Advertisement for orthosearch.org.uk
Results 1 - 20 of 335
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1333 - 1341
1 Nov 2024
Cheung PWH Leung JHM Lee VWY Cheung JPY

Aims. Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM. Methods. This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery. Results. A total of 2,114 individuals aged 64.6 years (SD 11.9) who underwent surgery from March 2009 to December 2016 were studied. The most optimal cut-off canal diameters for DcSS are: C3 < 12.9 mm, C4 < 11.8 mm, C5 < 11.9 mm, C6 < 12.3 mm, and C7 < 13.3 mm. Overall, 13.0% (262 of 2,019) of the population-based cohort had multilevel DcSS. Multilevel DcSS (odds ratio (OR) 6.12 (95% CI 3.97 to 9.42); p < 0.001) and male sex (OR 4.06 (95% CI 2.55 to 6.45); p < 0.001) were predictors of developing DCM. Conclusion. This is the first MRI-based study for defining DcSS with multilevel canal narrowing. Level-specific cut-off canal diameters for DcSS can be used for early identification of individuals at risk of developing DCM. Individuals with DcSS at ≥ three levels and male sex are recommended for close monitoring or early intervention to avoid traumatic spinal cord injuries from stenosis. Cite this article: Bone Joint J 2024;106-B(11):1333–1341


Background. Foraminal stenosis is often encountered in patients undergoing decompression for spinal stenosis. Given the increased resection of facets and the presence of the more sensitive dorsal root ganglion, it is hypothesized that patients with foraminal stenosis have poorer postoperative outcomes. Methods. Thirty-one patients undergoing decompression without fusion for lumbar spinal stenosis were evaluated. The degree of foraminal stenosis was determined by 2 independent reviewers for absence of fat around the nerve roots. ImageJ digital imaging software was also used to evaluate the foraminal area. Patients with foraminal stenosis were compared with those without using the Oswestry Disability Index (ODI) and a numerical pain scale for back and leg pain at a minimum of 1 year follow-up. Results. Twenty patients in the foraminal stenosis group were compared with 11 without foraminal stenosis. There were no significant differences between the 2 groups regarding age, sex, comorbidities, number of levels operated on, preoperative ODI, back pain or leg pain scores. The foraminal area was significantly smaller in the foraminal stenosis group. Patients without foraminal stenosis reported significant improvements in ODI (mean 26.0), back pain (mean 3.1) and leg pain scores (mean 5.5). Patients with foraminal stenosis reported significant improvements in ODI (mean 18.8) and leg pain (mean 2.5) but not in back pain (mean 0.3). Comparing the 2 groups, the patients with foraminal stenosis had significantly less improvement in back pain (p = 0.02) and leg pain (p = 0.02). Conclusion. The results of this study suggest that presence of foraminal stenosis is a negative predictor for successful outcome following decompression surgery. This may be related to the increased instability that occurs when a foraminotomy is required. Spinal fusion may reduce this effect, and further study is required. NO DISCLOSURES


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1343 - 1351
1 Dec 2022
Karlsson T Försth P Skorpil M Pazarlis K Öhagen P Michaëlsson K Sandén B

Aims. The aims of this study were first, to determine if adding fusion to a decompression of the lumbar spine for spinal stenosis decreases the rate of radiological restenosis and/or proximal adjacent level stenosis two years after surgery, and second, to evaluate the change in vertebral slip two years after surgery with and without fusion. Methods. The Swedish Spinal Stenosis Study (SSSS) was conducted between 2006 and 2012 at five public and two private hospitals. Six centres participated in this two-year MRI follow-up. We randomized 222 patients with central lumbar spinal stenosis at one or two adjacent levels into two groups, decompression alone and decompression with fusion. The presence or absence of a preoperative spondylolisthesis was noted. A new stenosis on two-year MRI was used as the primary outcome, defined as a dural sac cross-sectional area ≤ 75 mm. 2. at the operated level (restenosis) and/or at the level above (proximal adjacent level stenosis). Results. A total of 211 patients underwent surgery at a mean age of 66 years (69% female): 103 were treated by decompression with fusion and 108 by decompression alone. A two-year MRI was available for 176 (90%) of the eligible patients. A new stenosis at the operated and/or adjacent level occurred more frequently after decompression and fusion than after decompression alone (47% vs 29%; p = 0.020). The difference remained in the subgroup with a preoperative spondylolisthesis, (48% vs 24%; p = 0.020), but did not reach significance for those without (45% vs 35%; p = 0.488). Proximal adjacent level stenosis was more common after fusion than after decompression alone (44% vs 17%; p < 0.001). Restenosis at the operated level was less frequent after fusion than decompression alone (4% vs 14%; p = 0.036). Vertebral slip increased by 1.1 mm after decompression alone, regardless of whether a preoperative spondylolisthesis was present or not. Conclusion. Adding fusion to a decompression increased the rate of new stenosis on two-year MRI, even when a spondylolisthesis was present preoperatively. This supports decompression alone as the preferred method of surgery for spinal stenosis, whether or not a degenerative spondylolisthesis is present preoperatively. Cite this article: Bone Joint J 2022;104-B(12):1343–1351


Bone & Joint Open
Vol. 4, Issue 8 | Pages 573 - 579
8 Aug 2023
Beresford-Cleary NJA Silman A Thakar C Gardner A Harding I Cooper C Cook J Rothenfluh DA

Aims. Symptomatic spinal stenosis is a very common problem, and decompression surgery has been shown to be superior to nonoperative treatment in selected patient groups. However, performing an instrumented fusion in addition to decompression may avoid revision and improve outcomes. The aim of the SpInOuT feasibility study was to establish whether a definitive randomized controlled trial (RCT) that accounted for the spectrum of pathology contributing to spinal stenosis, including pelvic incidence-lumbar lordosis (PI-LL) mismatch and mobile spondylolisthesis, could be conducted. Methods. As part of the SpInOuT-F study, a pilot randomized trial was carried out across five NHS hospitals. Patients were randomized to either spinal decompression alone or spinal decompression plus instrumented fusion. Patient-reported outcome measures were collected at baseline and three months. The intended sample size was 60 patients. Results. Of the 90 patients screened, 77 passed the initial screening criteria. A total of 27 patients had a PI-LL mismatch and 23 had a dynamic spondylolisthesis. Following secondary inclusion and exclusion criteria, 31 patients were eligible for the study. Six patients were randomized and one underwent surgery during the study period. Given the low number of patients recruited and randomized, it was not possible to assess completion rates, quality of life, imaging, or health economic outcomes as intended. Conclusion. This study provides a unique insight into the prevalence of dynamic spondylolisthesis and PI-LL mismatch in patients with symptomatic spinal stenosis, and demonstrates that there is a need for a definitive RCT which stratifies for these groups in order to inform surgical decision-making. Nonetheless a definitive study would need further refinement in design and implementation in order to be feasible. Cite this article: Bone Jt Open 2023;4(8):573–579


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 67 - 67
17 Nov 2023
Maksoud A Shrestha S Fewings P Shareah EA Ahmed A
Full Access

Abstract. Objectives. There is still controversy in the literature over whether Cervical Foraminotomy or Anterior Cervical discectomy and fusion (ACDF) is best for treating cervical Radiculopathy. Numerous studies have focused on the respective complication rates of these procedures and outcome measures with a lack of due consideration to preoperative MRI findings. Proximal foraminal stenosis can theoretically be accessed via either approach. We aimed to investigate whether patient reported outcome measures (PROMs) favoured one approach over the other in patients with proximal foraminal stenosis. Methods. A single centre retrospective review of patients undergoing either ACDF or Cervical foraminotomy over the period 2012 to 2022. VAS, Neck disability index (NDI), EQ5DL and Patient Satisfaction on a Five Point Likert scale were obtained. Patients who had both an ACDF and a Foraminotomy were excluded. Axial MRI images were analysed and the location of the worst clinically relevant disc herniation stratified as follows: Central (1), Paracentral (2) and Foraminal (3). Correlations and average PROMs were analysed in SPSS. Results. PROMs scores were available for 33 ACDF patients and 37 Foraminotomy patients. Average surgery time in ACDF group was 167 minutes while Foraminotomy 142 minutes. Average Length of hospital stay was 6.24 days in the Foraminotomy group and 3.54 days in the ACDF group. 18 patients were excluded due to having both surgeries (2 of which developed CSF leaks postoperatively). Of the included patients there were no postoperative complications. 13 patients in the ACDF had Central or Paracentral stenosis in addition to proximal Foraminal stenosis, 3 patients in the Foraminotomy group had some significant Paracentral herniation just before the Proximal foramen. The majority of patients in both groups had pure proximal Foraminal stenosis (N= 17 (ACDF), 20 (Foraminotomy). The results showed no significant difference in PROMs between patients who received an ACDF or a Foraminotomy for Proximal foraminal stenosis (EQ5DL, NDI, and satisfaction, P= 0.268, 0.253 and 0.327). There was no correlation between location of the stenosis and PROM scores in either group. Conclusions. Our data suggest that Proximal foraminal stenosis can be effectively addressed by either an anterior ACDF or a Foraminotomy with no difference in complication rates. Foraminotomy has the benefit of no implant cost but longer hospital stay. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 705 - 712
1 Jul 2024
Karlsson T Försth P Öhagen P Michaëlsson K Sandén B

Aims. We compared decompression alone to decompression with fusion surgery for lumbar spinal stenosis, with or without degenerative spondylolisthesis (DS). The aim was to evaluate if five-year outcomes differed between the groups. The two-year results from the same trial revealed no differences. Methods. The Swedish Spinal Stenosis Study was a multicentre randomized controlled trial with recruitment from September 2006 to February 2012. A total of 247 patients with one- or two-level central lumbar spinal stenosis, stratified by the presence of DS, were randomized to decompression alone or decompression with fusion. The five-year Oswestry Disability Index (ODI) was the primary outcome. Secondary outcomes were the EuroQol five-dimension questionnaire (EQ-5D), visual analogue scales for back and leg pain, and patient-reported satisfaction, decreased pain, and increased walking distance. The reoperation rate was recorded. Results. Five-year follow-up was completed by 213 (95%) of the eligible patients (mean age 67 years; 155 female (67%)). After five years, ODI was similar irrespective of treatment, with a mean of 25 (SD 18) for decompression alone and 28 (SD 22) for decompression with fusion (p = 0.226). Mean EQ-5D was higher for decompression alone than for fusion (0.69 (SD 0.28) vs 0.59 (SD 0.34); p = 0.027). In the no-DS subset, fewer patients reported decreased leg pain after fusion (58%) than with decompression alone (80%) (relative risk (RR) 0.71 (95% confidence interval (CI) 0.53 to 0.97). The frequency of subsequent spinal surgery was 24% for decompression with fusion and 22% for decompression alone (RR 1.1 (95% CI 0.69 to 1.8)). Conclusion. Adding fusion to decompression in spinal stenosis surgery, with or without spondylolisthesis, does not improve the five-year ODI, which is consistent with our two-year report. Three secondary outcomes that did not differ at two years favoured decompression alone at five years. Our results support decompression alone as the preferred method for operating on spinal stenosis. Cite this article: Bone Joint J 2024;106-B(7):705–712


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 10 - 10
2 Jan 2024
Martínez T Mariscal G Hevia E Barrios C
Full Access

The multimodal management of canal stenosis is increasing, and inhibitors of central sensitization are playing a crucial role in central sensitization processes. Pregabalin and gabapentin are antiepileptic drugs that reduce presynaptic excitability. The objective of this study was to investigate whether the use of pregabalin and gabapentin is effective in the symptomatic management of canal stenosis. A literature search was conducted in four databases. The inclusion criteria were studies that compared pregabalin or gabapentin with a control group in lumbar canal stenosis. Randomized clinical trials and a comparative retrospective cohort study were included. The main clinical endpoints were VAS/NRS, ODI, and RDQ (Roland Morris Disability Questionnaire) at 2, 4, 8 weeks, and 3 months, adverse events, and walking distance were also collected. Data were combined using Review Manager 5.4 software. Six studies and 392 patients were included. The mean age was 60.25. No significant differences were observed in VAS at 2, 4, and 8 weeks: (MD: 0.23; 95% CI: −0.63-1.09), (MD: −0.04; 95% CI: −0.64 to −0.57), and (MD: −0.6; 95% CI: −1.22 to 0.02). Significant differences were observed in favor of pregabalin with respect to VAS at three months: (MD: −2.97; 95% CI: −3.43 to −2.51). No significant differences were observed in ODI (MD: −3.47; 95% CI: −7.15 to −0.21). Adverse events were significantly higher in the pregabalin/gabapentin group (OR 5.88, 95%CI 1.28-27.05). Walking distance and RDQ could not be compared, although the results were controversial. Gabapentinoids have not been shown to be superior to other drugs used in the treatment of LSS or to placebo. However, they have shown a higher incidence of adverse effects, improved results in VAS at 3 months, and a slight improvement in ambulation at 4 months in combination with NSAIDs compared to NSAIDs in monotherapy


Bone & Joint Research
Vol. 12, Issue 6 | Pages 387 - 396
26 Jun 2023
Xu J Si H Zeng Y Wu Y Zhang S Shen B

Aims. Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. Methods. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes. Results. TWAS identified 295 genes with permutation p-values < 0.05 for skeletal muscle and 79 genes associated for the whole blood, such as RCHY1 (PTWAS = 0.001). Those genes were enriched in 112 gene ontology (GO) terms and five Kyoto Encyclopedia of Genes and Genomes pathways, such as ‘chemical carcinogenesis - reactive oxygen species’ (LogP value = −2.139). Further comparing the TWAS significant genes with the differentially expressed genes identified by mRNA expression profiles of LSS found 18 overlapped genes, such as interleukin 15 receptor subunit alpha (IL15RA) (PTWAS = 0.040, PmRNA = 0.010). Moreover, 71 common GO terms were detected for the enrichment results of TWAS and mRNA expression profiles, such as negative regulation of cell differentiation (LogP value = −2.811). Conclusion. This study revealed the genetic mechanism behind the pathological changes in LSS, and may provide novel insights for the early diagnosis and intervention of LSS. Cite this article: Bone Joint Res 2023;12(6):387–396


Bone & Joint Open
Vol. 5, Issue 9 | Pages 809 - 817
27 Sep 2024
Altorfer FCS Kelly MJ Avrumova F Burkhard MD Sneag DB Chazen JL Tan ET Lebl DR

Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the spinous process and the posterior ligamentous complex. Spinal robotic surgery has previously been limited to the insertion of screws and, more recently, cages; however, recent innovations have expanded robotic capabilities to decompression of neurological structures. Cite this article: Bone Jt Open 2024;5(9):809–817


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 16 - 16
7 Nov 2023
Khumalo M
Full Access

Low back pain is the single most common cause for disability in individuals aged 45 years or younger, it carries tremendous weight in socioeconomic considerations. Degenerative aging of the structural components of the spine can be associated with genetic aspects, lifetime of tissue exposure to mechanical stress & loads and environmental factors. Mechanical consequences of the disc degenerative include loss of disc height, segment instability and increase the load on facets joints. All these can lead to degenerative changes and osteophytes that can narrow the spinal canal. Surgery is indicated in patients with spinal stenosis who have intractable pain, altered quality of life, substantially diminished functional capacity, failed non-surgical treatment and are not candidates for non-surgical treatment. The aim was to determine the reasons for refusal of surgery in patients with established degenerative lumber spine pathology eligible for surgery. All patients meeting the study criteria, patients older than 18 years, patients with both clinical and radiological established symptomatic degenerative lumbar spine pathology and patients eligible for surgery but refusing it were recruited. Questionnaire used to investigate reasons why they are refusing surgery. Results 59 were recruited, fifty-one (86.4 %) females and eight (13.6 %) males. Twenty (33.8 %) were between the age of 51 and 60 years, followed by nineteen (32.2 %) between 61 and 70 years, and fourteen (23.7 %) between 71 and 80 years. 43 (72 %) patients had lumber spondylosis complicated by lumber spine stenosis, followed by nine (15.2 %) with lumbar spine spondylolisthesis and four (6.7 %) had adjacent level disease. 28 (47.4 %) were scared of surgery, fifteen (25.4 %) claimed that they are too old for surgery and nine (15.2 %) were not ready. Findings from this study outlined that patients lack information about the spinal surgery. Patients education about spine surgery is needed


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 23 - 23
1 Dec 2020
MERTER A
Full Access

With the increase in the elderly population, there is a dramatic increase in the number of spinal fusions. Spinal fusion is usually performed in cases of primary instability. However it is also performed to prevent iatrogenic instability created during surgical treatment of spinal stenosis in most cases. In literature, up to 75% of adjacent segment disease (ASD) can be seen according to the follow-up time. 1. Although ASD manifests itself with pathologies such as instability, foraminal stenosis, disc herniation or central stenosis. 1,2. There are several reports in the literature regarding lumbar percutaneous transforaminal endoscopic interventions for lumbar foraminal stenosis or disc herniations. However, to the best our knowledge, there is no report about the treatment of central stenosis in ASD. In this study, we aimed to investigate the short-term results of unilateral biportal endoscopic decompressive laminotomy (UBEDL) technique in ASD cases with symptomatic central or lateral recess stenosis. The number of patients participating in the prospective study was 8. The mean follow-up was 6.9 (ranged 6 to 11) months. The mean age of the patients was 68 (5m, 3F). The development of ASD time after fusion was 30.6 months(ranged 19 to 42). Mean fused segments were 3 (ranged 2 to 8). Preoperative instability was present in 2 of the patients which was proven by dynamic lumbar x-rays. Preoperative mean VAS-back score was 7.8, VAS Leg score was 5.6. The preoperative mean JOA (Japanese Orthopaedic Association) score was 11.25. At 6th month follow-up, the mean VAS back score of the patients was 1, and the VAS leg score was 0.5. This improvement was statistically significant (p = 0.11 and 0.016, respectively). The mean JOA score at the 6th month was 22.6 and it was also statistically significant comparing preoperative JOA score(p = 0.011). The preoperative mean dural sac area measured in MR was 0.50 cm2, and it was measured as 2.1 cm. 2. at po 6 months.(p = 0.012). There was no progress in any patient's instability during follow-up. In orthopedic surgery, when implant related problems develop in any region of body (pseudoarthrosis, infection, adjacent fracture, etc.), it is generally treated by using more implants in its final operation. This approach is also widely used in spinal surgery. 3. However, it carries more risk in terms of devoloping ASD, infection or another complications. In the literature, endoscopic procedures have almost always been used in the treatment of ventral pathologies which constitute only 10%. In ASD, disease devolops as characterized by wide facet joint arthrosis and hypertrophied ligamentum flavum in the cranial segment and it is mostly presented both lateral recess and santal stenosis symptoms (39%). In this study, we found that UBEDL provides successful results in the treatment of patients without no more muscle and ligament damage in ASD cases with spinal stenosis. One of the most important advantages of UBE is its ability to access both ventral and dorsal pathologies by minimally invasive endoscopic aproach. I think endoscopic decompression also plays an important role in the absence of additional instability at postoperatively in patients. UBE which has already been described in the literature given successful results in most of the spinal degenerative diseases besides it can also be used in the treatment of ASD. Studies with longer follow-up and higher patient numbers will provide more accurate results


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 65 - 65
1 Jul 2020
Sahak H Hardisty M Finkelstein J Whyne C
Full Access

Spinal stenosis is a condition resulting in the compression of the neural elements due to narrowing of the spinal canal. Anatomical factors including enlargement of the facet joints, thickening of the ligaments, and bulging or collapse of the intervertebral discs contribute to the compression. Decompression surgery alleviates spinal stenosis through a laminectomy involving the resection of bone and ligament. Spinal decompression surgery requires appropriate planning and variable strategies depending on the specific situation. Given the potential for neural complications, there exist significant barriers to residents and fellows obtaining adequate experience performing spinal decompression in the operating room. Virtual teaching tools exist for learning instrumentation which can enhance the quality of orthopaedic training, building competency and procedural understanding. However, virtual simulation tools are lacking for decompression surgery. The aim of this work was to develop an open-source 3D virtual simulator as a teaching tool to improve orthopaedic training in spinal decompression. A custom step-wise spinal decompression simulator workflow was built using 3D Slicer, an open-source software development platform for medical image visualization and processing. The procedural steps include multimodal patient-specific loading and fusion of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data, bone threshold-based segmentation, soft tissue segmentation, surgical planning, and a laminectomy and spinal decompression simulation. Fusion of CT and MRI elements was achieved using Fiducial-Based Registration which aligned the scans based on manually placed points allowing for the identification of the relative position of soft and hard tissues. Soft tissue segmentation of the spinal cord, the cerebrospinal fluid, the cauda equina, and the ligamentum flavum was performed using Simple Region Growing Segmentation (with manual adjustment allowed) involving the selection of structures on T1 and/or T2-weighted scans. A high-fidelity 3D model of the bony and soft tissue anatomy was generated with the resulting surgical exposure defined by labeled vertebrae simulating the central surgical incision. Bone and soft tissue resecting tools were developed by customizing manual 3D segmentation tools. Simulating a laminectomy was enabled through bone and ligamentum flavum resection at the site of compression. Elimination of the stenosis enabled decompression of the neural elements simulated by interpolation of the undeformed anatomy above and below the site of compression using Fill Between Slices to reestablish pre-compression neural tissue anatomy. The completed workflow allows patient specific simulation of decompression procedures by staff surgeons, fellows and residents. Qualitatively, good visualization was achieved of merged soft tissue and bony anatomy. Procedural accuracy, the design of resecting tools, and modeling of the impact of bone and ligament removal was found to adequately encompass important challenges in decompression surgery. This software development project has resulted in a well-characterized freely accessible tool for simulating spinal decompression surgery. Future work will integrate and evaluate the simulator within existing orthopaedic resident competency-based curriculum and fellowship training instruction. Best practices for effectively teaching decompression in tight areas of spinal stenosis using virtual simulation will also be investigated in future work


Bone & Joint Research
Vol. 5, Issue 6 | Pages 239 - 246
1 Jun 2016
Li P Qian L Wu WD Wu CF Ouyang J

Objectives. Pedicle-lengthening osteotomy is a novel surgery for lumbar spinal stenosis (LSS), which achieves substantial enlargement of the spinal canal by expansion of the bilateral pedicle osteotomy sites. Few studies have evaluated the impact of this new surgery on spinal canal volume (SCV) and neural foramen dimension (NFD) in three different types of LSS patients. Methods. CT scans were performed on 36 LSS patients (12 central canal stenosis (CCS), 12 lateral recess stenosis (LRS), and 12 foraminal stenosis (FS)) at L4-L5, and on 12 normal (control) subjects. Mimics 14.01 workstation was used to reconstruct 3D models of the L4-L5 vertebrae and discs. SCV and NFD were measured after 1 mm, 2 mm, 3 mm, 4 mm, or 5 mm pedicle-lengthening osteotomies at L4 and/or L5. One-way analysis of variance was used to examine between-group differences. Results. In the intact state, SVC and NFD were significantly larger in the control group compared with the LSS groups (P<0.05). After lengthening at L4, the percentage increase in SCV (per millimetre) was LRS>CCS>FS>Control. After lengthening at L5 and L4-L5, the percentage increase in SCV (per millimetre) was LRS>FS>CCS>Control. After lengthening at L4 and L4-L5, the percentage increase in NFD (per millimetre) was FS>CCS>LRS>Control. After lengthening at L5, the percentage increase in NFD (per millimetre) was CCS>LRS>control>FS. Conclusions. LRS patients are the most suitable candidates for treatment with pedicle-lengthening osteotomy. Lengthening L4 pedicles produced larger percentage increases in NFD than lengthening L5 pedicles (p < 0.05). Lengthening L4 pedicles may be the most effective option for relieving foraminal compression in LSS patients. Cite this article: P. Li, L. Qian, W. D. Wu, C. F. Wu, J. Ouyang. Impact of pedicle-lengthening osteotomy on spinal canal volume and neural foramen size in three types of lumbar spinal stenosis. Bone Joint Res 2016;5:239–246. DOI: 10.1302/2046-3758.56.2000469


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 89 - 89
1 Apr 2018
Stoffels A Lipperts M van Hemert W Rijkers K Grimm B
Full Access

Introduction. Limited physical activity (PA) is one indication for orthopaedic intervention and restoration of PA a treatment goal. However, the objective assessment of PA is not routinely performed and in particular the effect of spinal pathology on PA is hardly known. It is the purpose of this study using wearable accelerometers to measure if, by how much and in what manner spinal stenosis affects PA compared to age-matched healthy controls. Patients & Methods. Nine patients (m/f= 5/4, avg. age: 67.4 ±7.7 years, avg. BMI: 29.2 ±3.5) diagnosed with spinal stenosis but without decompressive surgery or other musculoskeletal complaints were measured. These patients were compared to 28 age-matched healthy controls (m/f= 17/11, avg. age: 67.4 ±7.6 years, avg. BMI: 25.3±2.9). PA was measured using a wearable accelerometer (GCDC X8M-3) worn during waking hours on the lateral side of the right leg for 4 consecutive days. Data was analyzed using previously validated activity classification algorithms in MATLAB to identify the type, duration and event counts of postures or PA like standing, sitting, walking or cycling. In addition, VAS pain and OSWESTRY scores were taken. Groups were compared using the t-test or Mann-Whitney U-test where applicable. Correlations between PA and clinical scores were tested using Pearson”s r. Results. Spinal stenosis patients showed much lower PA than healthy controls regarding all parameters like e.g. daily step count (2946 vs 8039, −63%, p<0.01) or the relative daily time-on-feet (%) (8.6% vs 28.3%, −70%, p<0.01) which is matched with increased sitting durations (80.3% vs 58.8%, p<0.01). Also qualitative parameters such as walking cadence was reduced in stenosis patients (83.7 vs 97.8 steps/min). With stenosis no patient ever walked >1000 steps without interruption. Also the number of walking bouts between 250–1000 steps was 4.5 times lower than in healthy controls (p<0.01). When the relative distribution of walking bout length was calculated, it became visible that stenosis patients showed more short walking bouts of 10–50 steps (p<0.05). There were no strong and significant correlations between the clinical scores and PA parameters. Discussion & Conclusions. Spinal stenosis greatly reduced physical activity to levels below WHO guidelines (e.g. <5000 steps= sedentary lifestyle) where the risk for general health (overall mortality), cardiovascular or endocrinological health is significantly increased. Activity levels are lower than reported for end-stage hip or knee osteoarthritis. Therefore, spinal stenosis patients should not only receive pain medication, but be made aware of their limited PA and its detrimental health effects, participate in activation programs, or be considered for surgical intervention. The absence of long walking bouts and the relatively more frequent short walking bouts seem indicative of intermittent claudication as typical in spinal stenosis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 24 - 24
1 Sep 2021
Saravi B Lang G Ülkümen S Südkamp N Hassel F
Full Access

Endoscopic spine surgery is a promising and minimally invasive technique for the treatment of disc herniation and spinal stenosis. However, the literature on the outcome of interlaminar endoscopic decompression (IED) versus conventional microsurgical technique (CMT) in patients with lumbar spinal stenosis is scarce. We analyzed 88 patients (IED: 36/88, 40.9%; CMT: 52/88, 59.1%) presenting with lumbar central spinal stenosis between 2018–2020. Surgery-related (operation time, complications, time to hospital release (THR), ASA score, C-reactive protein (CRP), white blood cell count (WBC), side (unilateral/bilateral), patient-reported (ODI, NRS (leg-, back pain), eQ5D, COMI), and radiological (preoperative dural sack cross-sectional area (DSCA), Shizas score (SC), left (LRH) and right (RRH) lateral recess heights, left (LFA) and right (RFA) facet angle) parameters were extracted. Complication (most often re-stenosis due to hematoma and/or residual sensorimotor deficits) rates were higher in the endoscopic (38.9%) than microsurgical (13.5%) treatment group (p<0.01). Age, THR, SC, CRP, and DSCA revealed significant correlations with 3 weeks and 1 year postoperatively evaluated ODI, COMI, eQ5D, NRS leg, or NRS back values in our cohort. We did not observe significant differences in the endoscopic versus microsurgical group for the patient-reported outcomes. Age, THR, SC, CRP, and DSCA revealed significant correlations with patient-centered outcomes and should be considered in future studies. Endoscopic treatment of lumbar spinal stenosis was similarly successful as the conventional microsurgical approach, although it was associated with higher complication rates in our single-center study experience. This was probably because of the surgeons' lack of experience with this method and the resulting different learning curve compared with the conventional technique


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 87 - 87
4 Apr 2023
Gehweiler D Pastor T Gueorguiev B Jaeger M Lambert S
Full Access

The periclavicular space is a conduit for the brachial plexus and subclavian-axillary vascular system. Changes in its shape/form generated by alteration in the anatomy of its bounding structures, e.g. clavicle malunion, cause distortion of the containing structures, particularly during arm motion, leading to syndromes of thoracic outlet stenosis etc., or alterations of scapular posture with potential reduction in shoulder function. Aim of this study was developing an in vitro methodology for systematic and repeatable measurements of the clinically poorly characterized periclavicular space during arm motion using CT-imaging and computer-aided 3D-methodologies. A radiolucent frame, mountable to the CT-table, was constructed to fix an upper torso in an upright position with the shoulder joint lying in the isocentre. The centrally osteotomized humerus is fixed to a semi-circular bracket mounted centrally at the end of the frame. All arm movements (ante-/retroversion, abduction/elevation, in-/external rotation) can be set and scanned in a defined and reproducible manner. Clavicle fractures healed in malposition can be simulated by osteotomy and fixation using a titanium/carbon external fixator. During image processing the first rib served as fixed reference in space. Clavicle, scapula and humerus were registered, segmented, and triangulated. The different positions were displayed as superimposed surface meshes and measurements performed automatically. Initial results of an intact shoulder girdle demonstrated that different arm positions including ante-/retroversion and abduction/elevation resulted solely in a transverse movement of the clavicle along/parallel to the first rib maintaining the periclavicular space. A radiolucent frame enabling systematic and reproducible CT scanning of upper torsos in various arm movements was developed and utilized to characterize the effect on the 3D volume of the periclavicular space. Initial results demonstrated exclusively transverse movement of the clavicle along/parallel to the first rib maintaining the periclavicular space during arm positions within a physiological range of motion


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 46 - 46
17 Apr 2023
Akhtar R
Full Access

To determine the clinical efficacy of vitamin-D supplementation on pain intensity and functional disability in patients with chronic lower back pain. This prospective cohort study was conducted from 20th March 2017 to 19th March 2019. The inclusion criteria were patients of CLBP aged between 15 to 55 years. Exclusion criteria included all the patients with Disc prolapse, Spinal stenosis, Any signs of neurological involvement, Metabolic bone disease (Hypo- or Hyperparathyroidism) and Chronic kidney disease/Chronic liver disease. Patients were supplemented with 50,000 IU of oral vitamin-D3 every week for 8 weeks (induction phase) and 50,000 IU of oral vitamin-D3 once monthly for 6 months (maintenance phase). Efficacy parameters included pain intensity and functional disability measured by VAS and modified Oswestry disability questionnaire (MODQ) scores at baseline, 2, 3 and 6 months post-supplementation. Vitamin-D3 levels were measured at baseline,2,3 and 6 months. A total of 600 patients were included in the study. The mean age of patients was 44.2 ± 11.92 years. There were 337 (56.2%) male patients while 263 (43.8%) female patients. Baseline mean vitamin-D levels were 13.32 ± 6.10 ng/mL and increased to 37.18 ± 11.72 post supplementation (P < 0.0001). There was a significant decrease in the pain score after 2nd, 3rd& 6th months (61.7 ± 4.8, 45.2 ± 4.6 & 36.9 ± 7.9, respectively) than 81.2 ± 2.4 before supplementation (P < 0.001). The modified Oswestry disability score also showed significant improvement after 2nd, 3rd & 6th months (35.5, 30.2 & 25.8, respectively) as compared to baseline 46.4 (P < 0.001). About 418 (69.7%) patients attained normal levels after 6 months. Vitamin-D supplementation in chronic lower back pain patients may lead to improvement in pain intensity and functional ability


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 144 - 144
1 May 2012
T. R R. M J. M C. A
Full Access

Introduction. In degenerative lumbar spine, it seems possible that foraminal stenosis is over-diagnosed as axial scanning is not performed in the plane of the exiting nerve root. We carried out a two-part study to determine the true incidence of foraminal stenosis. Patients and Methods. Initially we performed a retrospective analysis of radiology reports of conventional Magnetic Resonance Imaging in 100 cases of definite spinal stenosis to determine the incidence of reported ‘foraminal stenosis’. Subsiquently we performed a prospective study of MRI including fine slice T2 and T2 STIR coronal sequences in 100 patients with suspected stenosis. Three surgeons and one radiologist independently compared the diagnoses on conventional axial and sagittal sequences with the coronal scans. Results. The retrospective analysis found that ‘foraminal stenosis’ was reported by radiologists in 46% using conventional axial and sagittal sequences. In the prospective study of 100 patients suspected of having stenosis, spinal stenosis was reported in 40; degenerative spondylolisthesis in 14; posterolateral disc herniation in 14; normal report in 13; far lateral disc herniation in 7; isthmic (lytic) spondylolisthesis in 6; and degenerative scoliosis in 6. Conventional sequences diagnosed lateral recess stenosis reliably, but also suggested foraminal stenosis in 43%. However, coronal sequences clearly showed no foraminal nerve compression at all. In degenerative spondylolisthesis conventional scans suggested foraminal stenosis in 10 of 14 cases. Coronal imaging again showed no foraminal stenosis. Excellent correlation was found in normal spines and in disc herniation. Foraminal nerve compression was confirmed by conventional and coronal imaging only in isthmic spondylolisthesis, degenerative scoliosis and far lateral disc herniation. Conclusion. The addition of coronal MRI proves that foraminal stenosis is over-diagnosed. True foraminal stenosis definitely exists in isthmic spondylolisthesis, degenerative scoliosis and far lateral disc herniation, but we question its existence in spinal stenosis and degenerative spondylolisthesis


Bone & Joint 360
Vol. 2, Issue 5 | Pages 29 - 31
1 Oct 2013

The October 2013 Spine Roundup. 360 . looks at: Standing straighter may reduce falls; Operative management of congenital kyphosis; Athletic discectomy; Lumbar spine stenosis worsens with time; Flexible stabilisation?: spinal stenosis revisited; Do epidural steroids cause spinal fractures?; Who does well with cervical myelopathy?; Secretly adverse to BMP-2?


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 115 - 115
1 Apr 2012
Rajagopal T Marshall R McKenzie J Archibald C
Full Access

Retrospective analysis of radiology reports of conventional MRI in 100 patients with definite spinal stenosis to determine the incidence of reported “foraminal stenosis”. Prospective study of MRI including T2 coronal and T2 STIR coronal sequences in 57 patients with suspected stenosis. Three surgeons and one radiologist independently compared the diagnoses on conventional and coronal scans. Patients with suspected spinal stenosis undergoing MRI. Incidence of “foraminal stenosis” on radiologists' reports. Diagnoses obtained by different scanning methods. Retrospective analysis: “foraminal stenosis” called by radiologists in 46% using conventional axial and sagittal sequences. Prospective study - 57 patients: conventional sequences diagnosed lateral recess stenosis well but also suggested foraminal stenosis in 33%. However, coronal sequences clearly showed no foraminal nerve compression. In degenerative spondylolisthesis conventional scans suggested foraminal stenosis in 8 of 11 cases. Coronals showed no foraminal stenosis. Excellent correlation was found in normal spines and in disc herniation. In far lateral disc herniation and isthmic spondylolisthesis, true foraminal stenosis was confirmed by conventional and coronal imaging. Additional coronal MRI sequences prove that foraminal stenosis is over-diagnosed and is rare in spinal stenosis, but true foraminal nerve compression occurs in isthmic spondylolisthesis and far lateral disc herniation