A multitude of different bearing combinations exist to recreate the artificial hip joint. To date, there is no particular ‘gold-standard’ total hip arthroplasty (THA) couple since none is faultless. Strategies to improve performance are aimed either at modifying the shape and design of components or their material properties. Wear particle generation is now well recognised as a cause of aseptic loosening which consistently features amongst the most common indication for revision THA and thus minimising wear lies at the cornerstone of developing bearing couples. However, history has shown the use of supposed newer and improved materials have not been without occasional catastrophic failure. Hard-on-hard bearings are theoretically more resistant to wear but component fracture and squeaking has been witnessed with ceramic-on-ceramic articulations whilst metal-on-metal articulations have been plagued by reports of pseudotumor and ALVAL formation. This has all led to resurgence in the hard-on-soft couple. More recently, corrosion at taper junctions has been identified as a significant factor in hip arthroplasty failure. Femoral head materials, surface changes or coatings may therefore have an increasing role to play. In 2005, a multi-center, prospective, assessor and patient-blinded, randomised control trial was initiated. This was designed as a three armed study with either cobalt-chrome or
Introduction. Wear-related osteolysis continues to be a concern in the long-term outcome and survivorship of total hip arthroplasty (THA) and there continues to be an emphasis on bearing materials that exhibit improved wear profiles. Oxidized zirconium metal (Oxinium®, Smith & Nephew) was developed to reduce the amount of polyethylene wear as compared to cobalt chromium femoral heads, without the risk of brittle fracture seen with older generation ceramics. There are a limited number of retrieval studies evaluating the performance of Oxinium in THA. The aims of this study were 1) to visually assess damage on the surface of a large number of retrieved Oxinium femoral heads, 2) to measure surface roughness of scratches on the surfaces of Oxinium femoral heads, and 3) to use scanning electron microscopy (SEM) to assess the integrity of the
Introduction. Detailed analysis of retrieved total hip replacements (THRs) is valuable for assessing implant and material successes and failures. Reduction of bearing wear and corrosion and fretting of the head-neck trunnion is essential to implant durability and patient health. This research quantifies and characterizes taper and bearing surface damage on retrieved
Background. As the number of ceramic THR bearings used worldwide is increasing, the number of implants that experience off-normal working conditions, e.g. edge loading, third bodies in the joint, soft tissues laxity, dislocation/subluxation of the joint, increases too. Under all such conditions the bearing surfaces can be damaged, leading eventually to a limitation of the expected performances of the implant. Methods. We characterised the damage resistance of different bearing surfaces (alumina matrix composite BIOLOXdelta, alpha-alumina BIOLOXforte, zirconia 3Y-TZP,
Wear of the polyethylene (PE) insert in total knee replacements can lead to wear-particle and fluid-pressure induced osteolysis. One major factor affecting the wear behaviour of the PE insert in-vivo is the surface characteristics of the articulating femoral components. Contemporary femoral components available in Canada are either made of cast Cobalt Chromium (CoCr) alloy or have an
Total Knee Arthroplasty (TKA) patients may present with effusion, pain, stiffness and functional impairment. A positive metal hypersensitivity (positive LTT) may be an indication for a revision surgery with a custom-made implant devoid of any hypersensitivity-related metal or an implant with the least possible ion content of the metal hypersensitivity, if no custom-made is available. The purpose of the current study is to assess the prevalence of metal hypersensitivity in subjects requiring a primary TKA and assess their early functional outcomes. We are recruiting 660 subjects admitted for TKA. Subjects are randomly assigned to 2 groups:
The purpose of this investigation is to assess the rate of wear the effect once the “bedding in period”/ poly creep had been eliminated. Creep is the visco-elastic deformation that polyethylene exhibits in the first 6–12 weeks. We also assessed the wear pattern of four different bearing couples in total hip arthroplasty (THA): cobalt-chrome (CoCr) versus
Purpose. The success of total knee replacement (TKR) surgery can be attributed to improvements in TKR design, instrumentation, and surgical technique. Over a decade ago
Background. The advent of highly cross-linked polyethylene has resulted in improved wear rates and reduced osteolysis with at least intermediate follow-up when compared to conventional polyethylene. However, the role of alternative femoral head bearing materials in decreasing wear is less clear. The purpose of this study was to determine in-vivo polyethylene wear rates across ceramic, Oxinium, and cobalt chrome femoral head articulations. Methods. A review of our institutional database was performed to identify patients who underwent a total hip arthroplasty using either ceramic or
Introduction. The development of new bearing surfaces for total joint replacement is constantly evolving. Oxidized zirconium (Oxinium) has been introduced for use in total hip arthroplasty (THA) and total knee arthroplasty (TKA). One of the most common causes of failure of THA is aseptic loosening secondary to polyethylene wear debris. The aetiology of wear is multifactorial and includes adhesive, abrasive, third-body and fatigue wear mechanisms. Oxidized zirconium is a relatively new material that features an oxidized ceramic surface chemically bonded to a hard metallic substrate. This material possesses the reduced polyethylene wear characteristics of a ceramic, without the increased risk of implant fracture While short-term results of
Femoral components with an oxidized zirconium-niobium (OxZr) gradient ceramic surface (Oxinium, Smith & Nephew, Memphis, TN) were introduced as an alternative to cobalt-chromium (CoCr) alloy femoral components for the purpose of PE wear reduction in total knee replacements [1]. In the present study, the surface damage and clinical performance of both CoCr alloy and OxZr femoral components were investigated. By matching CoCr alloy and OxZr femoral components for clinical factors, as done by Heyse et al. [2], the surface damage on retrieved CoCr alloy and OxZr femoral component was assessed. Twenty-six retrieved cobalt-chromium (CoCr) alloy femoral components were matched with twenty-six retrieved
The aim of this study was to compare the outcome of cemented TKR using either
Purpose: Efforts to decrease polyethylene wear have lead to advances in polyethylene and counter-face technology for total hip replacement. In particular, the use of highly cross-linked polyethylene (XLPE) and more recently,
Introduction: Long term performance of total knee replacements is governed by wear of ultra-high molecular weight polyethylene (UHMWPE) which leads to aseptic loosening of the implant. Little has been done to reduce wear due to the femoral component properties in knee joint replacement. Scratching of the femoral component has been identified in retrieved knee replacements. Using a material that has a higher scratch resistance than current metals may reduce the rate of UHMWPE wear in knee replacements. In this study we investigated the effects of using an
INTRODUCTION:. The use of tapered junctions in primary hip arthroplasty has excellent results. Large heads are being used to mitigate dislocation and optimize range of motion. The prevalence of larger heads, coupled with recent findings regarding corrosion artifacts at tapered surfaces, has spurred growing interest when considering revision rates. The purpose of this study was to determine if correlations exist between severity of corrosion artifacts and head size, head offset, time in vivo, orhead material in a 15 year retrieval database. METHODS:. Retrieved hip arthroplasty devices with CoCrMo or
Although total knee arthroplasty (TKA) has been a reliable procedure providing durable pain relief, polyethylene (PE) wear remains a major limitation of the long-term success of TKA. One potential method of lowering PE wear in TKA is to use
Metal allergy in knee arthroplasty patients is a controversial topic. We aimed to conduct a scoping review to clarify the management of metal allergy in primary and revision total knee arthroplasty (TKA). Studies were identified by searching electronic databases: Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Embase, from their inception to November 2020, for studies evaluating TKA patients with metal hypersensitivity/allergy. All studies reporting on diagnosing or managing metal hypersensitivity in TKA were included. Data were extracted and summarized based on study design, study population, interventions and outcomes. A practical guide is then formulated based on the available evidence.Aims
Methods