Advertisement for orthosearch.org.uk
Results 1 - 20 of 2093
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 39 - 39
1 Dec 2022
Grammatopoulos G Pierrepont J Madurawe C Innmann MM Vigdorchik J Shimmin A
Full Access

A stiff spine leads to increased demand on the hip, creating an increased risk of total hip arthroplasty (THA) dislocation. Several authors propose that a change in sacral slope of ≤10° between the standing and relaxed-seated positions (ΔSSstanding→relaxed-seated) identifies a patient with a stiff lumbar spine and have suggested use of dual-mobility bearings for such patients. However, such assessment may not adequately test the lumbar spine to draw such conclusions. The aim of this study was to assess how accurately ΔSSstanding→relaxed-seated can identify patients with a stiff spine. This is a prospective, multi-centre, consecutive cohort series. Two-hundred and twenty-four patients, pre-THA, had standing, relaxed-seated and flexed-seated lateral radiographs. Sacral slope and lumbar lordosis were measured on each functional X-ray. ΔSSstanding→relaxed-seated seated was determined by the change in sacral slope between the standing and relaxed-seated positions. Lumbar flexion (LF) was defined as the difference in lumbar lordotic angle between standing and flexed-seated. LF≤20° was considered a stiff spine. The predictive value of ΔSSstanding→relaxed-seated for characterising a stiff spine was assessed. A weak correlation between ΔSSstanding→relaxed-seated and LF was identified (r2= 0.15). Fifty-four patients (24%) had ΔSSstanding→relaxed-seated ≤10° and 16 patients (7%) had a stiff spine. Of the 54 patients with ΔSSstanding→relaxed-seated ≤10°, 9 had a stiff spine. The positive predictive value of ΔSSstanding→relaxed-seated ≤10° for identifying a stiff spine was 17%. ΔSSstanding→relaxed-seated ≤10° was not correlated with a stiff spine in this cohort. Utilising this simplified approach could lead to a six-fold overprediction of patients with a stiff lumbar spine. This, in turn, could lead to an overprediction of patients with abnormal spinopelvic mobility, unnecessary use of dual mobility bearings and incorrect targets for component alignment. Referring to patients ΔSSstanding→relaxed-seated ≤10° as being stiff can be misleading; we thus recommend use of the flexed-seated position to effectively assess pre-operative spinopelvic mobility


Bone & Joint Open
Vol. 1, Issue 9 | Pages 576 - 584
18 Sep 2020
Sun Z Liu W Li J Fan C

Post-traumatic elbow stiffness is a disabling condition that remains challenging for upper limb surgeons. Open elbow arthrolysis is commonly used for the treatment of stiff elbow when conservative therapy has failed. Multiple questions commonly arise from surgeons who deal with this disease. These include whether the patient has post-traumatic stiff elbow, how to evaluate the problem, when surgery is appropriate, how to perform an excellent arthrolysis, what the optimal postoperative rehabilitation is, and how to prevent or reduce the incidence of complications. Following these questions, this review provides an update and overview of post-traumatic elbow stiffness with respect to the diagnosis, preoperative evaluation, arthrolysis strategies, postoperative rehabilitation, and prevention of complications, aiming to provide a complete diagnosis and treatment path. Cite this article: Bone Joint Open 2020;1-9:576–584


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1331 - 1340
3 Oct 2020
Attard V Li CY Self A Mann DA Borthwick LA O’Connor P Deehan DJ Kalson NS

Aims. Stiffness is a common complication after total knee arthroplasty (TKA). Pathogenesis is not understood, treatment options are limited, and diagnosis is challenging. The aim of this study was to investigate if MRI can be used to visualize intra-articular scarring in patients with stiff, painful knee arthroplasties. Methods. Well-functioning primary TKAs (n = 11), failed non-fibrotic TKAs (n = 5), and patients with a clinical diagnosis of fibrosis. 1. (n = 8) underwent an MRI scan with advanced metal suppression (Slice Encoding for Metal Artefact Correction, SEMAC) with gadolinium contrast. Fibrotic tissue (low intensity on T1 and T2, low-moderate post-contrast enhancement) was quantified (presence and tissue thickness) in six compartments: supra/infrapatella, medial/lateral gutters, and posterior medial/lateral. Results. Fibrotic tissue was identified in all patients studied. However, tissue was significantly thicker in fibrotic patients (4.4 mm ± 0.2 mm) versus non-fibrotic (2.5 mm ± 0.4 mm) and normal TKAs (1.9 mm ± 0.2 mm, p = < 0.05). Significant (> 4 mm thick) tissue was seen in 26/48 (54%) of compartments examined in the fibrotic group, compared with 17/30 (57%) non-fibrotic, and 10/66 (15%) normal TKAs. Although revision surgery did improve range of movement (ROM) in all fibrotic patients, clinically significant restriction remained post-surgery. Conclusion. Stiff TKAs contain intra-articular fibrotic tissue that is identifiable by MRI. Studies should evaluate whether MRI is useful for surgical planning of debridement, and as a non-invasive measurement tool following interventions for stiffness caused by fibrosis. Revision for stiffness can improve ROM, but outcomes are sub-optimal and new treatments are required. Cite this article: Bone Joint J 2020;102-B(10):1331–1340


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 64 - 64
1 May 2019
Rodriguez J
Full Access

Modifiable factors contributing to stiffness include alignment, implant size, implant position and rotation, and soft tissue tightness or laxity. Less modifiable factors include genetics as in predisposition to inflammation and fibrosis, aberrations in perception and experience of emotional pain, and preoperative range of motion. We reviewed 559 knees undergoing revision between 2007 and 2014, selecting out patients with a diagnosis of stiffness and greater than one-year follow-up. Stiffness was defined as greater than 15 degrees of flexion contracture or less than 75 degrees of flexion or less than 90 degrees of active motion and a chief complaint of limited motion and pain. Radiographic analysis used a set of matched controls with greater than 90 degrees and full extension prior to surgery and were further matched by age, gender, BMI. Flexion contracture changed from an average of 9.7 to an average of 2.3 degrees, flexion changed from an average of 81 to an average of 94 degrees, active motion changed from an average of 72 to an average of 92 degrees, pain scores improved from 44 to 72 points, and Knee Society function scores improved from an average of 49 to an average of 70 points. There were four failures for stiffness, two knees underwent additional manipulation, gaining an average of 10 degrees; and two knees were revised. Radiographic analysis demonstrated stiffness to be strongly correlated to anterior condylar offset ratio and to patellar displacement by multivariant regression analysis, suggesting that overstuffing the patellofemoral joint by anteriorization of the femoral component is associated with stiffness. Using modern revision techniques, revision for stiffness creates reliable improvements in pain, Knee Society clinical and functional scores, and motion


Bone & Joint Research
Vol. 6, Issue 9 | Pages 542 - 549
1 Sep 2017
Arnold M Zhao S Ma S Giuliani F Hansen U Cobb JP Abel RL Boughton O

Objectives. Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness. Methods. A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded. Results. A total of 1094 abstracts were retrieved and 32 papers were included in the analysis, 20 of which used reference point indentation, and 12 of which used traditional depth-sensing indentation. There are several factors that must be considered when using microindentation, such as tip size, depth and method of analysis. Only two studies validated microindentation against traditional mechanical testing techniques. Both studies used reference point indentation (RPI), with one showing that RPI parameters correlate well with mechanical testing, but the other suggested that they do not. Conclusion. Microindentation has been used in various studies to assess bone stiffness, but only two studies with conflicting results compared microindentation with traditional mechanical testing techniques. Further research, including more studies comparing microindentation with other mechanical testing methods, is needed before microindentation can be used reliably to calculate cortical bone stiffness. Cite this article: M. Arnold, S. Zhao, S. Ma, F. Giuliani, U. Hansen, J. P. Cobb, R. L. Abel, O. Boughton. Microindentation – a tool for measuring cortical bone stiffness? A systematic review. Bone Joint Res 2017;6:542–549. DOI: 10.1302/2046-3758.69.BJR-2016-0317.R2


Bone & Joint Research
Vol. 7, Issue 8 | Pages 524 - 538
1 Aug 2018
Zhao S Arnold M Ma S Abel RL Cobb JP Hansen U Boughton O

Objectives. The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens in vitro. This systematic review aims to determine how best to perform compression testing of human bone. Methods. A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded. Results. A total of 4712 abstracts were retrieved, with 177 papers included in the analysis; 20 studies directly analyzed the compression testing technique to improve the accuracy of testing. Several influencing factors should be considered when testing bone samples in compression. These include the method of data analysis, specimen storage, specimen preparation, testing configuration, and loading protocol. Conclusion. Compression testing is a widely used technique for measuring the stiffness of bone but there is a great deal of inter-study variation in experimental techniques across the literature. Based on best evidence from the literature, suggestions for bone compression testing are made in this review, although further studies are needed to establish standardized bone testing techniques in order to increase the comparability and reliability of bone stiffness studies. Cite this article: S. Zhao, M. Arnold, S. Ma, R. L. Abel, J. P. Cobb, U. Hansen, O. Boughton. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018;7:524–538. DOI: 10.1302/2046-3758.78.BJR-2018-0025.R1


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 52 - 52
1 Aug 2017
Sculco P
Full Access

Stiffness after total knee arthroplasty (TKA) is a common problem occurring between 5% and 30% of patients. Stiffness is defined as limited range of motion (ROM) that affects activities of daily living. A recent International Consensus on definition of stiffness of the knee graded stiffness as mild, moderate or severe (90–100, 70–89, <70, respectively) or an extension deficit (5–10, 11–20, >20). Stiffness can be secondary to an osseous, soft tissue, or prosthetic block to motion. Heterotopic bone or retained posterior osteophytes, abundant fibrotic tissue, oversized components with tight flexion or extension gaps or component malrotation can all limit knee motion. Infection should always be considered in the knee that gradually loses motion. Alternative causes include complex regional pain syndrome and Kinesiophobia that can limit motion without an underlying mechanical cause. The evaluation of knee stiffness radiographs of the knee and cross-section imaging should be performed if component malrotation is considered. A metal suppression MRI assists in quantifying the extent of fibrosis and its location in the anterior or posterior compartment of the knee. Inflammatory markers and joint aspiration as indicated to rule out infection. Arthrofibrosis, or post-surgical fibrosis, is related to abnormal scar formation after surgery that leads to loss of motion. The cause of arthrofibrosis is multifactorial and likely related to genetic host factors. Current research is focusing on molecular signatures that may better identify patients at risk. In addition, therapeutic interventions are being studied that best prevent fibrosis and its recurrence and include the use of anti-inflammatories, corticosteroids, Colchicine, biologic medications (IL-1 inhibitors) and low-dose radiation. Early treatment of the stiff TKA includes physical therapy and manipulation under anesthesia (MUA). MUA performed within 3 months may have the greatest increase in ROM but notable improvement can occur up to 6 months after TKA. After six months, arthroscopic or open surgery is recommended for persistent stiffness. Arthroscopic lysis of adhesions can improve ROM greater than 1 year after index TKA. Average improvement of ROM for both MUA and arthroscopic lysis of adhesions (usually in conjunction with MUA) is approximately 30 degrees. The outcome after open lysis of adhesions are reportedly poor but current adjuvant therapies may improve these clinical outcomes as this addresses the biologic, in addition to the mechanical, basis of fibrosis. Component revision performed for component malposition and stiffness has variable outcomes but a recent study reports a mean increase in ROM of 20 degrees and a modest improvement in overall knee function. The cause of post-operative stiffness after TKA is a complex interplay of the patient, surgeon, and post-operative factors. Correct diagnosis of the underlying cause of the stiff total knee is essential to optimizing treatment outcomes. More research in needed in how to best prevent and treat the biologic risk factors and pathways that contribute to post-surgical fibrosis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 99 - 99
1 Apr 2017
Su E
Full Access

Stiffness after TKR is a frustrating complication that has many possible causes. Though the definition of stiffness has changed over the years, most would agree that flexion > 75 degrees and a 15-degree lack of extension constitutes stiffness. This presentation will focus upon the potential causes of a stiff TKR, intra-operative tips, the post-operative evaluation and management, and the results of revision for a stiff TKR. The management of this potentially unsatisfying situation begins pre-operatively with guidance of the patient's expectations; it is well-known that pre-operative stiffness is strongly correlated with post-operative lack of motion. At the time of surgery, osteophytes must be removed and the components properly sised and aligned and rotated. Soft-tissue balancing must be attained in both the flexion/extension and varus/valgus planes. One must avoid overstuffing the tibio-femoral and/or patello-femoral compartments with an inadequate bone resection. Despite these surgical measures and adequate pain control and rehabilitation, certain patients will continue to frustrate our best efforts. These patients likely have a biological predisposition for formation of scar tissue. Other potential causes for the stiff TKR include complex regional pain syndrome or joint infection. Close followup of a patient's progress is crucial for the success in return of ROM. Should motion plateau early in the recovery phase, the patient should be evaluated for manipulation under anesthesia. At our institution, most manipulations are performed within 3 months post-operative under an epidural anesthetic; patients will stay overnight for continuous epidural pain relief and immediate aggressive PT. The results of re-operations for a stiff TKR are variable due to the multiple etiologies. A clear cause of stiffness such as component malposition, malrotation or overstuffing of the joint has a greater chance of regaining motion than arthrofibrosis without a clear cause. Although surgical treatment with open arthrolysis, isolated component or complete revision can be used to improve TKR motion, results have been variable and additional procedures are often necessary


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 45 - 45
1 Feb 2021
Howarth W Dannenbaum J Murphy S
Full Access

Introduction. Lumbar spine fusion in patients undergoing THA (total hip arthroplasty) is a known risk factor for hip dislocation with some studies showing a 400% increased incidence compared to the overall THA population. Reduced spine flexibility can effectively narrow the cup anteversion safe zone while alterations in pelvic tilt can alter the center of the anteversion safe zone. The use of precision cup alignment technology combined with patient-specific cup alignment goals based on preoperative assessment has been suggested as a method of addressing this problem. The current study assess the dislocation rate of THA patients with stiff or fused lumbar spines treated using surgical navigation with patient-specific cup orientation goals. Methods. Seventy-five THA were performed in 54 patients with a diagnosis of lumbar fusion, lumbar disc replacement, and scoliosis with Cobb angles greater than 40 degrees were treated by the senior author (SM) as part of a prospective, non-randomized study of surgical navigation in total hip arthroplasty. All patients were treated using a smart mechanical navigation tool for cup alignment (HipXpert System, Surgical Planning Associates, Inc., Boston, MA). Cup orientation goals were set on a patient-specific basis using supine pelvic tilt as measured using CT. Patients with increased pelvic tilt had a goal for increased cup anteversion and patients with decreased pelvic tilt had a goal for decreased cup anteversion (relative to the anterior pelvic plane coordinate system). Each patient's more recent outpatient records were assessed for history of dislocation, instability, mechanical symptoms, decreased range of motion or progressive pain. Additionally, last clinic radiographs were reviewed to confirm lumbar pathology in the form of spinal surgical hardware. Results. Seventy-five total hip arthroplasties with stiff lumbar spine were reviewed with and average follow up of 6.04 years. The average number of levels of lumbar fusion was 2.3 levels. Since the most recent follow up on all patients in this cohort no hip dislocations had occurred. Discussion and Conclusion. Fusion or stiffness of the lumbar spine is a known risk factor for instability following elective THA. The current study demonstrates that patient-specific planning of cup placement taking abnormal pelvic tilt into consideration combined with the use of accurate intra-operative cup alignment technology can be used to address this problem


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 5 - 5
23 Apr 2024
Sain B Sidharthan S Naique S
Full Access

Introduction. Treatment of non-union in open tibial fractures Gustilo-Anderson(GA)-3A/3B fractures remains a challenging problem. Most of these can be dealt using treatment methods that requires excision of the non-union followed by bone grafting, masquelet technique, or acute shortening. Circular fixators with closed distraction or bone transport also remains a useful option. However, sometimes due to patient specific factors these cannot be used. Recently antibiotic loaded bone substitutes have been increasingly used for repairing infected non-unions. They provide local antibiotic delivery, fill dead space, and act as a bone conductive implant, which is resorted at the end of a few months. We aimed to assess the outcome of percutaneous injection of bone substitute while treating non-union of complex open tibial fractures. Materials & Methods. Three cases of clinical and radiological stiff tibial non-union requiring further intervention were identified from our major trauma open fracture database. Two GA-3B cases, treated with a circular frame developed fracture-related-infection(FRI) manifesting as local cellulitis, loosened infected wires/pins with raised blood-markers, and one case of GA-3A treated with an intramedullary nail. At the time of removal of metalwork/frame, informed consent was obtained and Cerament-G. TM. (bone-substitute with gentamicin) was percutaneously injected through a small cortical window using a bone biopsy(Jamshedi needle). All patients were allowed to weight bear as tolerated in a well-fitting air-cast boot and using crutches. They were followed up at 6 weekly intervals with clinical assessment of their symptoms and radiographs. Fracture union was assessed using serial radiographs with healing defined as filling of fracture gap, bridging callus and clinical assessment including return to full painless weight bearing. Results. Follow-up at 6 months showed all fractures had healed with no defect or gaps with evidence of new trabecular bone and significant resorption of Cerament-G. TM. at final follow-up. There was no evidence of residual infection with restoration of normal limb function. Fractures with no internal fixation showed a mild deformity that had developed during the course of the healing, presumed due to mild collapse in the absence of fixation. These were less than 10 degrees in sagittal and coronal planes and were clinically felt to be insignificant by the patients. Conclusions. Cerament-G's unique combination of high dose antibiotics and hydroxy apatite matrix provided by calcium sulphate might help provide an osteoconductive environment to allow these stiff non-unions to heal. The matrix appears to provide a scaffold-like structure that allows new bone in-growth with local release of antibiotics helping reduce deep-seated infections. The final deformation at fracture site underlines the need for fixation- and it is very unlikely that this technique will work in mobile nonunions. Whilst similar fractures may heal without the use of bone substitute injections, the speed of healing in presence of significant fracture gap suggests the use of these bone substitutes did help in our cases. Further studies with a larger cohort, including RCTs, to evaluate the effectiveness of this technique compared to other methods are needed


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 101 - 101
1 Jun 2018
Sculco T
Full Access

Stiffness after total knee replacement remains a significant factor in a suboptimal result after total knee arthroplasty. Interference with function including stair climbing, arising from a seated position, driving and return to activities of daily living and recreational sports are all compromised when stiffness results after knee replacement. The key indicator for resultant range of motion after knee replacement remains knee motion prior to surgery. A knee with limited motion prior to surgery will rarely achieve the same motion as a fully mobile knee and the patient should be counseled to this ultimate result. Patients with prior knee surgery, post-traumatic knee arthritis also tend to be stiffer after knee replacement. If a knee is stiff after replacement it is key to determine if there is a mechanical impediment to motion (e.g. implant sizing problem, overstuffing of the patellofemoral joint) and revision knee replacement to address this problem will be necessary and is best done when recognised. When referring to a stiff knee after replacement flexion less than 90 degrees is generally accepted. Management of the knee with limited motion after knee replacement should first be treated with manipulation of the knee under anesthesia. Timing of manipulation is key to its success and if a patient is not progressing after 4–6 weeks manipulation is generally indicated. Manipulation can be performed up to 6–12 months after replacement but ultimate motion is negatively impacted by delay as scar tissue becomes more indurated and fixed. Arthroscopic lysis of adhesions can be performed in the recalcitrant knee but in my experience will generally improve motion in the 10- to 15-degree range, if at all. In patients with persistent and disabling stiffness, open resection with radical scar excision can be performed and if there is not an implant sizing issue this may improve motion. It is important to rapidly mobilise these patients after surgery with early flexion to beyond 90 degrees with use of optimal analgesia to allow vigorous early motion. At time of open lysis of adhesions revision of components should be performed if there is any question of need to do this to improve range of motion


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 112 - 112
1 May 2012
Hughes J
Full Access

The causes of a stiff elbow are numerous including: post-traumatic elbow, burns, head injury, osteoarthritis, inflammatory joint disease and congenital. Types of stiffness include: loss of elbow flexion, loss of elbow extension and loss of forearm rotation. All three have different prognoses in terms of the timing of surgery and the likelihood of restoration of function. Contractures can be classified into extrinsic and intrinsic (all intrinsic develop some extrinsic component). Functional impairment can be assessed medicolegally; however, in clinical practice the patient puts an individual value on the arc of motion. Objectively most functions can be undertaken with an arc of 30 to 130 degrees. The commonest cause of a Post-traumatic Stiff elbow is a radial head fracture or a complex fracture dislocation. Risk factors for stiffness include length of immobilisation, associated fracture with dislocation, intra-articular derangement, delayed surgical treatment, associated head injury, heterotopic ossification. Early restoration of bony columns and joint stability to allow early mobilisation reduces incidence of joint stiffness. Heterotopic ossification (HO) is common in fracture dislocation of the elbow. Neural Axis trauma alone causes HO in elbows in 5%. However, combined neural trauma and elbow trauma the incidence is 89%. Stiffness due to thermal injury is usually related to the degree rather than the site. The majority of patients have greater than 20% total body area involved. Extrinsic contractures are usually managed with a sequential release of soft tissues commencing with a capsular excision (retaining LCL/MCL), posterior bundle of the MCL +/− ulna nerve decompression (if there is loss of flexion to 100 degrees). This reliably achieved via a posterior incision, a lateral column exposure +/− ulna nerve mobilisation. A medial column exposure is a viable alternative. Arthroscopic capsular release although associated with a quicker easier rehabilitation is associated with increased neural injury. Timing of release is specific to the type of contracture, i.e. flexion contractures after approx. six months, extension contractures ASAP but after four months, loss of forearm rotation less 6 to 24 months. The use of Hinged Elbow Fixators is increasing. The indications include reconstructions that require protection whilst allowing early movement, persistent instability or recurrent/late instability or interposition arthroplasty. Post-operative rehabilitation requires good analgesia, joint stability and early movement. The role of CPM is often helpful but still being evaluated


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 95 - 95
1 Dec 2016
Hofmann A
Full Access

Stiffness remains one of the most common, and challenging postoperative complications after TKA. Preoperative motion and diagnosis can influence postoperative motion, and careful patient counseling about expectations is important. Postoperative stiffness should be evaluated by ruling out infections, metal allergy, or too aggressive physical therapy. A careful physical and radiographic examination is required. Manipulation under anesthesia (MUA) in selected cases can be helpful. The best timing to perform MUA is between the 6th and 10th week postoperatively. Careful technique is required to minimise the risk of fracture or soft tissue injury. This requires complete paralysis! For more chronic stiffness, revision may be indicated if an etiology can be identified. An excessively thick patellar resurfacing, an overstuffed tibia insert, an oversized femoral component, or gross malrotation should be corrected. During revision, thorough synovectomy, release of contractures, ligamentous balancing and restoration of the joint line is required. Careful attention to component rotation, and sizing is critical. Downsizing components is helpful to place less volume into the joint space. Patients should be counseled that the results of revision for stiffness are mixed and somewhat unpredictable. More frequent postoperative nurturing is helpful to guide rehabilitation progress. Manipulation after revision at 6 weeks is almost expected


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 94 - 94
1 May 2014
Stulberg S
Full Access

Stiffness after a TKA might be said to be present when reasonable functions of daily living cannot be performed or can only be performed with difficulty or pain. This will certainly be true if flexion is less than 75 degrees and/or there is a 15-degree lack of full extension. The purpose of this presentation is to discuss the causes of a stiff TKA, consider the aspects of surgical technique that are associated with the occurrence of stiffness, present post-surgical management that impacts on the development of stiffness and summarise the results of the surgical treatment of a stiff TKA. Pre-operative stiffness is strongly correlated with post-operative limitation of motion. Therefore, pre-surgical measures to optimise motion should be carried out. These include appropriate physical therapy, adequate pain management and a discussion with the patient of the issues likely to affect post-operative range of motion. It is particularly important to discuss with the patient appropriate expectations with regard to the likely range of motion that will be achieved following TKA surgery. There are a number of steps that can be taken during the performance of a TKA that have an impact on range of motion. Osteophytes must be removed. Correctly sized implants must be used to avoid over-stuffing the tibio-femoral and patello-femoral compartments. Mal-positioning implants and the extremity can adversely affect range of motion. Inadequate bone resection will also lead to a reduced range of motion. Improper soft tissue balancing in both flexion and extension may be associated with post-surgical stiffness. Post-operative management must include adequate pain management as well as appropriate rehabilitation. Close post-surgical surveillance will help identify those patients likely to achieve unsatisfactory range of motion. Manipulation of appropriate patients within the first 6 weeks following surgery is usually associated with a satisfactory final range of motion. When persistent stiffness occurs, an attempt must be made to identifying possible causes, including component mal-alignment or mal-rotation, component mis-sizing or mis-positioning and inadequate soft tissue balancing. The surgical treatment of a stiff total knee include: 1) arthroscopic debridement and manipulation; 2) arthrotomy with debridement; and 3) single or complete component revision. Although surgical intervention often results in improved range of motion, the results are variable and somewhat limited


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 8 - 8
1 Feb 2020
Abe S Nochi H Ito H
Full Access

Purpose. The purpose of this study is to evaluate stiff knees which have a preoperative arc of motion (AOM) < 65 degrees and maximum flexion < 90 degrees under anesthesia for primary TKA. Material and Methods. We prospectively evaluated 25 knees, 20 patients, the follow up period was 5±3 years, OA 13, RA 10 and traumatic OA 2 knees. All case were medial para-patella approaches and snip was added in one knee operation, 23 PS-type and 2 constrain-type TKAs. Results. Preoperative and postoperative FTA were 185.3±8.4 and 174.2±2.8 degrees, α95.5±3.0, β88.6±2.1, γ4.1±2.9, σ83.8±3.0, CTA1.4±1.9 degrees. Soft tissue releases were performed in Clayton stage I 9, II 14 and III 2 knees, and additional resection for the posterior capsule 11, vastus intermedius 2 and ITT 4 knees and lateral release 4 knees. Additional bone cuts were performed in 19 knees including femur 14 knees and tibia 12 knees. Component gaps (20/30/40lb) of medial and lateral were 9.8±0.8/10.8±2.9/12.2±1.9 mm and 11.0±2.1/12.6±2.5/13.6±2.8 mm at 0 degrees, they were 11.4±2.8/13.5±3.6/15.8±4.1 mm and 12.5±2.7/15.1±3.8 /18.0±4.2 mm at 90 degrees. (Figure1) MCL avulsion was in 3 knees. AOMs in preoperative, perioperative, 1-year later and final observation were 45.0±16.5, 110.4±15.5, 110.8±18.4 and 113.4±18.2 degrees. (Figure2) Flexions were72.5±17.7, 104.0±14.0, 104.0±14.0 and 106.5±14.4 degrees. Extensions were −28.3±10.5, −6.0±7.5, −6.0±7.0 and −6.9±7.8 degrees. There were no statistical differences between perioperative and final AOM, flexion and extension, and between OA and RA. Discussion. AOM improved and remained after the surgeries. We evaluated soft tissue release and component gaps in 25 stiff knees when preoperative arc of motion (AOM) was < 65 degrees and maximum flexion < 90 degrees under anesthesia for primary TKA. There were no statistical differences between perioperative and final AOM, flexion and extension, and between OA and RA. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 328 - 328
1 Jul 2008
Damany DS Hull S Sutcliffe ML
Full Access

Aim: To assess patient and surgery related factors to identify any trend leading to a stiff TKR. We also looked at the efficacy of MUA in the treatment of a stiff TKR. Material and Methods: Retrospective analysis of TKRs which have undergone MUA during the period from 01/01/1999 to 25/06/2005 at Peterborough Hospitals. We included primary TKRs with a minimum post MUA follow-up of six months. Results: Out of a total of 1809 TKRs, 42 TKRs (2.3%) in 38 patients required MUA. 26 (68%) were females with a median age of 67 years and a median BMI of 30. 34 (81%) had varus knees. Median pre-operative flexion was 100 deg. Median follow-up was 12 months (6 – 45 months). Median pre MUA flexion was 70 deg (15 – 100 deg.). Median surgery to MUA interval was 12 weeks (range: 10 days to 104 wks). Median gain in flexion during MUA was 35 deg (0 – 90 deg). At final follow-up, 74% had lost flexion gained at MUA (median loss: 17.5 deg, mean loss: 20 deg). 71% gained a median of 20 deg flexion with MUA (Mean: 25 deg, range: 15 – 85 deg). Median range of flexion at final follow-up was 90 deg (40 – 120 deg). Conclusion: We were unable to identify any distinct trends in relation to BMI, pre op flexion, other patient or surgical factors that would help predict occurrence of a stiff TKR. We advocate the use of MUA for a stiff TKR. 71% patients gained 20 to 25 deg flexion with MUA. 74% patients lost about 20 deg flexion gained at MUA. The average post MUA flexion at final follow up was 90 deg. This information is useful when counselling patients undergoing MUA. A protocol for management of stiff TKR is suggested


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 12 - 12
1 Oct 2020
Wooster BM Abdel MP Berry DJ Pagnano MW
Full Access

Introduction. Arthrofibrosis remains a persistent complication following total knee arthroplasty (TKA). Although manipulation under anesthesia (MUA) is an effective early treatment, the risks and value of this procedure beyond 3 months after TKA remain controversial. The purpose of this study was to examine the safety and efficacy of late MUAs for arthrofibrosis. Methods. From our institutional total joint registry, 82 TKAs (77 patients) who underwent MUA >3 months after primary (83%) or revision (17%) TKA were identified. Mean time to MUA was 7 months: 66% performed between 4–6 months, 18% between 7–12 months, 16% beyond 12 months. MUAs were coupled with arthroscopic assistance in 26% (12% limited lysis of adhesions, 13% formal arthroscopic debridement). Mean age was 61 years, 59% females, and mean BMI was 33kg/m. 2. Mean follow-up was 5 years. Results. No fractures, extensor mechanism disruptions, or other complications related to late MUA occurred. The mean ROM gained after MUA was 18° (76° to 94°, p<0.001). Substantial ROM gains (≥20°) occurred in 50%, while 21% made no gains or lost ROM after MUA. ROM gains ≥20° occurred in 54% of primary TKAs and 28% of revision TKAs. While ROM gains were higher when performed between 3–6 months (21°) compared to 6–12 months (13°) and >12 months (11°), these differences did not reach statistical significance (p=0.26). No differences in mean ROM gains were observed in MUAs performed with or without arthroscopic assistance (19° versus 15°, p=0.54). Kaplan Meier survivorship free of repeat MUA and revision TKA were 85% and 80% at 20 years, respectively. Conclusion. Late MUA, coupled with arthroscopic assistance in selected patients, was safe in a broad range of stiff primary and revision TKAs with no fractures or extensor disruptions occurring. While mean ROM improvements were modest, a substantial subset of patients achieved clinically important ROM gains ≥20°. Summary. Late MUA substantially improved ROM in a subset of patients with stiff TKAs and was done safely. In selected patients, arthroscopic lysis of adhesions or formal debridement aided the perceived safety and efficacy


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 102 - 102
1 Feb 2015
Mont M
Full Access

Knee stiffness is a well-recognised postoperative problem that has been reported to occur in 6% to 15% of all patients who undergo total knee arthroplasty (TKA), and there are multiple preoperative, intraoperative, and postoperative risk factors that may predispose patients to postTKA knee stiffness. Preoperative risk factors include poor baseline range of motion (ROM), obesity, and a history of previous knee surgery and/or trauma. Potential intraoperative risk factors for having a stiff knee are malalignment, gap imbalance, and under-resection of patella. Possible postoperative risk factors include heterotopic ossification, pain, poor patient motivation, and poor physical therapy compliance. Three commonly used adjuvant treatments for this condition are custom knee devices, Botox, and ASTYM. These treatment modalities are most effective when used within 6 weeks after surgery. Multiple case series have reported that CKD can improve range of motion while maximising patient-reported functional outcomes. Botox can improve range of motion by paralyzing the muscle where the contracture is located. ASTYM therapy has recently been reported to resolve muscle contractures by effectively stimulating tissue turnover, scar tissue resorption, and regeneration of the normal soft tissue structure. When these adjuvant therapies fail, manipulation under anesthesia has been reported to be efficacious in restoring some of the original ROM. If this fails, there are surgical treatment options such as arthroscopic debridement, surgical release, revision TKA, or peroneal nerve release


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 65 - 65
1 Nov 2015
Haidukewych G
Full Access

Stiffness remains one of the most common, and challenging post-operative complications after TKA. The exact definition of stiffness varies, and patient expectations of post-operative motion vary as well. Pre-operative motion and diagnosis (such as post-traumatic arthritis) can influence post-operative motion, and careful patient counseling about expectations is important. Post-operative stiffness should be evaluated by ruling out infection, evaluating rehabilitation efforts, and careful physical and radiographic examination. Manipulation under anesthesia (MUA) in selected cases can be helpful. The author generally prefers to perform MUA between the 6- and 8-week mark post-operatively. Careful technique is required to minimised the risk of fracture or soft tissue injury. For more chronic stiffness, revision may be indicated, especially if an etiology is identified pre-operatively (for example, an excessively thick patellar resurfacing, an oversized femoral component, gross malrotation, etc.). CT scanning can be helpful for pre-operative evaluation and planning. During revision, thorough synovectomy and release of contractures and ligamentous balancing is performed as required. Careful attention to gap balancing, component rotation, and sizing is critical. Patients should be counseled that the results of revision for stiffness are mixed and somewhat unpredictable unless a clear etiology was found intra-operatively (for example, a grossly oversized femoral component). More frequent post-operative office visits may be helpful to guide rehabilitation progress in these challenging cases


Bone & Joint Research
Vol. 6, Issue 4 | Pages 216 - 223
1 Apr 2017
Ang BFH Chen JY Yew AKS Chua SK Chou SM Chia SL Koh JSB Howe TS

Objectives. External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). Methods. A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness. Results. The mean axial stiffness was very similar for UEF (528 N/mm) and ESS-LCP (525 N/mm), while it was slightly lower for ET-LCP (469 N/mm). One-way analysis of variance (ANOVA) testing in all three groups demonstrated no significant difference (F(2,12) = 2.057, p = 0.171). There was a significant difference in mean torsional stiffness between the UEF (0.512 Nm/degree), the ESS-LCP (0.686 Nm/degree) and the ET-LCP (0.639 Nm/degree), as determined by one-way ANOVA (F(2,12) = 6.204, p = 0.014). A Tukey post hoc test revealed that the torsional stiffness of the ESS-LCP was statistically higher than that of the UEF by 0.174 Nm/degree (p = 0.013). No catastrophic failures were observed. Conclusion. Using the LCP as an external fixator may provide a viable and attractive alternative to the traditional UEF as its lower profile makes it more acceptable to patients, while not compromising on axial and torsional stiffness. Cite this article: B. F. H. Ang, J. Y. Chen, A. K. S. Yew, S. K. Chua, S. M. Chou, S. L. Chia, J. S. B. Koh, T. S. Howe. Externalised locking compression plate as an alternative to the unilateral external fixator: a biomechanical comparative study of axial and torsional stiffness. Bone Joint Res 2017;6:216–223. DOI: 10.1302/2046-3758.64.2000470