Objectives. Third-body wear is believed to be one trigger for adverse results
with metal-on-metal (MOM) bearings. Impingement and subluxation
may release metal particles from MOM replacements. We therefore
challenged MOM bearings with relevant debris types of cobalt–chrome
alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate
bone cement (PMMA). Methods. Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range
5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments
(5 mg) were inserted at ten intervals during the five million cycle
(5 Mc) test. . Results. In a clean test phase (0 Mc to 0.8 Mc), lubricants retained their
yellow colour. Addition of metal particles at 0.8 Mc turned lubricants
black within the first hour of the test and remained so for the
duration, while PMMA particles did not change the colour of the
lubricant. Rates of wear with PMMA, CoCr and Ti6Al4V debris averaged
0.3 mm. 3. /Mc, 4.1Â mm. 3. /Mc and 6.4 mm. 3. /Mc,
respectively. . Conclusions. Metal particles turned
INTRODUCTION. Simulation plays an important role in surgical education and the ability to perfect surgical performance. Simulation can be enhanced by adding various layers of realism to the experience. Haptic feedback enhances the simulation experience by providing tactile responses and virtual reality imagery provides an immersive experience and allows for greater appreciation of three-dimensional structures. In this study, we present a proof-of-concept haptic
Augmented reality
Abstract. Introduction. Back pain affects 80% of the population at some stage in their life with significant costs to society. Mechanisms and causes of pain have been investigated by studying the behaviour of functional spinal units (FSUs) subjected to displacement- or load control protocols in 6 degrees of freedom (DOF). Load control allows specimens to move physiologically in response to applied loads whereas displacement control constrains motion to individual axes. The displacement control system of the Bath University six-axis spine
Aims. This study investigates head-neck taper corrosion with varying head size in a novel hip
Abstract. BACKGROUND. Hemi-arthroplasty (HA) as a treatment for fractured neck of femur has slightly increased since 2019 and remarkably after the COVID pandemic. The main drawback of the treatment is ongoing cartilage deterioration that may require revision to THR. OBJECTIVE. This study assessed cartilage surface damage in hip HA by reproducing anatomical motion and loading conditions in a hip
Aims. The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids. Methods. Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear
Aims. Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))?. Methods. Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint
To investigate the utility of virtual reality (VR)
Orthopaedic training sessions, vital for surgeons to understand post-operative joint function, are primarily based on passive and subjective joint assessment. However, cadaveric knee
Introduction. Femoral neck impingement occurs clinically in total hip replacements (THR) when the acetabular liner articulates against the neck of a femoral stem prosthesis. This may occur in vivo due to factors such as prostheses design, patient anatomical variation, and/or surgical malpositioning, and may be linked to joint instability, unexplained pain, and dislocation. The Standard Test Method for Impingement of Acetabular Prostheses, ASTM F2582 −14, may be used to evaluate acetabular component fatigue and deformation under repeated impingement conditions. It is worth noting that while femoral neck impingement is a clinical observation, relative motions and loading conditions used in ASTM F2582-14 do not replicate in vivo mechanisms. As written, ASTM F2582-14 covers failure mechanism assessment for acetabular liners of multiple designs, materials, and sizes. This study investigates differences observed in the implied and executed kinematics described in ASTM F2582-14 using a Prosim electromechanical hip
Background. A new knee
Background. In-vitro testing of knee joints remains vital in the understanding of knee surgery and arthroplasty. However, based on the design philosophy of the original Oxford knee
Background. Medical advances and an ageing population mean that more people than ever rely on artificial joints. In the past years, shoulder joint replacement has developed rapidly and the numbers of shoulder prostheses implanted increased dramatically. Wear is one of the main contributors to the failure of shoulder implants. It is therefore important to measure the wear properties of the articulating surfaces within the joint in vitro. Investigation of wear characteristics through a comprehensive range of motion using a sophisticated shoulder
Variations in component positioning of total hip replacements can lead to edge loading of the liner, and potentially affect device longevity. These effects are evaluated using ISO 14242:4 edge loading test results in a dynamic system. Mediolateral translation of one of the components during testing is caused by a compressed spring, and therefore the kinematics will depend on the spring stiffness and damping coefficient, and the mass of the translating component and fixture. This study aims to describe the sensitivity of the liner plastic strain to these variables, to better understand how tests using different
Total disc replacement is an alternative to spinal fusion in treating degenerative disc disease, whilst preserving motion and reducing the risk of subsequent DDD at adjacent levels. Current designs have evolved from technology used in total hip replacements with metal-metal or metal-PE bearing surfaces. These articulating systems may be prone to wear and it is essential the medical engineering community assess their performance using appropriate
Spinal stenosis is a condition resulting in the compression of the neural elements due to narrowing of the spinal canal. Anatomical factors including enlargement of the facet joints, thickening of the ligaments, and bulging or collapse of the intervertebral discs contribute to the compression. Decompression surgery alleviates spinal stenosis through a laminectomy involving the resection of bone and ligament. Spinal decompression surgery requires appropriate planning and variable strategies depending on the specific situation. Given the potential for neural complications, there exist significant barriers to residents and fellows obtaining adequate experience performing spinal decompression in the operating room. Virtual teaching tools exist for learning instrumentation which can enhance the quality of orthopaedic training, building competency and procedural understanding. However, virtual simulation tools are lacking for decompression surgery. The aim of this work was to develop an open-source 3D virtual
Hip arthroscopy is a rapidly expanding technique that has a steep learning curve. Simulation may have a role in helping trainees overcome this. However there is as yet no validated hip arthroscopy
Background. Surgical
Wear of polymeric glenoid components has been identified as a cause of loosening and failure of shoulder implants1,2 in vivo. A small number of shoulder joint