Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with
Object: To assess the benefit of prescribed
Direct metal printed (DMP) porous
Total joint arthroplasty is commonly associated with post-operative anemia. Blood conservation programs have been developed to optimise patients prior to surgery. Epoetin Alfa (Eprex) or intravenous (IV)
A hip fracture may lead to anaemia after surgery due to blood loss from the fracture site and operative blood loss. The value of
Although multifunctional delivery systems can potentially improve safety and efficacy of therapeutic protein delivery in the biological treatment of injured tissues, ability to track and manipulate protein delivery systems in vivo to ensure localization at the treatment site is still a concern. We hypothesized that incorporating superparamagnetic
Aims. Hereditary haemochromatosis is a genetic disorder that is caused by several known mutations in the human homeostatic
Aims. Hip and knee arthroplasty is commonly performed for end-stage arthritis. There is limited information to guide golfers on the impact this procedure will have postoperatively. This study aimed to determine the impact of lower limb arthroplasty on amateur golfer performance and return to play. Methods. A retrospective observational study was designed to collect information from golfers following arthroplasty. Data were collected from 18 April 2019 to 30 April 2019 and combined a patient survey with in-app handicap data. Results. A total of 2,198 responses were analyzed (1,097 hip and 1,101 knee). Of the respondents, 1,763 (80%) were male and the mean age was 70 years (26 to 92). Hip arthroplasty was associated with a mean increase in handicap of 1.03 (95% confidence interval (CI) 0.81 to 1.25). No difference was seen between isolated leading or trailing leg (p = 0.428). Bilateral hip arthroplasty increased handicap (p < 0.001). Overall, 1,025 (94%) maintained or increased the amount of golf played, 258 (23.5%) returned to
Introduction: The return of haemoglobin (Hb) to preoperative levels at 1–6 months following elective lower limb joint arthroplasty is well documented. Previous reports have suggested in healthy, elective patients there is no significant improvement in Hb levels following
Aim: To estimate the prevalence of
Aims. Mendelian randomization (MR) is considered to overcome the bias of observational studies, but there is no current meta-analysis of MR studies on rheumatoid arthritis (RA). The purpose of this study was to summarize the relationship between potential pathogenic factors and RA risk based on existing MR studies. Methods. PubMed, Web of Science, and Embase were searched for MR studies on influencing factors in relation to RA up to October 2022. Meta-analyses of MR studies assessing correlations between various potential pathogenic factors and RA were conducted. Random-effect and fixed-effect models were used to synthesize the odds ratios of various pathogenic factors and RA. The quality of the study was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines. Results. A total of 517 potentially relevant articles were screened, 35 studies were included in the systematic review, and 19 studies were eligible to be included in the meta-analysis. Pooled estimates of 19 included studies (causality between 15 different risk factors and RA) revealed that obesity, smoking, coffee intake, lower education attainment, and Graves’ disease (GD) were related to the increased risk of RA. In contrast, the causality contribution from serum mineral levels (calcium,
120 patients undergoing primary TKR/THR were randomised to receive ferrous sulphate (FS) or placebo (P) for three weeks following their arthroplasty. Haemoglobin levels and absolute reticulocyte counts were measured at days 1 and 5, and weeks 3 and 6. Ninety-nine patients FS (50), P (49) completed the study. The two groups differed only in treatment administered. Haemoglobin recovery was similar at day 5 and by week 3, haemoglobin levels recovered to 85% of their pre-operative levels, irrespective of treatment group. A small but greater recovery in haemoglobin level was identified at 6 weeks in the FS group for females (6% Vs 3%) and males (5% Vs 1.5%). The clinical significance of this is questionable and may be outweighed by the high incidence of reported side effects of oral
Biodegradable metals as orthopaedic implant materials receive substantial scientific and clinical interest. Marketed cardiovascular products confirm good biocompatibility of
Recent researches indicate that both M1 and M2 macrophages play vital roles in tissue repair and foreign body reaction processes. In this study, we investigated the dynamics of M1 macrophages in the induced membrane using a mouse femur critical-sized bone defect model. The Masquelet method (M) and control (C) groups were established using C57BL/6J male mice (n=24). A 3mm-bone defect was created in the right femoral diaphysis followed by a Kirschner wire fixation, and a cement spacer was inserted into the defect in group M. In group C, the bone defect was left uninserted. Tissues around the defect were harvested at 1, 2, 4, and 6 weeks after surgery (n=3 in each group at each time point). Following Hematoxylin and eosin (HE) staining, immunohistochemical staining (IHC) was used to evaluate the CD68 expression as a marker of M1 macrophage.
Tendons display poor intrinsic healing properties and are difficult to treat[1]. Prior in vitro studies[2] have shown that, by targeting the Activin A receptor with magnetic nanoparticles (MNPs), it is possible to remotely induce the tenogenic differentiation of human adipose stem cells (hASCs). In this study, we investigated the tenogenic regenerative potential of remotely-activated MNPs-labelled hASCs in an in vivo rat model. We consider the potential for magnetic controlled nanoparticle mediated tendon repair strategies. hASCs were labelled with 250 nm MNPs functionalized with anti-Activin Receptor IIA antibody. Using a rapid curing fibrin gel as delivery method, the MNPs-labelled cells were delivered into a Ø2 mm rat patellar tendon defect. The receptor was then remotely stimulated by exposing the rats to a variable magnetic gradient (1.28T), using a customised magnetic box. The stimulation was performed 1 hour/day, 3 days/week up to 8 weeks. Tenogenesis,
Skeletal muscle tissue engineering has made progress towards production of functional tissues in line with the development in materials science and fabrication techniques. In particular, combining the specificity of 3D printing with smart materials has introduced a new concept called the 4D printing. Inspired by the unique properties of smart/responsive materials, we designed a bioink made of gelatin, a polymer with well-known cell compatibility, to be 3D printed on a magnetically responsive substrate. Gelatin was made photocrosslinkable by the methacrylate reaction (GELMA), and its viscosity was finetuned by blending with alginate which was later removed by alginate lyase treatment, so that the printability of the bioink as well as the cell viability can be finetuned. C2C12 mouse myoblasts-laden bioink was then 3D printed on a magnetic substrate for 4D shape-shifting. The magnetic substrate was produced using silicon rubber (EcoFlex) and carbonyl
Dual mobility (DM) total hip replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. Although DM THRs have shown good overall survivorship and low dislocation rates, the mechanisms which describe how these bearings function in-vivo are not fully understood. Therefore, the study aim was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment methods. Retrieved DM liners (n=18) were visually inspected for the presence of surface damage, whereby the internal and external surfaces were independently assigned a score of one (present) or zero (not present) for seven damage modes. The severity of damage was not assessed. The material composition of embedded debris was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation [1]. Scratching and pitting were the most common damage modes on either surface. Additionally, burnishing was observed on 50% of the internal surfaces and embedded debris was identified on 67% of the external surfaces. EDX analysis of the debris identified several materials including titanium, cobalt-chrome,
Introduction. Major trauma during military conflicts involve heavily contaminated open fractures. Staphylococcus aureus (S. aureus) commonly causes infection within a protective biofilm. Lactoferrin (Lf), a natural milk glycoprotein, chelates
Introduction. Homogenous and consistent preparations of mesenchymal stem cells (MSCs) can be acquired by selecting them for integrin α10β1 (integrin a10-MSCs). Safety and efficacy of intra-articular injection of allogeneic integrin a10-MSCs were shown in two post-traumatic osteoarthritis horse studies. The current study investigated immunomodulatory capacities of human integrin a10-MSCs in vitro and their cell fait after intra-articular injection in rabbits. Method. The concentration of produced immunomodulatory factors was measured after licensing integrin a10-MSCs with pro-inflammatory cytokines. Suppression of T-cell proliferation was determined in co-cultures with carboxyfluorescein N-succinimidyl ester (CFSE) labelled human peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3/CD28 and measuring the CFSE intensity of CD4+ cells. Macrophage polarization was assessed in co-cultures with differentiated THP-1 cells stimulated with lipopolysaccharide and analysing the M2 macrophage cell surface markers CD163 and CD206. In vivo homing and regeneration were investigated by injecting superparamagnetic
Dual Mobility (DM) Total Hip Replacements (THRs) were introduced to reduce dislocation risk, which is the most common cause of early revision. The in-vivo mechanics of these implants is not well understood, despite their increased use in both elective and trauma settings. Therefore, the aim of this study was to comprehensively assess retrieved DM polyethylene liners for signs of damage using visual inspection and semi-quantitative geometric assessment techniques. Retrieved DM liners (n=20) were visually inspected for the presence of seven established modes of polyethylene damage. If embedded debris was identified on the external surface, its material composition was characterised using energy-dispersive x-ray analysis (EDX). Additionally, each liner was geometrically assessed for signs of wear/deformation using a validated methodology. Visual inspection of the liners revealed that scratching and pitting were the most common damage modes on either surface. Burnishing was observed on 50% and 15% of the internal and external surfaces, respectively. In addition, embedded debris was identified on 25% of the internal and 65% of the external surfaces. EDX analysis of the debris identified several materials including