The numbers of anatomic total shoulder joint replacements (ATSR) is increasing during the past years with encouraging clinical results. However, the survivorship of ATSR is lower as compared to total knee and hip replacements. Although the reasons for revision surgery are multifactorial, wear-associated problems like loosening are well-known causes for long-term failure of ATSR. Furthermore there is lack of valid experimental wear tests for ATSR. Therefore the purpose of this study was to define experimental wear testing parameters for ATSR and to perform a wear study comparing ceramic and metallic humeral heads. Kinetic and kinematic data were adopted from in-vivo loading measurements of the shoulder joint (. orthoload.com. ) and from several clinical studies on shoulder joint kinematics. As activity an ab/adduction motion of 0 to 90° in combination with an ante/retroversion while lifting a load of 2 kg has been chosen. Also a superior-inferior translation of the humeral head has been considered. The wear assessment was performed using a force controlled AMTI joint simulator for 3×10. 6. cycles (Fig. 1) and polyethylene wear has been assed gravimetrically. The studied ATSR (Turon. TM. , DJO Surgical, USA) resulted in a polyethylene wear rate of 62.75 ± 1.60 mg/10. 6. cycles in combination with metallic heads. The ceramic heads significantly reduced the wear rate by 26.7 % to 45.99 ± 1.31 mg/10. 6. (p<0.01). The wear scars dimensions were in good agreement to clinical retrievals. This study is the first that experimentally studied the wear behavior of ATSR based on clinical and biomechanical data under load controlled conditions. In term of wear the analyzed ATSR could clearly benefit from
A secure taper connection in shoulder arthroplasty is mandatory to avoid loosening and fretting. This study's objective was to determine the amount of in situ force used by surgeons to seat a humeral head and to determine the disengagement force of the taper connection. The influence of 1) material type, 2) head size, and 3) surgeon on the impaction force and the fixation (pulloff force) of the sample was examined. Methods. Impaction data was collected from experienced shoulder surgeons (n=5) during a cadaver lab. Testing groups (n=5 each) were: 1) small ceramic, 2) big ceramic, 3)small metal and 4) large metal. Twenty centric, anatomic humeral heads (DJO surgical, Vista, CA, TURONTM, material: CoCrMo or BIOLOX®delta, size: 38×14mm or 54×22mm) were paired with a corresponding humeral neck (TURON™, DJO surgical, type: neutral modular, material: CoCrMo). Each taper was always used with the same humeral head throughout testing. The impaction force sequence was recorded using an instrumented impactor (Piezo sensor, model 208 C05, PCB PIEZOTRONICSINC, Depew, NY, ±1%). The surgeons impacted all samples into the cadaver using their typical pattern of hammer strikes (Figure 1). The engaged humeral head and taper were removed by hand and then disengaged using an instrumented (U93, HBM, Darmstadt, Germany, load limit: 5kN) hand-held pulloff-device. Statistics and data analysis were performed in MATLAB (2014b, Mathworks, Natick, MA, α=0.05). Two-tailed, pearson's linear correlation coefficients are reported. Group differences were determined using Kruskal Wallis test. Pair-wise comparisons were performed using a Tukey correction. Results. Extremely high and variable impaction forces were measured (Table 1, Figure 2). The maximum force was nearly 27 kN; however, that value reduced to ∼18kN when the data from an outlier surgeon was removed. Maximum impaction forces were 12.45±4.36 kN, and the average was 10.47±3.63 kN. The pulloff force ranged from 0.94 kN to 5.54 kN with an average of 2.76±1.19 kN. Higher impaction forces required higher pulloff forces to disengage the taper connection (p<0.001, R>−0.608).
The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids. Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.Aims
Methods