4 Jun 2024
Sangoi D Ranjit S Bernasconi A Cullen N Patel S Welck M Malhotra K
Full Access

Background. The complex deformities in cavovarus feet may be difficult to assess and understand. Weight-bearing CT (WBCT) is increasingly used to evaluate complex deformities. However, the bone axes may be difficult to calculate in the setting of severe deformity. Computer-assisted 3D-axis calculation is a novel approach that may allow for more accurate assessment of foot alignment / deformity. The aim of this study was to assess differences in measurements done manually on 2D slices of WBCT versus 3D computer models in normal and cavus feet. Methods. We retrospectively analyzed WBCT scans from 16 normal and 16 cavus feet in patients with Charcot-Marie Tooth. Eight measurements were assessed: Talus-1. st. metatarsal angle (axial plane), Forefoot arch angle (coronal plane), and Meary's angle, calcaneal pitch, cuneiform to floor, cuneiform to skin, navicular to floor and navicular to skin distance (sagittal plane). 2D measurements were performed manually and 3D measurements were performed using specialised software (BoneLogic, DISIOR). Results. There was no significant difference in the measured variables (2D manual versus 3D automated) in normal feet. In the cavus group, 3D assessment calculated increased values for the sagittal angles: Meary's 7.3 degrees greater (p = 0.004), calcaneal pitch 2.4 degrees greater (p = 0.011)), and lower values for the axial talus-1. st. MT angle, 10.6 degrees less (p = 0.001). Conclusion. There were no significant differences in the normal group. This suggests 3D automated techniques can reliably assess the alignment of bony axes. However, the 3D axis calculations suggest there may be greater sagittal and lesser axial deformity in cavus feet than measured by 2D techniques. This discrepancy may be on account of the rotation seen in cavovarus feet, which may not be readily assessed manually. 3D automated measurements may therefore have a role in better assessing and classifying the cavus foot which may ultimately help inform treatment algorithms


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 106 - 106
11 Apr 2023
McIff T Funk G Horn E Hageman K Varner A Kilway K
Full Access

We developed a novel silorane-based biomaterial (SBB) for use as an orthopedic cement. SBB is comprised of non-toxic silicon-based monomers, undergoes non-exothermic polymerization, and has weight-bearing strength required of orthopedic cements. We sought to compare the antibiotic release kinetics of this new cement to that of commercially available PMMA bone cement. We also evaluated each material's inherent propensity to support the attachment of bacteria under both static and dynamic conditions. One gram of either rifampin or vancomycin was added to 40g batches of PMMA and SBB. Pellets were individually soaked in PBS. Eluate was collected and tested daily for 14 days using HPLC. Compressive strength and modulus were tested over 21 days. Bioassays were used to confirm the bioactivity of the antibiotics eluted. We measured the growth and maturation of staphylococcus aureus (SA) biofilm on the surface of both PMMA and SBB disks over the course of 72 hours in a static well plate and in a dynamic biofilm reactor (CDC Biofilm Reactor). N=4 at 24, 48, and 72 hours. A luminescent strain of SA (Xen 29) was employed allowing imaging of bacteria on the discs. SBB eluted higher concentrations of vancomycin than did PMMA over the course of 14 days (p<0.001). A significant 55.1% greater day 1 elution was observed from SBB. Silorane cement was able to deliver rifampin in clinically favorable concentrations over 14 days. On the contrary, PMMA was unable to deliver rifampin past day 1. The incorporation of rifampin into PMMA severely reduced its mechanical strength (p<0.001) and modulus (p<0.001). Surface bacterial radiance of PMMA specimens was significantly greater than that of SBB specimens at all time points (p<0.05). The novel silorane-based cement demonstrated superior antibiotic release and, even without antibiotic incorporation, demonstrated an innate inhabitation to bacterial attachment and biofilm


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 214 - 214
1 Jul 2014
McIff T Colbert K Boyer A Goodyear A Mar D
Full Access

Summary Statement. A porcine model using Yucatan minipigs was found to be very promising for the investigation of healing around transcutaneous osseointegrated implants. Pigs demonstrated surprising agility and adaptability including the ability to ambulate on three legs during the immediate postoperative period. Introduction. Previous non weight-bearing and weight-bearing caprine, canine and ovine models have evaluated design, material, and biological coating variations in an attempt to improve the wound healing and skin-implant seal around transcutaneous osseointegrated implants. Although these models have primarily been used as a window into the application of transcutaneous osseointegrated implants in humans, some important model characteristics affecting wound healing and infection have been missing including: 1) replication of the physiological tissue response, and 2) availability of a transcutaneous site with sufficient soft tissue coverage. Pig skin, like human, is relatively hairless, tightly attached to the subcutaneous tissue, vascularised by a cutaneous blood supply, and healed by means of epithelialization. Swine have been extensively utilised for superficial and deep wound healing studies and can offer ample soft tissue coverage following a lower limb amputation. Development of a porcine model is important for continued understanding and improvement of weight-bearing transcutaneous osseointegration. Methods. Two male Yucatan mini-pigs (9 months, 36kg) were fit with transcutaneous osseointegrated prostheses using a single-stage transtibial amputation and prosthesis implantation procedure. The endo-prosthesis consisted of a cylindrical intraosseous threaded section and a smooth transcutaneous section. The transcutaneous sections were smooth to promote epithelialization and deter direct skin-implant adhesion. The implants were custom manufactured from medical grade Ti-6Al-4V alloy. The exo-prosthesis, consisting of an adjustable length leg and foot, was attached by clamp to the supercutaneous portion of the implant following either one or two days of sling constraint to limit initial weight-bearing. Various exo-prosthesis designs and configurations were trialed. The animals’ behavior and gait were closely observed. Weight-bearing was monitored using a force plate. At 5 and 8 weeks, clinical, microbiological, and histological data were examined to assess wound healing and infection at the skin-bone-implant interface. Results. The pigs demonstrated surprising agility and adaptability. They were able to successfully ambulate on three legs during the post-op period before weight-bearing was permitted. They adapted quickly to changes in exo-prosthesis design, position, and length. Although bacterial colonization was verified, neither of the animals exhibited clinical signs of infection over the respective eight and five week studies. Histological results indicated that there was no skin to implant adhesion but that epithelial growth was progressing towards the implant in one animal. Healing of the transcutaneous wound site showed substantial progress but a definitive skin seal was non-existent at the eight week time point. Discussion/Conclusion. This is likely the first animal model developed, having soft tissue characteristics similar to those found in humans, in which an axially-loaded, weight-bearing implant was successfully used. Results indicated that this porcine model offers many advantages over previous models for the development, evaluation, and comparison of the various techniques being advocated to achieve successful transcutaneous osseointegration in humans. The Yucatan miniature pig's ability to ambulate on three legs during the immediate post-operative period and quickly adjust to changes in the exo-prosthesis design, coupled with their physiological similarity to humans, makes them a valuable model for future studies


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 138 - 138
1 Jul 2014
Verboom E van Ijsseldijk E Valstar E Kaptein B de Ridder R
Full Access

Summary. In this study we validate that weight-bearing images are needed for accurate polyethylene liner wear measurement in total knee prostheses by measuring the difference in minimum joint space width between weight-bearing and non-weight-bearing RSA views. Introduction. Recent studies show that Model-based Roentgen Stereophotogrammetric Analysis is superior to the conventional in vivo measurements of polyethylene liner wear in total knee prostheses. Although it is generally postulated that weight-bearing (standing) views are required to detect liner wear, most RSA images are acquired in non-weight-bearing (supine) view for practical reasons. Therefore, it would be of interest to know if supine views would be sufficient for measuring TKA liner wear, defined as a change in minimum joint space width (mJSW). As a difference in mJSW between weight-bearing and non-weight-bearing RSA images has never been validated, the aim of this study is to compare the outcome of in vivo measurements of mJSW in total knee prosthesis when conducted with weight-bearing and non-weight-bearing RSA views. Method. We selected the first 16 patients with a Triathlon total knee prosthesis from a clinical study for which subsequently a weight-bearing eand a non-weight-bearing RSA image pair were acquired at one year follow up. For both images the mJSW and the corresponding contact point locations in terms of mediolateral (ML) and anterioposterior (AP) coordinates were measured. In addition, the ML stability was scored to assess knee laxity. The size of the mJSW difference between non-weight-bearing and weight-bearing views was determined and a regression analysis was conducted to investigate the effect of knee laxity to this difference, while correcting for differences between the contact point locations. Results. On average, the measured mJSW was 0.22 mm larger in the non-weight-bearing views (T-test, p < 0.05). The standard deviation of the difference was 0.22 mm. The regression analysis showed that a difference in the ML position of the contact location was an important covariate (beta = 0.255±0.054, Wald 95% CI). 13 patients had a high ML stability (< 5 deg) and three had a medium stability (5–10 deg). The regression analysis showed that on average patients with medium ML stability had a 0.17 mm larger difference in mJSW than patients with a high ML stability. Conclusion. The study shows that the mJSW is larger in non-weight-bearing views. The differences found are clinically relevant, as wear rates in practice are as small as 0.1 mm per year. Hereby it is validated that weight-bearing RSA images are more capable of detecting the mJSW in total knee prostheses. The size of the difference in mJSW between the views seems to be in relation with the knee laxity


Objectives. The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage. Methods. Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored. Results. The CBA group showed similar results to the autologous group in biomechanical properties, Moran’s criteria, histological tests and Wakitani histological scoring. Conclusions. These results suggest that tissue-engineered cartilage constructed using the CBA technique could be used effectively to repair cartilage defects in the weight-bearing area of joints. Cite this article: H. Lin, J. Zhou, L. Cao, H. R. Wang, J. Dong, Z. R. Chen. Tissue-engineered cartilage constructed by a biotin-conjugated anti-CD44 avidin binding technique for the repairing of cartilage defects in the weight-bearing area of knee joints in pigs. Bone Joint Res 2017;6:–295. DOI: 10.1302/2046-3758.65.BJR-2016-0277


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 57 - 57
1 Oct 2012
Clarke J Deakin A Picard F Riches P
Full Access

Knee alignment is a fundamental measurement in the assessment, monitoring and surgical management of patients with osteoarthritis [OA]. In spite of extensive research into the consequences of malalignment, our understanding of static tibiofemoral alignment remains poor with discrepancies in the reported weight-bearing characteristics of the knee joint and there is a lack of data regarding the potential variation between supine and standing (functional) conditions. In total knee arthroplasty [TKA] the lower limb alignment is usually measured in a supine condition and decisions on prosthesis placement made on this. An improved understanding of the relationship between supine and weight-bearing conditions may lead to a reassessment of current surgical goals. The purpose of this study was to explore the relationship between supine and standing lower limb alignment in asymptomatic, osteoarthritic and prosthetic knees. Our hypothesis was that the change in alignment of these three groups would be different. A non-invasive infrared position capture system (accuracy ±1° in both coronal and sagittal plane) was used to assess the knee alignment for 30 asymptomatic controls and 31 patients with OA, both before and after TKA. Coronal and sagittal mechanical femorotibial (MFT) angles in extension (negative values indicating varus in the coronal plane and hyperextension in the sagittal plane) were measured with each subject supine and in bi-pedal stance. For the supine test, the lower limb was supported at the heel and the subject told to relax. For the standing position subjects were asked to assume their normal stance. The change in alignment between these two conditions was analysed using a paired t-test for both coronal and sagittal planes. To quantify the change in 3D, vector plots of ankle centre displacement relative to the knee centre from the supine to standing condition were produced. Alignment in both planes changed significantly from supine to standing for all three groups. For the coronal plane the supine and standing measurements (in degrees, mean(SD)) were 0.1(2.5) and −1.1(3.7) in the asymptomatic group, −2.5(5.7) and −3.6(6) in the OA group and −0.7(1.4) and −2.5(2) in the TKA group. For the sagittal plane the numbers were −1.7(3.3) and −5.5(4.9); 7.7(7.1) and 1.8(7.7); 6.8(5.1) and 1.4((7.6) respectively. This change was most frequently towards relative varus and extension. Vector plots showed that the trend of relative varus and extension in stance was similar in overall magnitude and direction between the three groups. Knee alignment can change from supine to standing for asymptomatic and osteoarthritic knees, most frequently towards relative varus and hyperextension. The similarities between each group did not support our hypothesis. The consistent kinematic pattern for different knee types suggests that soft tissue restraints rather than underlying joint deformity may be more influential in dynamic control of alignment from lying to standing. In spite of some evidence suggesting a difference between supine and standing knee alignment a mechanical femorotibial (MFT) angle of 0° is a common intra-operative target as well as the desired post-operative weight-bearing alignment. These results indicated that arthroplasties positioned in varus intra-operatively could potentially become ‘outliers’ (>3° varus) when measured weight-bearing. Mild flexion contractures may correct when standing, reducing the need for intra-operative posterior release. These potential changes should be considered when positioning TKA components on supine limbs as post-operative functional alignment may be different


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 88 - 88
1 Mar 2008
Scharfenberger A Pearce D Daniels T
Full Access

CT scans of thirty pes planus and eighteen normal feet were obtained in a simulated weight-bearing mode at 50% of body weight. The navicular skin distance was 22% less (1.9vs2.5cm) in the pes planus feet and forefoot supination was only 50% of normal (8.9vs18.6 degrees). Subtalar subluxation was observed in only the most severe pes planus feet. Navicular skin distance relates to medial arch collapse; loss of forefoot supination reflects the rigidity of the forefoot compensation to hindfoot valgus. Severe pes planus results in subtalar subluxation. The radiological indices described have not previously been reported in the literature. To compare the inter-tarsal relationships of the pes planus foot to the normal foot in the weight-bearing state. Weight-bearing CT scan of the feet is a practical examination with rapid set-up and minimal patient discomfort. Preliminary results demonstrate differences in the inter-tarsal relationships of pes planus feet compared to normal feet. Better understanding of pes planus deformity will advance clinical evaluation and treatment strategies. Radiological indices described have not previously been reported in the literature. Thirty pes planus and eighteen normal feet were imaged. All patients were able to tolerate the six- minute exam at 50% of body weight. Total study time averaged fifteen minutes. The navicular skin distance was 22% less (1.9vs2.5 cm) in pes planus feet compared to normal feet. Pes planus feet had only 50% of the normal forefoot supination (8.9vs18.6 degrees). Lastly, subtalar joint subluxation was observed in only the most severe pes planus feet. Values ranged from 0.2 to 1.1cm. Axial CT images of 1mm thickness with 0.5mm overlap were obtained at a weight-bearing load of 50% of body weight using the weight-bearing CT device. Coronal and Sagital images were then reconstructed. Radiological indices obtained can be related to the clinical picture of the pes planus foot. The navicular skin distance reflects medial arch collapse, where as the lack of forefoot supination reflects the rigidity of the forefoot compensation to hindfoot valgus. Severe hindfoot valgus in pes planus results in subtalar sub-luxation


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 422 - 422
1 Apr 2004
Kurosaka M Komistek R Northcut E Dennis D Anderson D
Full Access

Introduction: Previous in vivo kinematic studies have assessed total knee arthroplasty (TKA) motion under weight-bearing conditions. This in vivo study analyzed and compared posterior cruciate retaining (PCR) and posterior stabilized (PS) kinematics under passive and weight-bearing conditions in subjects implanted with both a PCR and PS TKA. Methods: Eighteen subjects were implanted with a PCR and a PS TKA, by a single surgeon using a similar surgical technique. Both implant designs had similar condylar geometry. Femorotibial contact positions for all 18 subjects (PCR and PS), implanted by a single surgeon, were analyzed using video fluoroscopy. Each subject,while under fluoroscopic surveillance, performed a weight-bearing deep knee bend and a passive, nonweight-bearing flexion. Video images were downloaded to a workstation computer and analyzed at varying degrees of knee flexion. Femorotibial contact paths for the medial and lateral condyles, axial rotation and femoral condylar lift-off were then determined using a computer automated model-fitting technique. Femorotibial contact anterior to the tibial midline in the sagittal plane was denoted as positive and contact posterior was denoted as negative. Results: Under passive and weight-bearing conditions, the PCR TKA experienced more paradoxical anterior translation than the PS TKA. Under passive, non weight-bearing conditions, the PS TKA, on average, experienced 3.5 mm of posterior femoral rollback, compared to only 0.6 mm for the PCR TKA. Under weight-bearing conditions, the PS TKA experienced only 0.6 mm of posterior femoral rollback, compared to 0.9 mm for the PCR TKA. The maximum anterior slide was 10.0 mm for the PCR TKA and only 2.7 mm for the PS TKA. There was greater variability in both the PCR and PS anteroposterior data. Subjects having a PCR TKA experienced more normal axial rotation patterns. Sixteen of 18 PCR TKA experienced a normal axial rotation pattern under weight-bearing conditions, while only 9/18 PS TKA experienced a normal pattern. Nonweight-bearing, passive axial rotation patterns were more abnormal for both groups than the weight-bearing patterns. The greatest difference between passive and weight-bearing conditions occurred in the condylar lift-off data. Under passive conditions, both TKA groups experienced significantly greater magnitude and incidence of condylar lift-off. The maximum amount of condylar lift-off under passive conditions was 5.0 mm for the PCR TKA and 6.4 mm for the PS TKA. Discussion: This is the first in vivo kinematic study to assess a comparison between PCR and PS TKA implanted by the same surgeon in the same patient. Subjects in this study experienced more abnormal kinematic patterns, especially condylar lift-off, when tested under passive, nonweight-bearing conditions. Subjects having a PS TKA experienced less variability in their kinematic data, but PCR TKA, on average, experienced more normal axial rotation and less condylar lift-off


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 29 - 29
1 Jan 2016
Hara D Nakashima Y Hamai S Higaki H Shimoto T Ikebe S Hirata M Kanazawa M Kohno Y Iwamoto Y
Full Access

Introduction. 3D-to-2D model registration technique has been used for evaluating 3D kinematics from 3D surface models of the prostheses or bones and radiographic image sequences. However, no studies have employed these techniques to evaluate in vivo hip kinematics under dynamic weight-bearing conditions. The purposes of this study were to evaluate kinematics of healthy hips and also hips with osteoarthritis (OA) prior to total hip arthroplasty (THA) during four different weight-bearing activities using 3D-to-2D model-to-image registration technique. Measurement. Dynamic hip kinematics during gait, squatting, chair-rising, and twisting were analyzed for six healthy subjects and eleven patients with osteoarthritis (OA). Continuous anteroposterior radiographic images were recorded using a flat panel X-ray detector (Fig. 1), and each hip joint was scanned by computed tomography (CT). The 3D positions and orientations of the pelvis and femur in movement cycle were determined using a 3D-to-2D model-to-image registration technique. A matching algorithm maximizing correlations between density-based digitally reconstructed radiographs from CT data and the radiographic images was applied (Fig. 2). The relative positions and orientations of the pelvis with respect to the world coordinate systems were defined as pelvic movements (anterior-posterior tilt, contralateral-ipsilateral rotation, Fig. 3b and c), and those of the femur with respect to the world coordinate systems were defined as femoral movements (flexion-extension, internal-external rotation, Fig. 3d). We also defined the relative positions and orientations of the femur for the pelvis as hip movements (flexion-extension, internal-external rotation, Fig. 3e and f). Accuracy evaluation experiment. The pelvis and femur of a pig carcass fixed to a stage were rotated and translated to known values. The 3D-to-2D model-to-image registration process was performed for the radiographic images at each position to determine the relative pose of each bone. The root-mean-square (RMS) errors of the pelvis and femur were calculated. Result. For gait, chair-rising, and squatting, the maximum hip flexion-extension of OA patients (average: 22°, 63°, and 65°, respectively) was smaller than those of healthy subjects (30°, 81°, and 102°, respectively), but the minimum hip flexion-extension was not significantly different between healthy (1°, −3°, and 0°, respectively) and OA (2°, 3°, and −3°, respectively) hips. The pelvis of OA patients tended to tilt more anteriorly (−9°) for gait and more posteriorly (18° and 24°, respectively) for chair-rising and squatting than that of healthy subjects (−6°, 12°, and 11°, respectively). For twisting, OA patients demonstrated smaller internal and external hip rotation (0° and 16°, respectively) compared to healthy subjects (29° and 31°, respectively). The RMS errors of the pelvis and femur were 0.21 mm and 0.15 mm in the in-plane direction, 0.14 mm and 0.23 mm in the out-of-plane direction, and 0.25° and 0.23° in rotation, respectively. Conclusion. 3D-to-2D model registration techniques could evaluate accurately in vivo hip kinematics during weight-bearing activities. The current study demonstrated that limited hip range of movement of OA patients was compensated by pelvic tilt during gait and squatting. OA patients demonstrated restriction in hip internal rotation even under dynamic conditions during twisting. Pathological changes due to OA may influence post-THA hip kinematics