Advertisement for orthosearch.org.uk
Results 1 - 20 of 3948
Results per page:
Bone & Joint Open
Vol. 4, Issue 3 | Pages 198 - 204
16 Mar 2023
Ramsay N Close JCT Harris IA Harvey LA

Aims. Cementing in arthroplasty for hip fracture is associated with improved postoperative function, but may have an increased risk of early mortality compared to uncemented fixation. Quantifying this mortality risk is important in providing safe patient care. This study investigated the association between cement use in arthroplasty and mortality at 30 days and one year in patients aged 50 years and over with hip fracture. Methods. This retrospective cohort study used linked data from the Australian Hip Fracture Registry and the National Death Index. Descriptive analysis and Kaplan-Meier survival curves tested the unadjusted association of mortality between cemented and uncemented procedures. Multilevel logistic regression, adjusted for covariates, tested the association between cement use and 30-day mortality following arthroplasty. Given the known institutional variation in preference for cemented fixation, an instrumental variable analysis was also performed to minimize the effect of unknown confounders. Adjusted Cox modelling analyzed the association between cement use and mortality at 30 days and one year following surgery. Results. The 30-day mortality was 6.9% for cemented and 4.9% for uncemented groups (p = 0.003). Cement use was significantly associated with 30-day mortality in the Kaplan-Meier survival curve (p = 0.003). After adjusting for covariates, no significant association between cement use and 30-day mortality was shown in the adjusted multilevel logistic regression (odd rati0 (OR) 1.1, 95% confidence interval (CI) 0.9 to 1.5; p = 0.366), or in the instrumental variable analysis (OR 1.0, 95% CI 0.9 to 1.0, p=0.524). There was no significant between-group difference in mortality within 30days (hazard ratio (HR) 0.9, 95% CI 0.7to 1.1; p = 0.355) or one year (HR 0.9 95% CI 0.8 to 1.1; p = 0.328) in the Cox modelling. Conclusion. No statistically significant difference in patient mortality with cement use in arthroplasty was demonstrated in this population, once adjusted for covariates. This study concludes that cementing in arthroplasty for hip fracture is a safe means of surgical fixation. Cite this article: Bone Jt Open 2023;4(3):198–204


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 64 - 64
1 Dec 2020
Misir A Kaya V Basar H
Full Access

The ideal treatment method regarding various defect sizes after local aggressive tumor resection is unknown. We investigated the biomechanical properties of metaphyseal defect filling regarding different defect sizes and fixation methods. Ninety-one sheep tibias were divided into five groups as 21 tibias per four study groups and 7 tibias in the control group. Study groups were further divided into three subgroups according to 25%, 50% and 75% metaphyseal defect size. Control group tibias were left intact. In study group 1, a metaphyseal defect was created and no further process was applied. Metaphyseal defects were filled with cement without fixation in group 2. Cement filling and fixation with 2 screws were performed in group 3. In addition to cement filling, plate-screw fixation was performed in group 4. Axial loading test was applied to all tibias and the results were compared between study subgroups and control group. Plate-screw fixation was found to have the best biomechanical properties in all defect sizes. Load to failure for screw fixation was found to be significantly decreased between 25% and 50% defect size (P<0.05). However, load to failure for isolated cement filling was not affected from defect size (p>0.05). In conclusion, size of the defect predicts the fixation method in addition to filling with cement. Filling with cement in metaphyseal defects was found to be biomechanically insufficient. In addition to filling with cement, additional screw fixation in less than 25% defects and plate-screw fixation in more than 25% defects may decrease tibial plateau fracture or metaphyseal fracture risk after local aggressive tumor resection


Bone & Joint Open
Vol. 4, Issue 7 | Pages 507 - 515
6 Jul 2023
Jørgensen PB Jakobsen SS Vainorius D Homilius M Hansen TB Stilling M

Aims. The Exeter short stem was designed for patients with Dorr type A femora and short-term results are promising. The aim of this study was to evaluate the minimum five-year stem migration pattern of Exeter short stems in comparison with Exeter standard stems. Methods. In this case-control study, 25 patients (22 female) at mean age of 78 years (70 to 89) received cemented Exeter short stem (case group). Cases were selected based on Dorr type A femora and matched first by Dorr type A and then age to a control cohort of 21 patients (11 female) at mean age of 74 years (70 to 89) who received with cemented Exeter standard stems (control group). Preoperatively, all patients had primary hip osteoarthritis and no osteoporosis as confirmed by dual X-ray absorptiometry scanning. Patients were followed with radiostereometry for evaluation of stem migration (primary endpoint), evaluation of cement quality, and Oxford Hip Score. Measurements were taken preoperatively, and at three, 12, and 24 months and a minimum five-year follow-up. Results. At three months, subsidence of the short stem -0.87 mm (95% confidence interval (CI) -1.07 to -0.67) was lower compared to the standard stem -1.59 mm (95% CI -1.82 to -1.36; p < 0.001). Both stems continued a similar pattern of subsidence until five-year follow-up. At five-year follow-up, the short stem had subsided mean -1.67 mm (95% CI -1.98 to -1.36) compared to mean -2.67 mm (95% CI -3.03 to -2.32) for the standard stem (p < 0.001). Subsidence was not influenced by preoperative bone quality (osteopenia vs normal) or cement mantle thickness. Conclusion. The standard Exeter stem had more early subsidence compared with the short Exeter stem in patients with Dorr type A femora, but thereafter a similar migration pattern of subsidence until minimum five years follow-up. Both the standard and the short Exeter stems subside. The standard stem subsides more compared to the short stem in Dorr type A femurs. Subsidence of the Exeter stems was not affected by cement mantle thickness. Cite this article: Bone Jt Open 2023;4(7):507–515


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 19 - 26
1 Jan 2022
Sevaldsen K Schnell Husby O Lian ØB Farran KM Schnell Husby V

Aims. Highly polished stems with force-closed design have shown satisfactory clinical results despite being related to relatively high early migration. It has been suggested that the minimal thickness of cement mantles surrounding the femoral stem should be 2 mm to 4 mm to avoid aseptic loosening. The line-to-line cementing technique of the femoral stem, designed to achieve stem press-fit, challenges this opinion. We compared the migration of a highly polished stem with force-closed design by standard and line-to-line cementing to investigate whether differences in early migration of the stems occur in a clinical study. Methods. In this single-blind, randomized controlled, clinical radiostereometric analysis (RSA) study, the migration pattern of the cemented Corail hip stem was compared between line-to-line and standard cementing in 48 arthroplasties. The primary outcome measure was femoral stem migration in terms of rotation and translation around and along with the X-, Y-, and Z- axes measured using model-based RSA at three, 12, and 24 months. A linear mixed-effects model was used for statistical analysis. Results. Results from mixed model analyses revealed a lower mean retroversion for line-to-line (0.72° (95% confidence interval (CI) 0.38° to 1.07°; p < 0.001), but no significant differences in subsidence between the techniques (-0.15 mm (95% CI -0.53 to 0.227; p = 0.429) at 24 months. Radiolucent lines measuring < 2 mm wide were found in three and five arthroplasties cemented by the standard and line-to-line method, respectively. Conclusion. The cemented Corail stem with a force-closed design seems to settle earlier and better with the line-to-line cementing method, although for subsidence the difference was not significant. However, the lower rate of migration into retroversion may reduce the wear and cement deformation, contributing to good long-term fixation and implant survival. Cite this article: Bone Joint J 2022;104-B(1):19–26


Bone & Joint Research
Vol. 8, Issue 2 | Pages 81 - 89
1 Feb 2019
Funk GA Menuey EM Cole KA Schuman TP Kilway KV McIff TE

Objectives. The objective of this study was to characterize the effect of rifampin incorporation into poly(methyl methacrylate) (PMMA) bone cement. While incompatibilities between the two materials have been previously noted, we sought to identify and quantify the cause of rifampin’s effects, including alterations in curing properties, mechanical strength, and residual monomer content. Methods. Four cement groups were prepared using commercial PMMA bone cement: a control; one with 1 g of rifampin; and one each with equimolar amounts of ascorbic acid or hydroquinone relative to the amount of rifampin added. The handling properties, setting time, exothermic output, and monomer loss were measured throughout curing. The mechanical strength of each group was tested over 14 days. A radical scavenging assay was used to assess the scavenging abilities of rifampin and its individual moieties. Results. Compared with control, the rifampin-incorporated cement had a prolonged setting time and a reduction in exothermic output during polymerization. The rifampin cement showed significantly reduced strength and was below the orthopaedic weight-bearing threshold of 70 MPa. Based on the radical scavenging assay and strength tests, the hydroquinone structure within rifampin was identified as the polymerization inhibitor. Conclusion. The incorporation of rifampin into PMMA bone cement interferes with the cement’s radical polymerization. This interference is due to the hydroquinone moiety within rifampin. This combination alters the cement’s handling and curing properties, and lowers the strength below the threshold for weight-bearing applications. Additionally, the incomplete polymerization leads to increased toxic monomer output, which discourages its use even in non-weight-bearing applications. Cite this article: G. A. Funk, E. M. Menuey, K. A. Cole, T. P. Schuman, K. V. Kilway, T. E. McIff. Radical scavenging of poly(methyl methacrylate) bone cement by rifampin and clinically relevant properties of the rifampin-loaded cement. Bone Joint Res 2019;8:81–89. DOI: 10.1302/2046-3758.82.BJR-2018-0170.R2


Bone & Joint Open
Vol. 2, Issue 5 | Pages 278 - 292
3 May 2021
Miyamoto S Iida S Suzuki C Nakatani T Kawarai Y Nakamura J Orita S Ohtori S

Aims. The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone cement (IBBC) technique in the first year after THA, and evaluate whether these risk factors influence the development of RLLs at five and ten years after THA. Methods. A retrospective review was undertaken of 980 primary cemented THAs in 876 patients using cemented acetabular components with the IBBC technique. The outcome variable was any RLLs that could be observed around the acetabular component at the first year after THA. Univariate analyses with univariate logistic regression and multivariate analyses with exact logistic regression were performed to identify risk factors for any RLLs based on radiological classification of hip osteoarthritis. Results. RLLs were detected in 27.2% of patients one year postoperatively. In multivariate regression analysis controlling for confounders, atrophic osteoarthritis (odds ratio (OR) 2.17 (95% confidence interval (CI), 1.04 to 4.49); p = 0.038) and 26 mm (OR 3.23 (95% CI 1.85 to 5.66); p < 0.001) or 28 mm head diameter (OR 3.64 (95% CI 2.07 to 6.41); p < 0.001) had a significantly greater risk for any RLLs one year after surgery. Structural bone graft (OR 0.19 (95% CI 0.13 to 0.29) p < 0.001) and location of the hip centre within the true acetabular region (OR 0.15 (95% CI 0.09 to 0.24); p < 0.001) were significantly less prognostic. Improvement of the cement-bone interface including complete disappearance and poorly defined RLLs was identified in 15.1% of patients. Kaplan-Meier survival analysis for the acetabular component at ten years with revision of the acetabular component for aseptic loosening as the end point was 100.0% with a RLL and 99.1% without a RLL (95% CI 97.9 to 100). With revision of the acetabular component for any reason as the end point, the survival rate was 99.2% with a RLL (95% CI 97.6 to 100) and 96.5% without a RLL (95% CI 93.4 to 99.7). Conclusion. This study demonstrates that acetabular bone quality, head diameter, structural bone graft, and hip centre position may influence the presence of the any RLL. Cite this article: Bone Joint Open 2021;2(5):278–292


Bone & Joint Open
Vol. 5, Issue 5 | Pages 401 - 410
20 May 2024
Bayoumi T Burger JA van der List JP Sierevelt IN Spekenbrink-Spooren A Pearle AD Kerkhoffs GMMJ Zuiderbaan HA

Aims. The primary objective of this registry-based study was to compare patient-reported outcomes of cementless and cemented medial unicompartmental knee arthroplasty (UKA) during the first postoperative year. The secondary objective was to assess one- and three-year implant survival of both fixation techniques. Methods. We analyzed 10,862 cementless and 7,917 cemented UKA cases enrolled in the Dutch Arthroplasty Registry, operated between 2017 and 2021. Pre- to postoperative change in outcomes at six and 12 months’ follow-up were compared using mixed model analyses. Kaplan-Meier and Cox regression models were applied to quantify differences in implant survival. Adjustments were made for patient-specific variables and annual hospital volume. Results. Change from baseline in the Oxford Knee Score (OKS) and activity-related pain was comparable between groups. Adjustment for covariates demonstrated a minimally greater decrease in rest-related pain in the cemented group (β = -0.09 (95% confidence interval (CI) -0.16 to -0.01)). Cementless fixation was associated with a higher probability of achieving an excellent OKS outcome (> 41 points) (adjusted odds ratio 1.2 (95% CI 1.1 to 1.3)). The likelihood of one-year implant survival was greater for cemented implants (adjusted hazard ratio (HR) 1.35 (95% CI 1.01 to 1.71)), with higher revision rates for periprosthetic fractures of cementless implants. During two to three years’ follow-up, the likelihood of implant survival was non-significantly greater for cementless UKA (adjusted HR 0.64 (95% CI 0.40 to 1.04)), primarily due to increased revision rates for tibial loosening of cemented implants. Conclusion. Cementless and cemented medial UKA led to comparable improvement in physical function and pain reduction during the initial postoperative year, albeit with a greater likelihood of achieving excellent OKS outcomes after cementless UKA. Anticipated differences in early physical function and pain should not be a decisive factor in the choice of fixation technique. However, surgeons should consider the differences in short- and long-term implant survival when deciding which implant to use. Cite this article: Bone Jt Open 2024;5(5):401–410


Bone & Joint Research
Vol. 6, Issue 5 | Pages 351 - 357
1 May 2017
Takahashi E Kaneuji A Tsuda R Numata Y Ichiseki T Fukui K Kawahara N

Objectives. Favourable results for collarless polished tapered stems have been reported, and cement creep due to taper slip may be a contributing factor. However, the ideal cement thickness around polished stems remains unknown. We investigated the influence of cement thickness on stem subsidence and cement creep. Methods. We cemented six collarless polished tapered (CPT) stems (two stems each of small, medium and large sizes) into composite femurs that had been reamed with a large CPT rasp to achieve various thicknesses of the cement mantle. Two or three tantalum balls were implanted in the proximal cement in each femur. A cyclic loading test was then performed for each stem. The migration of the balls was measured three-dimensionally, using a micro-computed tomography (CT) scanner, before and after loading. A digital displacement gauge was positioned at the stem shoulder, and stem subsidence was measured continuously by the gauge. Final stem subsidence was measured at the balls at the end of each stem. Results. A strong positive correlation was observed between mean cement thickness and stem subsidence in the CT slices on the balls. In the small stems, the balls moved downward to almost the same extent as the stem. There was a significant negative correlation between cement thickness and the horizontal:downward ratio of ball movement. Conclusion. Collarless polished tapered stems with thicker cement mantles resulted in greater subsidence of both stem and cement. This suggests that excessive thickness of the cement mantle may interfere with effective radial cement creep. Cite this article: E. Takahashi, A. Kaneuji, R. Tsuda, Y. Numata, T. Ichiseki, K. Fukui, N. Kawahara. The influence of cement thickness on stem subsidence and cement creep in a collarless polished tapered stem: When are thick cement mantles detrimental? Bone Joint Res 2017;6:–357. DOI: 10.1302/2046-3758.65.BJR-2017-0028.R1


Bone & Joint Research
Vol. 10, Issue 8 | Pages 467 - 473
2 Aug 2021
Rodríguez-Collell JR Mifsut D Ruiz-Sauri A Rodríguez-Pino L González-Soler EM Valverde-Navarro AA

Aims. The main objective of this study is to analyze the penetration of bone cement in four different full cementation techniques of the tibial tray. Methods. In order to determine the best tibial tray cementation technique, we applied cement to 40 cryopreserved donor tibiae by four different techniques: 1) double-layer cementation of the tibial component and tibial bone with bone restrictor; 2) metallic cementation of the tibial component without bone restrictor; 3) bone cementation of the tibia with bone restrictor; and 4) superficial bone cementation of the tibia and metallic keel cementation of the tibial component without bone restrictor. We performed CT exams of all 40 subjects, and measured cement layer thickness at both levels of the resected surface of the epiphysis and the endomedular metaphyseal level. Results. At the epiphyseal level, Technique 2 gave the greatest depth compared to the other investigated techniques. At the endomedular metaphyseal level, Technique 1 showed greater cement penetration than the other techniques. Conclusion. The best metaphyseal cementation technique of the tibial component is bone cementation with cement restrictor. Additionally, if full tibial component cementation is to be done, the cement volume used should be about 40 g of cement, and not the usual 20 g. Cite this article: Bone Joint Res 2021;10(8):467–473


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 13 - 13
1 Jan 2018
Maggs J Swanton E Wilson M Gie G
Full Access

Standard practice in revision total hip replacement (THR) for periprosthetic fracture (PPF) is to remove all cement from the femoral canal prior to implantation of a new component. This can make the procedure time consuming and complex. Since 1991 it has been our practice to preserve the old femoral cement where it remains well fixed to bone, even if the cement mantle is fractured, and to cement a new component into the old mantle. We have reviewed the data of 48 consecutive patients, treated at our unit between 1991 and 2009, with a first PPF around a cemented primary THR stem where a cement in cement revision was performed. 8 hips were revised to a standard length stem, 39 hips to a long stem & 1 patient had the same stem reinserted. All fractures were reduced and held with cerclage wires or cables and four had supplementary plate fixation. Full clinical and radiographic follow up was available in 38 patients & clinical or radiographic follow up in a further 6 patients. The other 4 patients. without follow up but whose outcome is known, have suffered no complications and are pain free. Of the remaining 44 patients, forty-two went on to union of the fracture and two have required further surgery for non-union. One patient has ongoing undiagnosed hip pain. Our long term experience with cement in cement revision for periprosthetic femoral fractures shows that this is a viable technique with a low complication rate and high rate of union (95%) in what is generally regarded as a very difficult condition to treat


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 94 - 94
11 Apr 2023
Funk G Horn E Kilway K Parrales A Iwakuma T McIff T
Full Access

Osteosarcoma and other types of bone cancers often require bone resection, and backfill with cement. A novel silorane-based cement without PMMA's drawbacks, previously developed for dental applications, has been reformulated for orthopedic use. The aim of this study is to assess each cement's ability to elute doxorubicin, maintain its potency, and maintain suitable weight-bearing strength. The silorane-based epoxy cement was synthesized using a platinum-based Lamoreaux's catalyst. Four groups of cement were prepared. Two PMMA groups, one without any additives, one with 200 mg of doxorubicin. Two silorane groups: one without any additive, one with doxorubicin, added so that the w% of drug into both cements were equal. Pellets 6 × 12 mm were used for testing (ASTM F451). n=10. Ten pellets from each group were kept dry. All others were placed into tubes containing 2.5 mL of PBS and stored at 37 °C. Elution from doxorubicin-containing groups were collected every day for 7 days, with daily PBS changeout. Antibiotic concentrations were determined via HPLC. Compressive strength and compressive modulus of all groups were determined for unsoaked specimens, and those soaked for 7 and 14 days. MTT assays were done using an MG63 osteosarcoma cell line. Both cements were able to elute doxorubicin over 7 days in clinically-favorable quantities. For PMMA samples, the incorporation of doxorubicin was shown to significantly affect the compressive strength and modulus of the samples (p<0.01). Incorporation of doxorubicin into silorane had no significant effect on either (p>.05). MTT assays indicated that doxorubicin incorporated into the silorane cement maintained its effectiveness whereas that into PMMA did not. At the dosing used, both cements remained above the 70 MPa. Both PMMA and silorane-based cements can deliver doxorubicin. Doxorubicin, however, interacts chemically with PMMA, inhibiting polymerization and lowering the chemotherapeutic's effectiveness


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 366 - 366
1 Oct 2006
Maury A Southgate C Kuiper J Graham N
Full Access

Introduction: The failure rate of cemented hip replacements is about 1% per year, mainly due to aseptic loosening. PMMA acts as a grout, therefore high pressure is needed to ensure fixation. Various plug designs are used to increase pressure. No data is available on their ability to occlude the canal. Factors including canal size, canal shape and cement viscosity may affect performance. The two aims of this study are (I) to determine the effect of cement viscosity, canal shape and canal size on the ability of cement restrictors to withstand cementation pressures, and (II) to determine which of the currently commercially available designs of cement restrictor is able to withstand cementation pressures, regardless of values of other potentially influential factors. Methods: Artificial femoral canals were drilled in oak blocks. Circular canals had diameters of 12 or 17.5 mm. Oval canals had short axes equal to the diameter of the circular canals and long axes 1.3 times longer. This ellipticity of 1.3 is average for human femoral canals. One of four types of cement plugs (Hardinge, DePuy, UK; Exeter, Stryker, UK; Amber Flex, Summit Medical, UK; and OptiPlug, Scandimed, Sweden) was inserted. A pressure transducer was fitted in the canal just proximal to the plug. Bone cement (Palacos LV-40 low viscosity or Palacos R-20 high viscosity, both Schering Plough, UK) was prepared in a mixing device for 1 min at 21°C, and inserted in the artificial canal after 4 minutes. A materials testing machine was used to generate pressure in the cement. Cement pressure and plug position were measured. All combinations of canal size and shape, plug design and cement viscosity were pre-selected according to a D-optimal experimental design which was optimised to perform a four-way ANOVA to analyse the four main factors plus the interactions between plugs and the other three factors. A total of 23 experiments was performed. Results: Average cement pressures achieved differed between implants (OptiPlug 448±66 kPa, Hardinge 142±66, Exeter 705±66, Amber Flex 475±72; p=0.002, all mean±SEM). They also differed between canal sizes (12 mm 529±49, 18 mm 356±47; p=0.03), canal shapes (Round 631±45, Oval 254±51; p=0.004) and cement viscosity (High 535±54, Low 350±43; p=0.03). No significant interaction between factors was found. Discussion and Conclusion: All plugs resisted lower pressures in large canals, oval canals or with low viscosity cement. When comparing plugs, these different circumstances should therefore be taken into account. Of the four tested, the Exeter plug performed best in all adverse circumstances. The OptiPlug and AmberFlex, which are both resorbable, had an intermediate performance. The Hardinge plug performed worse


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 19 - 19
10 Feb 2023
Crombie A Boyd J Pozzi R
Full Access

Multiple studies have established an inverse relationship between ambient theatre temperatures and polymethyl methacrylate (PMMA) cement setting times. It is also known that allowing cement to equilibrate to ambient theatre temperatures restores expected setting characteristics. One overlooked entity is the transport and storage conditions of cement. This is important in tropical regions, where extreme temperature and humidity may cause rapid cement setting times, resulting in potentially significant intra-operative complications. This study investigated the relationship between extreme transport and storage conditions of Antibiotic Simplex cement (Stryker), and the effect on setting times at Cairns Hospital, Far North Queensland, Australia. Fifty units of cement were divided evenly into a control arm and four experimental arms. The experimental arms were designed to mimic potential transport and storage conditions. They included seven days of storage in a medication fridge, on the hospital loading dock, in a cane shed, and in a Toyota Landcruiser parked outdoors during January 2022. Humidity and temperature readings were recorded. The samples in each group were evenly distributed to equilibrate to theatre conditions for 1 hour and 24 hours. Setting time was recorded when a no. 15 scalpel blade was unable to mark the surface. All three ‘hot’ exposures setting times were significantly faster for both 1 hour (ρ=0.001) and 24 hours (ρ=0.024) equilibration times. The difference in setting times for the ‘cold’ exposure was not significant for either equilibration times (ρ=1). To our knowledge, this is the first study investigating cement setting times in tropical climates. Further studies are required to address the effect of these conditions on biomechanical strength of PMMA cement. We conclude that extreme heat and humidity during transport and storage have a statistically significant effect on cement setting times


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims. A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis. Methods. Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits. Results. The patient cohort mean age was 66 years (SD seven years), 59% were female, and the mean BMI was 32 kg/m. 2. (SD 6 kg/m. 2. ). Mean two-year subsidence of the EF-TKA was 0.056 mm (95% confidence interval (CI) 0.025 to 0.086) versus 0.006 mm (95% CI -0.029 to 0.040) for the Std-TKA, and the two-year maximum total point motion (MTPM) was 0.285 mm (95% upper confidence limit (UCL) ≤ 0.363) versus 0.346 mm (95% UCL ≤ 0.432), respectively, for a mean difference of -0.061 mm (95% CI -0.196 to 0.074). Inducible displacement also did not differ between groups. The MTPMs between 12 and 24 months for each group was below the published threshold of 0.2 mm for predicting early aseptic loosening (p < 0.001 and p = 0.001, respectively). Conclusion. Both the enhanced fixation and the standard tibial implant design showed fixation with a predicted low risk of long-term aseptic loosening. Cite this article: Bone Jt Open 2024;5(1):20–27


Bone & Joint Research
Vol. 12, Issue 5 | Pages 331 - 338
16 May 2023
Szymski D Walter N Krull P Melsheimer O Grimberg A Alt V Steinbrueck A Rupp M

Aims. The aim of this investigation was to compare risk of infection in both cemented and uncemented hemiarthroplasty (HA) as well as in total hip arthroplasty (THA) following femoral neck fracture. Methods. Data collection was performed using the German Arthroplasty Registry (EPRD). In HA and THA following femoral neck fracture, fixation method was divided into cemented and uncemented prostheses and paired according to age, sex, BMI, and the Elixhauser Comorbidity Index using Mahalanobis distance matching. Results. Overall in 13,612 cases of intracapsular femoral neck fracture, 9,110 (66.9%) HAs and 4,502 (33.1%) THAs were analyzed. Infection rate in HA was significantly reduced in cases with use of antibiotic-loaded cement compared with uncemented fixated prosthesis (p = 0.013). In patients with THA no statistical difference between cemented and uncemented prosthesis was registered, however after one year 2.4% of infections were detected in uncemented and 2.1% in cemented THA. In the subpopulation of HA after one year, 1.9% of infections were registered in cemented and 2.8% in uncemented HA. BMI (p = 0.001) and Elixhauser Comorbidity Index (p < 0.003) were identified as risk factors of periprosthetic joint infection (PJI), while in THA cemented prosthesis also demonstrated an increased risk within the first 30 days (hazard ratio (HR) = 2.73; p = 0.010). Conclusion. The rate of infection after intracapsular femoral neck fracture was statistically significantly reduced in patients treated by antibiotic-loaded cemented HA. Particularly for patients with multiple risk factors for the development of a PJI, the usage of antibiotic-loaded bone cement seems to be a reasonable procedure for prevention of infection. Cite this article: Bone Joint Res 2023;12(5):331–338


Bone & Joint Open
Vol. 4, Issue 10 | Pages 776 - 781
16 Oct 2023
Matar HE Bloch BV James PJ

Aims. The aim of this study was to evaluate medium- to long-term outcomes and complications of the Stanmore Modular Individualised Lower Extremity System (SMILES) rotating hinge implant in revision total knee arthroplasty (rTKA) at a tertiary unit. It is hypothesized that this fully cemented construct leads to satisfactory clinical outcomes. Methods. A retrospective consecutive study of all patients who underwent a rTKA using the fully cemented SMILES rotating hinge prosthesis between 2005 to 2018. Outcome measures included aseptic loosening, reoperations, revision for any cause, complications, and survivorship. Patients and implant survivorship data were identified through both prospectively collected local hospital electronic databases and linked data from the National Joint Registry/NHS Personal Demographic Service. Kaplan-Meier survival analysis was used at ten years. Results. Overall, 69 consecutive patients (69 knees) were included with a median age of 78 years (interquartile range 69 to 84), and there were 46 females (66.7%). Indications were septic revisions in 26 (37.7%), and aseptic aetiology in the remining 43 (62.3%). The mean follow-up was 9.7 years (4 to 18), and the overall complication was rate was 7.24%, all with patellofemoral complications. Failure rate with ‘any cause revision’ was 5.8%. There was one case of aseptic loosening of the femoral component. At ten years, 17/69 patients (24.63%) had died, and implant survivorship was 92.2%. Conclusion. In our experience, the SMILES rotating hinge prosthesis achieves satisfactory long-term outcomes with ten-year implant survivorship of 92.2% and a patellofemoral complication rate of 7.24%. Cite this article: Bone Jt Open 2023;4(10):776–781


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 875 - 883
1 Jul 2022
Mills K Wymenga AB van Hellemondt GG Heesterbeek PJC

Aims. Both the femoral and tibial component are usually cemented at revision total knee arthroplasty (rTKA), while stems can be added with either cemented or press-fit (hybrid) fixation. The aim of this study was to compare the long-term stability of rTKA with cemented and press-fitted stems, using radiostereometric analysis (RSA). Methods. This is a follow-up of a randomized controlled trial, initially involving 32 patients, of whom 19 (nine cemented, ten hybrid) were available for follow-up ten years postoperatively, when further RSA measurements were made. Micromotion of the femoral and tibial components was assessed using model-based RSA software (RSAcore). The clinical outcome was evaluated using the Knee Society Score (KSS), the Knee injury and Osteoarthritis Outcome Score (KOOS), and visual analogue scale (pain and satisfaction). Results. The median total femoral translation and rotation at ten years were 0.39 mm (interquartile range (IQR) 0.20 to 0.54) and 0.59° (IQR 0.46° to 0.73°) for the cemented group and 0.70 mm (IQR 0.15 to 0.77) and 0.78° (IQR 0.47° to 1.43°) for the hybrid group. For the tibial components this was 0.38 mm (IQR 0.33 to 0.85) and 0.98° (IQR 0.38° to 1.34°) for the cemented group and 0.42 mm (IQR 0.30 to 0.52) and 0.72° (IQR 0.62° to 0.82°) for the hybrid group. None of these values were significantly different between the two groups and there were no significant differences between the clinical scores in the two groups at this time. There was only one re-revision, in the hybrid group, for infection and not for aseptic loosening. Conclusion. These results show good long-term fixation with no difference in micromotion and clinical outcome between fully cemented and hybrid fixation in rTKA, which builds on earlier short- to mid-term results. The patients all had type I or II osseous defects, which may in part explain the good results. Cite this article: Bone Joint J 2022;104-B(7):875–883


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 28 - 28
1 Oct 2022
Mannala G Rupp M Alt V
Full Access

Aim. Galleria mellonella larvae is a well-known insect infection model that has been used to test the virulence of bacterial and fungal strains as well as for the high throughput screening of antimicrobial compounds against infections. Recently, we have developed insect infection model G. mellonella larvae to study implant associated biofilm infections using small K-wire as implant material. Here, we aimed to further expand the use of G. mellonella to test other materials such as bone cement with combination of gentamicin to treat implant-associated infections. Method. The poly methyl methacrylate (PMMA) with and without gentamicin and liquid methyl methacrylate (MMA) were kindly provided by Heraeus Medical GmbH, Wehrheim. To make the bone cement implants as cubes, Teflon plate (Karl Lettenbauer, Erlangen) with specified well size was used. The Radiopaque polymer and monomer were mixed well in a bowl, applied over on to the Teflon plate and pressed with spatula to form fine and uniform cubes. After polymerization, the bone cement implants were taken out of the Teflon well plate with the help of pin. For the infection process, bone cement cubes were pre-incubated with S. aureus EDCC 5055 culture at 5×10. 6. CFU/ml for 30 min at 150 rpm shaking conditions. Later, these implants were washed with 10ml PBS and implanted in the larvae as mentioned. Survival of the larvae were observed at 37°C in an incubator. To analyze the susceptibility of the bacterial infections towards gentamicin, survival of the larvae compared with control group implanted only with bone cement. The effect of gentamicin was also measured in terms of S. aureus load in larvae on 2. nd. day. SEM analysis was performed to see the effect of gentamicin on biofilm formation on bone cement. Results. Our experiments established the G. mellonella as an excellent model to screen bone cement with antimicrobial compounds against bacterial infections. The gentamicin bone cement samples showed excellent S. aureus bacterial load reduction after the implantation in G. mellonella model. The bone cement with gentamicin showed better survival of larvae infected with S. aureus compared to control. Finally, the gentamicin also affected the biofilm formation on the bone cement surface with S. aureus. Conclusions. Thus, our work showed G. mellonella is a rapid, cheap economical pre-clinical model to study the bone cement associate bacterial infections as well as screening of the various antimicrobial compounds


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 3 - 3
23 Feb 2023
Holzer L Finsterwald M Sobhi S Yates P
Full Access

This study aimed to analyze the effect of two different techniques of cement application: cement on bone surface (CoB) versus cement on bone surface and implant surface (CoBaI) on the short-term effect of radiolucent lines (RLL) in primary fully cemented total knee arthroplasties (TKA) with patella resurfacing. 379 fully cemented TKAs (318 patients) were included in this monocentric study. Preoperative and postoperative at week 4 and 12 month after surgery all patients had a clinical and radiological examination and were administered the Oxford Knee Score (OKS). Cement was applied in two different ways among the two study groups: cement on bone surface (CoB group) or cement on bone surface and implant surface (CoBaI group). The evaluation of the presence of RLL or osteolysis was done as previously described using the updated Knee Society Radiographic Evaluation System. The mean OKS and range of motion improved significantly in both groups at the 4-week and 12-month follow-up, with no significant difference between the groups (CoB vs. CoBaI). RLL were present in 4.7% in the whole study population and were significantly higher in the CoBaI group (10.5%) at the 4-week follow-up. At the 12-month follow-up RLL were seen in 29.8% of the TKAs in the CoBaI group, whereas the incidence was lower in the CoB group (24.0% (n.s.)). There were two revisions in each group. None of these due to aseptic loosening. Our study indicated that the application of bone cement on bone surface only might be more beneficial than onto the bone surface and onto the implant surface as well in respect to the short-term presence of RLL in fully cemented primary TKA. The long-term results will be of interest, especially in respect to aseptic loosening and might guide future directions of bone cement applications in TKA


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 49 - 49
1 Dec 2022
Khalik HA Wood T Tushinski D Gazendam A Petruccelli D Bali K
Full Access

Primary hip and knee joint replacements in Canada have been estimated to cost over $1.4 billion dollars annually, with revision surgery costing $177 million. The most common cause of revision arthroplasty surgery in Canada is infection. Periprosthetic joint infections (PJIs) are a devastating though preventable complication following arthroplasty. Though variably used, antibiotic laden bone cement (ALBC) has been demonstrated to decrease PJIs following primary total knee arthroplasty (TKA). Unfortunately, ALBC is costlier than regular bone cement (RBC). Therefore, the aim of this study was to determine if the routine use of ALBC in primary TKA surgery is a cost-effective practice from the perspective of the Canadian healthcare system. A decision tree was constructed using a decision analysis software (TreeAge Software, Williamstown, Massachusetts) to a two-year time horizon comparing primary TKA with either ALBC or RBC from the perspective of a single-payer healthcare system. All costs were in 2020 Canadian dollars. Health utilities were in the form of quality adjusted life years (QALYs). Model inputs for cost were derived from regional and national databases. Health utilities and probability parameters were derived from the latest literature. One-way deterministic sensitivity analysis was performed on all model parameters. The primary outcome of this analysis was an incremental cost-effectiveness ratio (ICER) with a willingness-to-pay (WTP) threshold of $50,000 per QALY. Primary TKA with ALBC (TKA-ALBC) was found to be more cost-effective compared to primary TKA with RBC (TKA-RBC). More specifically, TKA-ALBC dominated TKA-RBC as it was less costly on the long term ($11,160 vs. $11,118), while providing the same QALY (1.66). The ICER of this cost-utility analysis (CUA) was $-11,049.72 per QALY, much less than the WTP threshold of $50,000 per QALY. The model was sensitive to costs of ALBC-TKA as well as the probability of PJI following ALBC-TKA and RBC-TKA. ALBC ceased to be cost effective once the cost of ALBC was greater than $223.08 CAD per bag of cement. The routine use of ALBC in primary TKA is a cost-effective practice in the context of the Canadian healthcare system as long as the cost of ALBC is maintained at a reasonable price and the published studies to-date keep supporting the efficacy of ALBC in decreasing PJI following primary TKA. Further, this analysis is very conservative, and ALBC is likely much more cost-effective than presented. This is due to this model's revision surgery cost parameter being based on the average cost of all revision TKA surgery in Canada, regardless of etiology. Considering many PJIs require two-stage revisions, the cost parameter used in this analysis for revision surgery is an underestimate of true cost. Ultimately, this is the first cost-effectiveness study evaluating this topic from the perspective of the Canadian healthcare system and can inform future national guidelines on the subject matter