Aims. This study aimed to establish the optimal fixation methods for calcaneal tuberosity avulsion fractures with different fragment thicknesses in a porcine model. Methods. A total of 36 porcine calcanea were sawed to create simple avulsion fractures with three different fragment thicknesses (5, 10, and 15 mm). They were randomly fixed with either two suture anchors or one headless screw. Load-to-failure and cyclic loading tension tests were performed for the biomechanical analysis. Results. This
Aims. Despite limited clinical scientific backing, an additional trochanteric stabilizing plate (TSP) has been advocated when treating unstable trochanteric fractures with a sliding hip screw (SHS). We aimed to explore whether the TSP would result in less post operative fracture motion, compared to SHS alone. Methods. Overall, 31 patients with AO/OTA 31-A2 trochanteric fractures were randomized to either a SHS alone or a SHS with an additional TSP. To compare postoperative fracture motion, radiostereometric analysis (RSA) was performed before and after weightbearing, and then at four, eight, 12, 26, and 52 weeks. With the “after weightbearing” images as baseline, we calculated translations and rotations, including shortening and medialization of the femoral shaft. Results. Similar migration profiles were observed in all directions during the course of healing. At one year, eight patients in the SHS group and 12 patients in the TSP group were available for analysis, finding a clinically non-relevant, and statistically non-significant, difference in total translation of 1 mm (95% confidence interval -4.7 to 2.9) in favour of the TSP group. In line with the migration data, no significant differences in clinical outcomes were found. Conclusion. The TSP did not influence the course of healing or postoperative fracture motion compared to SHS alone. Based on our results, routine use of the TSP in AO/OTA 31-A2 trochanteric fractures cannot be recommended. The TSP has been shown, in
Locking plates are widely used in clinical practice for the surgical treatment of complex proximal humerus fractures, especially in osteoporotic bone. The aim of this study is to assess the biomechanical influence of the infero-medial locking screws on maintaining reduction of the fragments in a proximal humerus fracture. A standard 3-part proximal humerus fracture was created in fourth generation humerus saw bones. Each specimen was anatomically reduced and secured with a PHILOS locking plate. Eleven of the specimens had infero-medial locking screws inserted, and 11 specimens did not. Each humerus sawbone underwent cyclical loading at 532N, as previous studies showed this was the maximum force at the glenohumeral joint. The absolute inter-fragmentary motion was recorded using an infra-red motion analysis device. Each specimen was then loaded to failure.Purpose
Materials & Methods
Lag screw cut-out following fixation of unstable intertrochanteric fractures in osteoporotic bone remains an unsolved challenge. A novel new device is the X-Bolt which is an expanding type bolt that may offer superior fixation in osteoporotic bone compared to the standard DHS screw type device. The aim of this study was to test if there was a difference in cut-out using the X-Bolt implant compared with the standard DHS systemIntroduction
Aims
The two most common complications of femoral impaction bone grafting are femoral fracture and massive implant subsidence. We investigated fracture forces and implant subsidence rates in embalmed human femurs undergoing impaction grafting. The study consisted of two arms, the first examining the force at which femoral fracture occurs in the embalmed human femur, and the second examining whether significant graft implant/subsidence occurs following impaction at a set force at two different impaction frequencies. Using a standardized impaction grafting technique with modifications, an initial group of 17 femurs underwent complete destructive impaction testing, allowing sequentially increased, controlled impaction forces to be applied until femoral fracture occurred. A second group of 8 femurs underwent impaction bone grafting at constant force, at an impaction frequency of 1 Hz or 10 Hz. An Exeter stem was cemented into the neomedullary canals. These constructs underwent subsidence testing simulating the first 2 months of postoperative weight bearing.Background and purpose
Methods
Cite this article:
Objectives. External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). Methods. A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness. Results. The mean axial stiffness was very similar for UEF (528 N/mm) and ESS-LCP (525 N/mm), while it was slightly lower for ET-LCP (469 N/mm). One-way analysis of variance (ANOVA) testing in all three groups demonstrated no significant difference (F(2,12) = 2.057, p = 0.171). There was a significant difference in mean torsional stiffness between the UEF (0.512 Nm/degree), the ESS-LCP (0.686 Nm/degree) and the ET-LCP (0.639 Nm/degree), as determined by one-way ANOVA (F(2,12) = 6.204, p = 0.014). A Tukey post hoc test revealed that the torsional stiffness of the ESS-LCP was statistically higher than that of the UEF by 0.174 Nm/degree (p = 0.013). No catastrophic failures were observed. Conclusion. Using the LCP as an external fixator may provide a viable and attractive alternative to the traditional UEF as its lower profile makes it more acceptable to patients, while not compromising on axial and torsional stiffness. Cite this article: B. F. H. Ang, J. Y. Chen, A. K. S. Yew, S. K. Chua, S. M. Chou, S. L. Chia, J. S. B. Koh, T. S. Howe. Externalised locking compression plate as an alternative to the unilateral external fixator: a
For the treatment of the fractures of the proximal extremity of the femur two predominant systems exist: the intramedular nail and the sliding screw plate. The variables at the moment, to be considered, are the weight, age and type of fracture. The principal aims are: To develop models of finite elements of both types of implants and of two types of fracture (stable and unstable), and to integrate the models of finite elements of the implants in the model of fractured femur, to obtain the mechanical behavior of both types of implants and them to fit to the model of finite elements. The analyzed models have been the gamma-3 nail (Stryker, USA) and the PerCutaneus Compression Plate (PCCP), (Gotfried, Israel). The real geometry has been created in the program SolidWorks 11.0 to be treated later in the program of calculation by means of finite elements Ansys. The assembly with nail is more rigid (11.51 mm) that with plate (11.95 mm) on having had a few minor displacements. The tensions that appear in the nail (446 MPa) are major that those of the plate (132.93 MPa), in the unstable fractures. In the unstable fractures, the intramedular nail is more rigid than the system of plate. The tensions to which the nail meets submitted are superior to those of break for what the nail would not be capable of supporting the first cycles of load. It is for it, that the system to using in these cases would be the sliding screw plate.
Previous studies have highlighted differences in the risk of periprosthetic fracture between tapered slip (TS) and composite beam (CB) stems. This
Abstract. Objectives. Biomechanics is an essential form of measurement in the understanding of the development and progression of osteoarthritis (OA). However, the number of participants in
Abstract. Introduction. Changes in posterior tibial slope (PTS) and patellar height (PH) following proximal tibial osteotomies have been a recent focus for knee surgeons. Increased PTS and decreased PH following medial opening wedge high tibial osteotomy (MOWHTO) have been repeatedly reported in the literature. However, this has been disputed in more recent
Finite element analysis (FEA) has been applied for the biomechanical analysis of acetabular dysplasia, but not for
The purpose of this study was to develop a quality appraisal tool for the assessment of laboratory basic science
Lower back pain (LBP) is a worldwide clinical problem and a prominent area for research. Numerous in vitro
Abstract. Objectives. The fidelity of a 3D model created using image segmentation must be precisely quantified and evaluated for the model to be trusted for use in subsequent
The Adams-Berger reconstruction is an effective technique for treating distal radioulnar joint (DRUJ) instability. Graft preparation techniques vary amongst surgeons with insufficient evidence to support one technique over another. Our study evaluated the biomechanical properties of four graft preparation techniques. Extensor tendons were harvested from fresh frozen porcine trotters obtained from a local butcher shop and prepared in one of three configurations (n=5 per group): tendon only; tendon prepared with non-locking, running suture (2-0 FiberLoop, Arthrex, Naples, FL) spaced at 6 mm intervals; and tendon prepared with suture spaced at 12 mm intervals. A fourth configuration of suture alone was also tested. Tendons were allocated in a manner to ensure comparable average diameters amongst groups. Biomechanical testing occurred using custom jigs simulating radial and ulnar tunnels attached to a Bose Electroforce 3510 mechanical testing machine (TA Instruments). After being woven through the jigs, all tendons were sutured end-to-end with 2-0 PROLENE suture (Ethicon). Tendons then underwent a staircase cyclic loading protocol (5-25 Newtons [N] at 1 hertz [Hz] for 1000 cycles, then 5-50 N at 1 Hz for 1000 cycles, then 5-75 N at 1 Hz for 1000 cycles) until graft failure; if samples did not fail during the protocol, they were then loaded to failure. Samples were visually inspected for mode of failure after the protocol. A one-way analysis of variance was used to compare average tendon diameter; post-hac Tuhey tests were used to compare elongation and elongation rate. Survival to cyclic loading was analyzed using Kaplan-Meier survival curves with log rank. Statistical significance was set at a = 0.05. The average tendon diameter of each group was not statistically different [4.17 mm (tendon only), 4.33 mm (FiberLoop spaced 6 mm), and 4.30 mm (FiberLoop spaced 12 mm)]. The average survival of tendon augmented with FiberLoop was significantly higher than tendon only, and all groups had significantly improved survival compared to suture only. There was no difference in survival between FiberLoop spaced 6 mm and 12 mm. Elongation was significantly lower with suture compared to tendon augmented with FiberLoop spaced 6 mm. Elongation rate was significantly lower with suture compared to all groups. Modes of failure included rupture of the tendon, suture, or both at the simulated bone and suture and/or tendon interface, and elongation of the entire construct without rupture. In this
Introduction. Distal femur fracture fixation in elderly presents significant challenges due to osteoporosis and associated comorbidities. There has been an evolution in the management of these fractures with a description of various surgical techniques and fixation methods; however, currently, there is no consensus on the standard of care. Non-union rates of up to 19% and mortality rates of up to 26 % at one year have been reported in the literature. Delay in surgery and delay in mobilisation post-operatively have been identified as two main factors for high rate of mortality. As
Range of Motion (ROM) assessments are routinely used during joint replacement to evaluate joint stability before, during and after surgery to ensure the effective restoration of patient
Some activities of daily living require that the head be kept level during axial rotation of the cervical spine (Kinematically Constrained Axial Rotation). One such activity is looking over one's shoulder when walking or driving. The kinematic constraint of keeping the head level during axial rotation means that the segmental axis of rotation may not be aligned with the global axis of rotation of the cervical spine. Most of the literature on cervical spine axial rotation is based on experiments where the segmental axis of rotation is aligned with the global axis of rotation (Traditional Axial Rotation). There are only a few clinical and
Previous