Advertisement for orthosearch.org.uk
Results 1 - 20 of 91
Results per page:
Bone & Joint Research
Vol. 10, Issue 2 | Pages 134 - 136
1 Feb 2021
Im G

The high prevalence of osteoarthritis (OA), as well as the current lack of disease-modifying drugs for OA, has provided a rationale for regenerative medicine as a possible treatment modality for OA treatment. In this editorial, the current status of regenerative medicine in OA including stem cells, exosomes, and genes is summarized along with the author’s perspectives. Despite a tremendous interest, so far there is very little evidence proving the efficacy of this modality for clinical application. As symptomatic relief is not sufficient to justify the high cost associated with regenerative medicine, definitive structural improvement that would last for years or decades and obviate or delay the need for joint arthroplasty is essential for regenerative medicine to retain a place among OA treatment methods. Cite this article: Bone Joint Res 2021;10(2):134–136


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives. Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine. Methods. Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs). Results. The supernatant contained several GFs/CKs, with especially high levels of basic fibroblast growth factor, and CD34+ cells as the stem/progenitor cell fraction. With regard to biological potential, we confirmed that cell proliferation, osteoinduction, and angiogenesis in hMSCs and HUVECs were enhanced by the supernatant. Conclusions. The current study demonstrates the potential of a new point-of-care strategy for regenerative medicine using skeletal muscle supernatant. This attractive approach and readily-available material could be a promising option for tissue repair/regeneration in the clinical setting. Cite this article: M. Yoshikawa, T. Nakasa, M. Ishikawa, N. Adachi, M. Ochi. Evaluation of autologous skeletal muscle-derived factors for regenerative medicine applications. Bone Joint Res 2017;6:277–283. DOI: 10.1302/2046-3758.65.BJR-2016-0187.R1


Bone & Joint Research
Vol. 12, Issue 10 | Pages 667 - 676
19 Oct 2023
Forteza-Genestra MA Antich-Rosselló M Ramis-Munar G Calvo J Gayà A Monjo M Ramis JM

Aims. Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods. pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 10. 9. particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results. Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion. In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine. Cite this article: Bone Joint Res 2023;12(10):667–676


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 16 - 16
1 Dec 2020
Kontakis MG Schou J Hailer N
Full Access

Bone tissue engineering attempts at substituting critical size bone defects with scaffolds that can be primed with osteogenic cells, usually mesenchymal stem cells (MSC) from the bone marrow. Although overlooked, peripheral blood is a valuable source of MSC and circulating osteoprogenitors (COP), bearing a significant regenerative potential, and peripheral blood is easier to access than bone marrow. We thus studied osteodifferentiation of peripheral blood mononuclear cells (pbMNC) under different culture conditions, and how they compared to primary human osteoblasts.

pbMNC were isolated from healthy adult volunteers by Ficoll density gradient centrifugation, and they were then cultured using media supplemented with 100nM Dexamethasone, 10mM sodium β-glycero phosphate and ascorbic acid (either 40mM or 0.05mM). For comparison, primary osteoblasts were isolated from the femoral heads of patients undergoing hip arthroplasty. After 4 weeks of culture, osteogenic activation was quantified with spectrometric measurement of alkalic phosphatase (ALP) and lactate dehydrogenase (LDH) levels. The extent of osteoid mineralization was measured with Alizarin red staining. We studied the effects of 1) varying cell concentration at seeding, 2) surface coating of culture wells with collagen and 3) high compared to low ascorbic acid (40mM and 0.05mM) media.

Higher numbers of pbMNC (0.5–5.9 versus 0.062–0.25 million cells per well) at seeding resulted in a lower ALP/LDH-ratio (mean ± standard deviation), 0.39 ± 0.33 arbitrary units (AU) versus 1.36 ± 1.06 AU, but led to higher amount of osteoid production, 0.10 ± 0.06 versus 0.065 ± 0.02 AU, p < 0.05. Culture of pbMNC on collagen did not confer any difference in ALP/LDH-ratios, with 0.43 ± 0.3 AU for collagen-coated and 0.43 ± 0.41 AU for uncoated wells (p = 0.95), and we also observed no relevant difference in osteoid production (0.07 ± 0.01 AU for collagen-coated versus 0.1 ± 0.08 AU for uncoated wells, p = 0.28). Cultures of pbMNC on collagen in media supplemented with a higher concentration of ascorbic acid showed a 130% higher ALP/LDH-ratio when compared to cultures exposed to a lower ascorbic acid concentration (p < 0.05). Cultures with a low initial concentration of pbMNC (0.5 − 1 million cells) had no significantly different ALP/LDH-ratio when compared to primary human osteoblasts, but the cultures of pbMNC resulted in a 90% increase in osteoid mineralization when compared to primary human osteoblasts (p < 0.05).

These findings indicate that progenitor cells derived from peripheral blood have a significant osteogenic potential, rendering them interesting candidates for seeding of scaffolds intended to fill critical sized bone defects. pbMNC produced almost double the amount of osteoid as primary osteoblasts. The isolation of pbMSC and COP is non-invasive and easy, and they might be seeded directly onto scaffolds without prior ex-vivo expansion, a question that we intend to pursue further.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 61 - 61
1 Mar 2021
Canadas R Ren T Marques A Oliveira J Reis R Demirci U
Full Access

Gradients of three-dimensional (3D) hierarchical tissues are common in nature and present specific architectures, as this is the case of the anisotropic subchondral bone interfaced with articular cartilage. While diverse fabrication techniques based on 3D printing, microfabrication, and microfluidics have been used to recreate tailored biomimetic tissues and their respective microenvironment, an alternative solution is still needed for improved biomimetic gradient tissues under dynamic conditions with control over pre-vasculature formation. Here, we engineered a gradient osteochondral human-based tissue with precise control over both cell/tissue phenotype and pre-vasculature formation, which opens-up possibilities for the study of complex tissues interfaces, with broader applications in drug testing and regenerative medicine. The fabrication of 3D gradients of microparticles was performed combining methacrylated gelatin (GelMA) and gellan gum (GG) (3:1, w:w ratio) with hydroxyapatite microparticles (HAp, 30% w/w). The mixing of the interface was controlled by the temperature of two polymeric layers, being the second added at 10 ºC higher than the first one. This subsequent addition of polymeric solutions at different temperatures promoted convection, which drove the microparticles through the interface from the first to the second layered gel forming the HAp gradient. After ionic and photo-crosslinking, the freezing step was programmed using an external cover of styrofoam forcing the ice crystals to grow linearly, generating an anisotropic architecture in a gradient scaffold. A dual-chamber microreactor device was designed (figure 1A) to culture fat pad adipose-derived stem cells and microvascular endothelial cells under two biochemical microenvironments. Using control over temperature and crosslinking, hydrogel-like structures were built in 3D anisotropic HAp gradients. Then, an in vitro osteochondral tissue model was obtained using a dual-chamber platform. Results showed a significant difference of SOX9 (p < 0.05), Osteocalcin and RUNX2 (p < 0.05) from the top to the bottom regions of the 3D gradient structures under dynamic conditions. Finally, a pre-vasculature was controlled over 7 days, stimulating the endothelization of the subchondral bone-like region 35% more (p < 0.05) when compared to the cartilage-like region. In this work, microparticle and biochemical gradients were fabricated into anisotropic architectures. The obtained outcomes enable the precise control of 3D gradients in programmable architectures, such as anisotropic structures, with broad applications in interfaced tissue engineering, regenerative medicine and drug testing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 49 - 49
2 Jan 2024
Gantenbein B
Full Access

Stem cell therapy for the intervertebral disc (IVD) is highly debated but holds great promises. From previous studies, it is known that notochordal cells are highly regenerative and may stimulate other differentiated cells to produce more matrix. Lately, a particular tissue-specific progenitor cell population has been identified in the centre of the intervertebral disc (IVD. The current hope is that these nucleus pulposus progenitor cells (NPPC) could play a particular role in IVD regeneration. Current evidence confirms the presence of these cells in murine, canine, bovine and in the human fetal/surgical samples. Noteworthy, one of the main markers to identify these cells, i.e., Tie2, is a typical marker for endothelial cells. Thus, it is not very clear what their origin and their role might be in the context of developmental biology. In human surgical specimens, their presence is, even more, obscured depending on the donor's age and the condition of the IVD and other yet unknown factors. Here, I revisit the recent literature on regenerative cells identified for the IVD in the past decades. Current evidence how these NPPC can be isolated and detected in various species and tissues will be recapitulated. Future directions will be provided on how these progenitor cells could be used for regenerative medicine and tissue engineering


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 53 - 53
2 Jan 2024
Barrias C
Full Access

Bottom-up tissue engineering (TE) strategies employing microscale living materials as building blocks provide a promising avenue for generating intricate 3D constructs resembling native tissues. These microtissue units exhibit high cell densities and a diverse extracellular matrix (ECM) composition, enhancing their biological relevance. By thoughtfully integrating different cell types, the establishment of vital cell-cell and cell-matrix interactions can be promoted, enabling the recreation of biomimetic micro-niches and the replication of complex morphogenetic processes. Notably, by co-assembling blood vessel-forming endothelial cells with supportive stromal cells, microtissues with stable capillary beds, referred to as vascular units (VUs), can be generated. Through a modular TE approach, these VUs can be further combined with other microtissues and biomaterials to construct large-scale vascularized tissues from the bottom up. Integration of VUs with technologies such as 3D bioprinting and microfluidics allows for the creation of structurally intricate and perfusable constructs. In this presentation, we will showcase examples of VUs and explore their applications in regenerative medicine and tissue modeling. Acknowledgements: This work was supported by project EndoSWITCH (PTDC/BTM-ORG/5154/2020) funded by FCT (Portuguese Foundation for Science and Technology)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 41 - 41
2 Jan 2024
Balmayor E
Full Access

Messenger RNA (mRNA) is a new class of drug that can be used to express a therapeutic protein and, in contrast to DNA, is safer and inexpensive. Among its advantages, mRNA will immediately begin to express its encoded protein in the cell cytoplasm. The protein will be expressed for a period of time, after which the mRNA is degraded. There is no risk of genetic damage, one of the concerns with plasmid DNA (pDNA) used in traditional gene therapy approaches. Nevertheless, mRNA application in tissue regeneration and regenerative medicine remains limited. In this case, mRNA must overcome its main hurdles: immunogenicity, lack of stability, and intracellular delivery. Research has been done to overcome these limitations, and the future of mRNA seems promising for tissue repair. 1,2. This keynote talk will address questions including: What are the opportunities for mRNA to improve outcomes in musculoskeletal tissue repair, in particular bone and cartilage? What are the key factors and challenges to expediting this technology to patient treatment (beyond COVID-19 vaccination)?. Acknowledgements: E.R.B thanks the cmRNAbone project funded by the European Union's Horizon 2020 research and innovation program under the grant agreement no. 874790 and the NIH R01 AR074395 from NIAMS for funding her mRNA work


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 111 - 111
11 Apr 2023
Kapetanos K Asimakopoulos D Christodoulou N Vogt A Khan W
Full Access

The use of mesenchymal stromal cells (MSCs) in regenerative medicine and tissue engineering is well established, given their properties of self-renewal and differentiation. However, several studies have shown that these properties diminish with age, and understanding the pathways involved are important to provide regenerative therapies in an ageing population. In this PRISMA systematic review, we investigated the effects of chronological donor ageing on the senescence of MSCs. We identified 3023 studies after searching four databases including PubMed, Web of Science, Cochrane, and Medline. Nine studies met the inclusion and exclusion criteria and were included in the final analyses. These studies showed an increase in the expression of p21, p53, p16, ROS, and NF- B with chronological age. This implies an activated DNA damage response (DDR), as well as increased levels of stress and inflammation in the MSCs of older donors. Additionally, highlighting the effects of an activated DDR in cells from older donors, a decrease in the expression of proliferative markers including Ki67, MAPK pathway elements, and Wnt/ -catenin pathway elements was observed. Furthermore, we found an increase in the levels of SA- -galactosidase, a specific marker of cellular senescence. Together, these findings support an association between chronological age and MSC senescence. The precise threshold for chronological age where the reported changes become significant is yet to be defined and should form the basis for further scientific investigations. The outcomes of this review should direct further investigations into reversing the biological effects of chronological age on the MSC senescence phenotype


Bone & Joint Research
Vol. 9, Issue 10 | Pages 667 - 674
1 Oct 2020
Antich-Rosselló M Forteza-Genestra MA Calvo J Gayà A Monjo M Ramis JM

Aims. Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration. In this article, we evaluate the effect of PL-derived EVs on the biocompatibility and differentiation of mesenchymal stromal cells (MSCs). Methods. EVs were obtained first by ultracentrifugation (UC) and then by size exclusion chromatography (SEC) from non-activated PL. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and the expression of CD9 and CD63 markers by western blot. The effect of the obtained EVs on osteoinduction was evaluated in vitro on human umbilical cord MSCs by messenger RNA (mRNA) expression analysis of bone markers, alkaline phosphatase activity (ALP), and calcium (Ca. 2+. ) content. Results. Osteogenic differentiation of MSCs was confirmed when treated with UC-isolated EVs. In order to disprove that the effect was due to co-isolated proteins, EVs were isolated by SEC. Purer EVs were obtained and proved to maintain the differentiation effect on MSCs and showed a dose-dependent response. Conclusion. PL-derived EVs present an osteogenic capability comparable to PL treatments, emerging as an alternative able to overcome PL and PRP limitations. Cite this article: Bone Joint Res 2020;9(10):667–674


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 13 - 13
17 Apr 2023
Andreani L Vozzi G Petrini M Di Stefano R Trincavelli M Mani O Olivieri M Bizzocchi F Creati G Capanna R
Full Access

Traumatic acute or chronic tendon injuries are a wide clinical problem in modern society, resulting in important economic burden to the health system and poor quality of life in patients. Due to the low cellularity and vascularity of tendon tissue the repair process is slow and inefficient, resulting in mechanically, structurally, and functionally inferior tissue. Tissue engineering and regenerative medicine are promising alternatives to the natural healing process for tendon repair, especially in the reconstruction of large damaged tissues. The aim of TRITONE project is to develop a smart, bioactive implantable 3D printed scaffold, able to reproduce the structural and functional properties of human tendon, using FDA approved materials and starting from MSC and their precursor, MPC cell mixtures from human donors. Total cohort selected in the last 12 months was divided in group 1 (N=20) of subjects with tendon injury and group 2 (N=20) of healthy subject. Groups were profiled and age and gender matched. Inclusion criteria were age>18 years and presence of informed consent. Ongoing pregnancy, antihypertensive treatment, cardiovascular diseases, ongoing treatment with anti-aggregants, acetylsalicylic-acid or lithium and age<18 years were exclusion criteria. Firstly, we defined clinical, biological, nutritional life style and genetic profile of the cohort. The deficiency of certain nutrients and sex hormonal differences were correlated with tendon-injured patients. It was established the optimal amount of MPC/MSC human cell (collected from different patients during femoral neck osteotomy). Finally, most suitable biomaterials for tendon regeneration and polymer tendon-like structure were identified. Hyaluronic acid, chemical surface and soft-molecular imprinting (SOFT-MI) was used to functionalize the scaffold. These preliminary results are promising. It will be necessary to enroll many more patients to identify genetic status connected with the onset of tendinopathy. The functional and structural characterization of smart bioactive tendon in dynamic environment will represent the next project step


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 105 - 105
2 Jan 2024
Im G
Full Access

Extensive bone defects, caused by severe trauma or resection of large bone tumors, are difficult to treat. Regenerative medicine, including stem cell transplantation, may provide a novel solution for these intractable problems and improve the quality of life in affected patients. Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine due to their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. However, the osteogenic potential of ASCs is lower than that of bone marrow-derived stromal/stem cells. To address this disadvantage, our group has employed various methods to enhance osteogenic differentiation of ASCs, including factors such as bone morphogenetic protein or Vitamin D, coculture with bone marrow stem cells, VEGF transfection, and gene transfer of Runx-2 and osterix. Recently, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation while GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular reactive oxygen species and increased GSH/GSSG ratios were also detected in GSTT1- transfected ASCs. GSTT1 can be a useful marker to screen the highly osteogenic ASC clones and also a therapeutic factor to enhance the osteogenic differentiation of poorly osteogenic ASC clones


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 133 - 133
2 Jan 2024
Carvalho M Cabral J da Silva C
Full Access

Mesenchymal stromal cells (MSC) have been proposed as an emerging cell therapy for bone tissue engineering applications. However, the healing capacity of the bone tissue is often compromised by patient's age and comorbidities, such as osteoporosis. In this context, it is important to understand the impact of donor age on the therapeutic potential of MSC. Importantly, the impact on donor age is not restricted to cells themselves but also to their microenvironment that is known to affect cell function. The extracellular matrix (ECM) has an important role in stem cell microenvironment, being able to modulate cell proliferation, self-renewal and differentiation. Decellularized cell-derived ECM (dECM) has been explored for regenerative medicine applications due to its bioactivity and its resemblance to the in vivo microenvironment. Thus, dECM offers the opportunity not only to develop microenvironments with customizable properties for improvement of cellular functions but also as a platform to study cellular niches in health and disease. In this study, we investigated the capacity of the microenvironment to rescue the impaired proliferative and osteogenic potential of aged MSC. The goal of this work was to understand if the osteogenic capacity of MSC could be modulated by exposure to a dECM derived from cells obtained from young donors. When aged MSC were cultured on dECM derived from young MSC, their in vitro proliferative and osteogenic capacities were enhanced. Our results suggest that the microenvironment, specifically the ECM, plays a crucial role in the osteogenic differentiation capacity of MSC. dECM might be a valuable clinical strategy to overcome the age-related decline in the osteogenic potential of MSC by recapitulating a younger microenvironment, attenuating the effects of aging on the stem cell niche. Overall, this study opens new possibilities for developing clinical strategies for elderly patients with limited bone formation capacity who currently lack effective treatments. Acknowledgements: The authors thank FCT for funding through the project DentalBioMatrix (PTDC/BTM-MAT/3538/2020) and to the research institutions iBB (UIDB/04565/2020 and UIDP/04565/2020) and Associate Laboratory i4HB (LA/P/0140/2020)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 94 - 94
2 Jan 2024
Graça A Domingues R Docheva D Gomez-Florit M Gomes M
Full Access

Worldwide, tendon disorders are one of the main causes of disability that decrease the quality of life of individuals and represent a substantial economic burden on society. Currently, the main therapies used for tendon injuries are not able to restore tendon functionality, and due to tendons' hypovascular and hypocellular nature, they present a reduced healing capacity, which also limits the success of the available therapies. In order to discover new therapies, extracellular vesicles (EVs), key players in cell-cell communication, have been widely explored for tissue engineering and regenerative medicine applications. Thus, the aim of this study is to assess the role of EVs derived from platelets in stem cell tenogenic commitment using a bioengineered tendon in vitro model for potential use as tendon therapeutic agents. Biomimetic platelet-derived EVs were produced by freeze-thaw cycles of platelets and isolation at different centrifugation speed. To recreate the architecture of tendons, a 3D system consisting of electrospun anisotropic nanofiber scaffolds coated with collagen encapsulating human adipose stem cells (hASCs) and different types of platelet-derived EVs, were produced. Then, the influence of the tendon-mimetic constructs and the distinct EVs populations in the hASCs tenogenic differentiation were assessed over culture time. We observed that the hASCs on the nanofibrous tendon scaffolds, show high cytoskeleton anisotropic organization that is characteristic of tenocytes. Moreover, acting as biological cues, platelet-derived EVs boosted hASCs tenogenic commitment, supported by the increased gene expression of tendon-related markers (SCX and TNMD). Additionally, EVs enhanced the deposition of tendon like extracellular matrix (ECM), as evidenced by the increased gene expression of ECM-related markers such as COL1, COL3, DCN, TNC, and MMP-3, which are fundamental for ECM synthesis and degradation balance. Moreover, EVs induced lower collagen matrix contraction on hASCs, which has been related with lower myofibroblast differentiation. Overall, the results revealed that EVs are capable of modulating stem cells' behavior boosting their tenogenic commitment, through the increased expression of healthy tendon cell markers, potentiating ECM deposition and decreasing cell contractility. Therefore, platelet EVs are a promising biochemical tool, worthy to be further explored, as paracrine signaling that might potentiate tendon repair and regeneration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 107 - 107
11 Apr 2023
Lee E Ko J Park S Moon J Im G
Full Access

We found that adipose stem cells are poorly differentiated into bone and that their ability to differentiate into bone varies from cell line to cell line. The osteogenic differentiation ability of the adipose stem cell lines was distinguished through Alzarin Red Staining, and the cell lines that performed well and those that did not were subjected to RNA-seq analysis. The selected gene GSTT1 (glutathione S-transferase theta-1) gene is a member of a protein superfamily that catalyzes the conjugation of reduced glutathione to a variety of hydrophilic and hydrophobic compounds. The purpose of this study is to treat avascular necrosis and bone defect by improving bone regeneration with adipose stem cells introduced with a new GSTT1 gene related to osteogenic differentiation of adipose stem cells. In addition, the GSTT1 gene has the potential as a genetic marker that can select a specific cell line in the development of an adipose stem cell bone regeneration drug. Total RNA was extracted from each sample using the TRIzol reagent. Its concentration and purity were determined based on A260 and A260/A280, respectively, using a spectrophotometer. RNA sequencing library of each sample was prepared using a TruSeq RNA Library Prep Kit. RNA-seq experiments were performed for hADSCs. Cells were transfected with either GSTT1 at 100 nM or siControl (scramble control) by electroporation using a 1050 pulse voltage for 30 ms with 2 pulses using a 10 μl pipette tip. The purpose of this study is to discover genetic markers that can promote osteogenic differentiation of adipose stem cells (hADSCs) through mRNA-seq gene analysis. The selected GSTT1 gene was found to be associated with the enhancement of osteogenic differentiation of adipose stem cells. siRNA against GSTT1 reduced osteogenic differentiation of hADSCs, whereas GSTT1 overexpression enhanced osteogenic differentiation of hADSCs under osteogenic conditions. In this study, GSTT1 transgenic adipose stem cells could be used in regenerative medicine to improve bone differentiation. In addition, the GSTT1 gene has important significance as a marker for selecting adipose stem cells with potential for bone differentiation in the development of a therapeutic agent for bone regeneration cells


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 34 - 34
2 Jan 2024
Díaz-Payno P Llorca J Lantada A Patterson J
Full Access

Even minor lesions in articular cartilage (AC) can cause underlying bone damage creating an osteochondral (OC) defect. OC defects can cause pain, impaired mobility and can develop to osteoarthritis (OA). OA is a disease that affects nearly 10% of the population worldwide. [1]. , and represents a significant economic burden to patients and society. [2]. While significant progress has been made in this field, realising an efficacious therapeutic option for unresolved OA remains elusive and is considered one of the greatest challenges in the field of orthopaedic regenerative medicine. [3]. Therefore, there is a societal need to develop new strategies for AC regeneration. In recent years there has been increased interest in the use of tissue-specific aligned porous freeze-dried extracellular matrix (ECM) scaffolds as an off-the-shelf approach for AC repair, as they allow for cell infiltration, provide biological cues to direct target-tissue repair and permit aligned tissue deposition, desired in AC repair. [4]. However, most ECM-scaffolds lack the appropriate mechanical properties to withstand the loads passing through the joint. [5]. One solution to this problem is to reinforce the ECM with a stiffer framework made of synthetic materials, such as polylactic acid (PLA). [6]. Such framework can be 3D printed to produce anatomically accurate implants. [7]. , attractive in personalized medicine. However, typical 3D prints are static, their design is not optimized for soft-hard interfaces (OC interface), and they may not adapt to the cyclic loading passing through our joints, thus risking implant failure. To tackle this limitation, more compliant or dynamic designs can be printed, such as coil-shaped structures. [8]. Thus, in this study we use finite element modelling to create different designs that mimic the mechanical properties of AC and prototype them in PLA, using polyvinyl alcohol as support. The optimal design will be combined with an ECM scaffold containing a tailored microarchitecture mimicking aspects of native AC. Acknowledgments: This project has received funding from the European Union's Horizon Europe research and innovation MSCA PF programme under grant agreement No. 101110000


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 84 - 84
17 Apr 2023
Gonçalves A Rodrigues M Gomes M
Full Access

Tissue engineering and regenerative medicine (TERM) hold the promise to provide therapies for injured tendons despite the challenging cues of tendon niche and the lack of specific factors to guide regeneration. The emerging potential of magnetic responsiveness and magnetic nanoparticles (MNPs) functionalities offers new perspectives to tackle TERM challenges. Moreover, pulsed electromagnetic field (PEMF) is FDA approved for orthopaedics with potential to control inflammation upon injury. We previously demonstrated that magnetic cell-sheets assisted by PEMF trigger the inflammation resolution by modulating cytokine-enriched environments [1]. To further understand the potential of magnetically assisted living patches, we have recently conducted in vivo studies using a rat patellar defect model. After labeling of human adipose stem cells with iron oxide MNPs for 16h, magCSs were cultured up to 3 days in α-MEM medium under non-magnetic or PEMF conditions. MagCSs were evaluated by immunocytochemistry, and real time RT-PCR for tendon markers. Cell metabolic activity was also assessed by MTS and ECM proteins quantified by Sirius Red/Fast Green. The MagCSs effect in ameliorating healing was assessed after implantation in window defects created in the patellar tendon of rats. PEMF was externally applied (3mT, 70Hz) 3d/week for 1h (magnetotherapy). After 4 and 8w, tendons were histologically characterized for immune-detection of tendon and inflammatory markers, and for Perls van Gieson and HE stains. Blood and detoxification organs were screened for inflammatory mediators and biodistribution of MNPs, respectively. In vitro results suggest that PEMF stimulates cellular metabolic activity, influences protein synthesis and the deposition of collagen and non-collagenous proteins is significantly increased compared to non-magnetic conditions. No adverse reactions, as infection or swelling, were observed after surgery or during follow-up. After 8w, magCSs remained at the implantation site and no MNPs were detected on detoxification organs. Plasma levels of IL1α, β, IL6 and TNFα assessed by multiplex assay were below detectable values (<12.5pg/ml). Thus, the combination of cell sheets and magnetic technologies hold promise for the development of living tendon substitutes. Acknowledgement to ERC-COG MagTendon772817, H2020 Achilles 810850, FCT - 2020.01157.CEECIND


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 16 - 16
1 Dec 2022
Ragni E Orfei CP Colombini A Viganò M De Luca P Libonati F de Girolamo L
Full Access

In the context of regenerative medicine for the treatment of musculoskeletal pathologies mesenchymal stromal cells (MSCs) have shown good results thanks to secretion of therapeutic factors, both free and conveyed within the extracellular vesicles (EV), which in their totality constitute the “secretome”. The portfolio and biological activity of these molecules can be modulated by both in vitro and in vivo conditions, thus making the analysis of these activities very complex. A deep knowledge of the targets regulated by the secretome has become a matter of fundamental importance and a homogeneous and complete molecular characterization is still lacking in the field of applications for the musculoskeletal system. Therefore, the aim of this work was to characterize the secretome obtained from adipose-derived MSCs (ASCs), and its modulation after pre-conditioning of the ASCs. Pre-conditioning was done by culturing cells in the presence of i) high levels of IFNγ, as proposed for the production of clinical grade secretome with enhanced regenerative potential, ii) low levels of inflammatory stimuli, mimicking conditions found in the osteoarthritis (OA) synovial fluid. Furthermore, EVs ability to migrate within cartilage, chondrocyte and synoviocytes obtained from OA patients was evaluated. The data showed that more than 50 cytokines / chemokines and more than 200 EV-microRNAs are detectable at various intensity levels in ASCs secretomes. The majority of the most abundantly present molecules are involved in the remodelling of the extracellular matrix and in the homeostasis and chemotaxis of inflammatory cells including macrophages, which in OA are often characterized by an M1 inflammatory polarization, promoting their transition to an M2 anti-inflammatory phenotype. Inflammatory priming with IFNγ and synovial fluid-like conditions were able to further increase the ability of the secretome to interact with inflammatory cells and modulate their migration. Finally, the penetration of the EVs in the cartilage explants resulted a rapid process, which begins a few minutes after administration of the EVs that are able to reach a depth of 30-40 μm in 5 hours. The same capacity for interaction was also verified in chondrocytes and synoviocytes isolated from the cartilage and synovial membrane of OA patients. Thanks to the soluble factors and EV-microRNAs, the ASCs secretome has shown a strong propensity to modulate the inflammatory and degenerative processes that characterize OA. The inflammatory pre-conditioning through high concentrations of inflammatory molecules or in conditions similar to the synovial fluid of OA patients was able to increase this capacity by increasing their chemotactic power. The microscopy data also support the hypothesis of the ability of MSC-EVs to influence the chondrocytes residing in the ECM of the cartilage and the synovial cells of the synovial membrane through active interaction and the release of their therapeutic content


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 21 - 21
1 Dec 2022
Montesissa M Farè S Draghi L Rau J Gualandi C Focarete M Boi M Baldini N Graziani G
Full Access

Favoring osseointegration and avoiding bacterial contamination are the key challenges in the design of implantable devices for orthopedic applications. To meet these goals, a promising route is to tune the biointerface of the devices, that can regulate interactions with the host cells and bacteria, by using nanostructured antibacterial and bioactive coatings. Indeed, the selection of adequate metal-based coatings permits to discourage infection while avoiding the development of bacterial resistance and nanostructuring permits to tune the release of the antimicrobial compounds, allowing high efficacy and decreasing possible cytotoxic effects. In addition, metal-doped calcium phosphates-based nanostructured coatings permit to tune both composition and morphology of the biointerfaces, allowing to regulate host cells and bacteria response. To tune the biointerfaces of implantable devices, nanostructured coatings can be used, but their use is challenging when the substrate is heat-sensitive and/or porous. Here, we propose the use of Ionized Jet Deposition (IJD) to deposit metallic and ion-doped calcium phosphates materials onto different polymeric substrates, without heating and damaging the substrate morphology. 3D printed scaffolds in polylactic acid (PLA) and polyurethane (PU), and electrospun matrices in polycaprolactone (PCL) and PLA were used as substrates. Biogenic apatite (HA), ion doped (zinc, copper and iron) tricalcium phosphate (TCP) and silver (Ag) coatings were obtained on porous and custom-made polymeric substrates. Chemical analyses confirmed that coatings composition matches that of the target materials, both in terms of main phase (HA or TCP) and ion doping (presence of Cu, Zn or Fe ion). Deposition parameters, and especially its duration time, influence the coating features (morphology and thickness) and substrate damage. Indeed, SEM/EDS observations show the presence of nanostructured agglomerates on substrates surface. The dimensions of the aggregates and the thickness of the coating films increase increasing the deposition time, without affecting the substrate morphology (no porosity alteration or fibers damaging). The possible substrate damage is influenced by target and substrate material, but it can be avoided modulating deposition time. Once the parameters are optimized, the models show suitable in vitro biological efficacy for applications in bone models, regenerative medicine and infection. Indeed, HA-based coatings favor cells adhesion on printed and electrospun fibers. For antibacterial applications, the ion doped TCP coatings can reduce the bacterial growth and adhesion (E.coli and S.aureus) on electrospun matrices. To conclude, it is possible achieve different properties applying nanostructured coatings with IJD technique on polymeric substrates, modulating deposition conditions to avoid substrate damage


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 42 - 42
1 Nov 2018
Dubus M Entz L Aubert L Alem H Quilès F Reffuveille F Mauprivez C Gangloff SC Kerdjoudj H Rammal H
Full Access

Bone regenerative medicine aims at designing biomimetic biomaterials able to guide stem cells fate towards osteoblast lineage and prevent orthopaedic common pathogen adhesion. Owing to bone inorganic/organic composition, we herein report, using a versatile process based on simultaneous spray coating of interacting species, a calcium phosphate (CaP) / chitosan (CHI) / hyaluronic acid (HA) functionalized collagen membrane as a new strategy for bone regenerative medicine. Physicochemical characterizations of CaP-CHI-HA coating were performed by scanning electron microscopy, X-ray photoelectron and infrared spectroscopies and high-resolution transmission electron microscopy, revealing the formation of a thin coating mainly composed of non-stoichiometric crystalline hydroxyapatite dispersed into polymorphic organic film. Biocompatibility of CaP-CHI-HA coated membrane, evaluated after 7 days in contact with human mesenchymal stem cells (MSCs), showed spread, elongated and aligned cells. Metabolic activity and DNA quantification studies showed an increase in MSCs proliferation on coated membrane compared to uncoated membrane over the study time. Similarly, cytokines (IL-6, IL-8, osteoprotegerin) and growth factors (VEGF, bFGF) release in supernatant, as well as endothelial cells recruitment, were significantly increased in presence of CaP-CHI-HA coated membrane. Thus, CaP-CHI-HA coated membrane provides a suitable environment for MSCs to induce bone healing. Moreover, pro-inflammatory cytokines (IL-1β and TNF-α) secretion by human monocytes was significantly reduced on CaP-CHI-HA coating compared to LPS stimulation. CaP-CHI-HA coating also reduced significantly Staphylococcus aureus and Pseudomonas aeruginosa adhesion on the membrane, conferring a bacterial anti-adhesive surface. Based on our results, CaP-CHI-HA functionalized collagen membrane provides an interesting material for bone regeneration