Advertisement for orthosearch.org.uk
Results 1 - 20 of 197
Results per page:
Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 22 - 22
1 Jan 2004
Garron E Jouve J Tardieu C Panuel M Airaudi S Lollini G
Full Access

Purpose: We performed a biometric evaluation of the femoral trochlea in the human foetus and compared measurements with those observed in the adult in order to search for correlations with other biometric parameters of the human femur. Material: Twenty-two foetuses with no orthopaedic anomalies were preserved in formol. The 44 knees were studied. Fœtal age varied from 26 to 40 weeks. Method: After anatomic dissection, digital photographic documents were analysed using angular measurement software. The following dimensions were measured on the distal epiphysis: anteroposterior thickness of the condyles, protrusions of the lateral and medial trochleal edges, the difference in condyle height, the trochlear opening angle alpha, trochlear slope. Femoral anteversion, length of the femoral neck, and the neck-shaft angle were measured on the AP view of the femur. Spearman’s test was used to search for correlations. Results were compared with those measured under the same conditions in a series of 32 adult knees published by Wanner. Results: The alpha angle of trochlear opening was 148° with a coefficient of variability of 4%. The alpha angle was greater than 150° in 18 trochleae. The lateral edge of the trochlea was higher than the medial edge in 37/44 trochleae. There was no correlation by age and sex. The femoral measurements showed 27.01° anteversion with very wide variability (coefficient 46%) and no correlation with trochlear opening. No significant differences were observed between the fœtal and adult measurements. Discussion: Our data are the first reporting anatomic measurements of the fœtal trochlea. The morphology of the lower extremity of the femur during the third trimester of pregnancy is globally the same as in adult femurs. Morphological changes of the proximal femur occurring during growth do not appear to modify the morphology of the distal femur. The deep and asymmetrical engagement of the patella onto the trochlea is a characteristic of modern man and is considered to be a consequence of bipedal stance. Our study would appear to confirm that the anatomic characteristics of the human trochlea have been integrated into the genome in the course of evolution. This suggests that a genetic origin of trochlea dysplasia, as suggested by Dejour, is a reasonable hypothesis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 97 - 97
1 May 2017
Elbashir M Angadi D Latimer M
Full Access

Background. The pattern of appearance of secondary ossification centers in the elbow has been based on historical studies and is popularly referred to with the mnemonic CRITOL. However the six secondary ossification centers can be variable in their presentation and pose a challenge in assessment of children with elbow injuries. Furthermore limited studies available in the current literature have reported an aberration to the sequence of appearance especially with the ossification centers of trochlea and olecranon. Aims. The aim of the study was to evaluate the relative sequence of appearance of secondary ossification centers for the trochlea and olecranon. Methods. Children between 8 and 10 years of age who had radiographs of elbow following trivial trauma between July 2013 and Feb 2015 were identified using the hospital PACS database. Cases with radiographic markers of significant trauma ie. fat pad sign, displaced fracture were excluded. Anteroposterior and lateral views of elbow were reviewed for the presence of the six ossification centers. Results. A total of 114 radiographs were reviewed of which 51 were boys and 63 were girls with a mean age of 9.03 years (±0.59). 60 radiographs were of right elbow and 54 were of the left elbow. The capitulum, radial head and medial epicondyle ossification centers were present in all patients. Both trochlea and olecranon ossification centers were noted in 51/114 (44.7%) children. 12/114 (10.5%) of the children were noted to have trochlea ossification center with no olecranon ossification center. Of these 12 children 7 were boys and 5 were girls. On the other hand 19/114 (16.7%) of the children had an olecranon ossification center but without a trochlea ossification center. Amongst these 7 were boys and 12 were girls. Discussion and Conclusions. The results of this limited cross sectional study demonstrate that the CRITOL sequence may not followed in 16.7% of cases and more so in girls. Historical studies were based on conventional radiographs. However the current digital radiographs with image enhancement tools help in accurate identification of relatively small ossification centers which may not be apparent on conventional radiographs. The current study has helped to quantify the violators to CRITOL sequence. Level of Evidence. Level III (Cross-sectional study among non-consecutive patients)


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 465 - 465
1 Aug 2008
van Huyssteen A Hendrix M Barnett A Wakely C Eldridge J
Full Access

Trochlear dysplasia is an important anatomical abnormality in symptomatic patellar instability. Our study assessed the mismatch between the bone and cartilaginous morphology in patients with a dysplastic trochlea compared with a control group. MRI scans of 25 knees in 23 patients with trochlear dysplasia and in 11 patients in a randomly selected control group were reviewed retrospectively, in order to assess the morphology of the cartilaginous and bony trochlea. Inter- and intra-observer error was assessed. In the dysplastic group there were 15 women and 8 men with a mean age of 20.4 years (14 to 30). The mean bony sulcus angle was 167.9. 0. (141. 0. to 203. 0. ), whereas the mean cartilaginous sulcus angle was 186.5. 0. (152. 0. to 214. 0. ; p < 0.001). In 74 of 75 axial images (98.7%) the cartilaginous contour was different from the osseous contour on subjective assessment; the cartilage exacerbated the abnormality. Our study shows that the morphology of the cartilaginous trochlea differs markedly from that of the underlying bony trochlea in patients with trochlear dysplasia. MRI is necessary in order to demonstrate the pathology and to facilitate surgical planning


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 11 - 11
1 Feb 2017
Harris S Dhaif F Iranpour F Aframian A Auvinet E Cobb J Howell S Riviere C
Full Access

BACKGROUND. Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction [1]. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction [1]. Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment. METHODS. The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects. Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments - (fig.1). Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured. RESULTS. In the coronal plane, the implant trochlear groove was oriented a mean of 8.7° more valgus (p<0.001) than the normal trochlea. The lateral facet was understuffed most at the proximal groove between 0–60% by a mean of 5.3 mm (p<0.001). The medial facet was understuffed by a mean of 4.4 mm between 0–60% (p<0.001) - (fig.2). CONCLUSIONS. Despite attempts to design femoral components with a more anatomical trochlea, there is significant understuffing of the trochlea, which could lead to reduced extensor moment of the quadriceps and contribute to patient dissatisfaction


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 57 - 57
1 Jan 2017
Harris S Dhaif F Iranpour F Aframian A Cobb J Auvinet E Howell S Rivière C
Full Access

Conventional TKA surgery attempts to restore patients to a neutral alignment, and devices are designed with this in mind. Neutral alignment may not be natural for many patients, and may cause dissatisfaction. To solve this, kinematical alignment (KA) attempts to restore the native pre-arthritic joint-line of the knee, with the goal of improving knee kinematics and therefore patient's function and satisfaction. Proper prosthetic trochlea alignment is important to prevent patella complications such as instability or loosening. However, available TKA components have been designed for mechanical implantation, and concerns remain relating the orientation of the prosthetic trochlea when implants are kinematically positioned. The goal of this study is to investigate how a currently available femoral component restores the native trochlear geometry of healthy knees when virtually placed in kinematic alignment. The healthy knee OAI (Osteoarthritis Initiative) MRI dataset was used. 36 MRI scans of healthy knees were segmented to produce models of the bone and cartilage surfaces of the distal femur. A set of commercially available femoral components was laser scanned. Custom 3D planning software aligned these components with the anatomical models: distal and posterior condyle surfaces of implants were coincident with distal and posterior condyle surfaces of the cartilage; the anterior flange of the implant sat on the anterior cortex; the largest implant that fitted with minimal overhang was used, performing ‘virtual surgery’ on healthy subjects. Software developed in-house fitted circles to the deepest points in the trochlear grooves of the implant and the cartilage. The centre of the cartilage trochlear circle was found and planes, rotated from horizontal (0%, approximately cutting through the proximal trochlea) through to vertical (100%, cutting through the distal trochlea) rotated around this, with the axis of rotation parallel to the flexion facet axis. These planes cut through the trochlea allowing comparison of cartilage and implant surfaces at 1 degree increments. Trochlear groove geometry was quantified with (1) groove radial distance from centre of rotation cylinder (2) medial facet radial distance (3) lateral facet radial distance and (4) sulcus angle, along the length of the trochlea. Data were normalised to the mean trochlear radius. The orientation of the groove was measured in the coronal and axial plane relative to the flexion facet axis. Inter- and intra-observer reliability was measured. In the coronal plane, the implant trochlear groove was oriented a mean of 8.7° more valgus (p<0.001) than the normal trochlea. The lateral facet was understuffed most at the proximal groove between 0–60% by a mean of 5.3 mm (p<0.001). The medial facet was understuffed by a mean of 4.4 mm between 0–60% (p<0.001). Despite attempts to design femoral components with a more anatomical trochlea, there is significant understuffing of the trochlea, which could lead to reduced extensor moment of the quadriceps and contribute to patient dissatisfaction


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 57 - 57
1 Mar 2008
Dubberley J Faber K MacDermid J Patterson S King G
Full Access

The functional outcomes of twenty-eight patients with capitellum and trochlea fractures treated with open reduction and internal fixation were evaluated at a mean follow-up of fifty-five ± thirty-three months. Patients were independently evaluated by a series of questionnaires, radiographs, physical examination and strength testing. Patients with simple fractures did better than those with complicated fractures. The average DASH score was 19/100 and the average ROM was 20 – 130°. Two fractures did not unite and required conversion to total elbow arthroplasty. A classification system is proposed based on fracture patterns, surgical technique and clinical outcomes. Capitellum and trochlea fractures are uncommon fractures of the distal humerus. There is limited information about the functional outcome of patients managed with open reduction and internal fixation. The functional outcome of twenty-eight patients (average age: forty-three ± thirteen years [range, twenty – seventy-one]) who were treated with open reduction and internal fixation for capitellum and trochlea fractures was evaluated at a mean follow-up of fifty-five ± thirty-three months (range, fourteen – one hundred and twenty-one). Patient outcomes were assessed by physical examination, radiographs, range of motion measurements, strength testing and self reported questionnaires (DASH, SF-36 ASES and PREE elbow scales). There were eleven fractures involving the capitellum, four involving the capitellum and trochlea as one piece and thirteen in which the capitellum and trochlea were separate fragments. These fractures were further defined by the presence or absence of posterior comminution. Fourteen had isolated fractures and fourteen were associated with other elbow, forearm or wrist injuries. Patients with complicated fractures required more extensive surgery, had more complications resulting in secondary procedures and had poorer outcomes compared to those with simple fractures. The average DASH score (19/100), quality of life scores (SF-36: Physical=46, Mental=49) and the average ROM (20 – 130°) suggest favorable patient outcomes overall. Patients with simple fractures had better results than those with more complicated fractures. A fracture classification system based on fracture patterns, surgical technique and clinical outcomes is proposed


Bone & Joint Open
Vol. 3, Issue 3 | Pages 268 - 274
21 Mar 2022
Krishnan H Eldridge JD Clark D Metcalfe AJ Stevens JM Mandalia V

Recognized anatomic variations that lead to patella instability include patella alta and trochlea dysplasia. Lateralization of the extensor mechanism relative to the trochlea is often considered to be a contributing factor; however, controversy remains as to the degree this contributes to instability and how this should be measured. As the tibial tuberosity-trochlear groove (TT-TG) is one of most common imaging measurements to assess lateralization of the extensor mechanism, it is important to understand its strengths and weaknesses. Care needs to be taken while interpreting the TT-TG value as it is affected by many factors. Medializing tibial tubercle osteotomy is sometimes used to correct the TT-TG, but may not truly address the underlying anatomical problem. This review set out to determine whether the TT-TG distance sufficiently summarizes the pathoanatomy, and if this assists with planning of surgery in patellar instability. Cite this article: Bone Jt Open 2022;3(3):268–274


Aims

Classifying trochlear dysplasia (TD) is useful to determine the treatment options for patients suffering from patellofemoral instability (PFI). There is no consensus on which classification system is more reliable and reproducible for the purpose of guiding clinicians’ management of PFI. There are also concerns about the validity of the Dejour Classification (DJC), which is the most widely used classification for TD, having only a fair reliability score. The Oswestry-Bristol Classification (OBC) is a recently proposed system of classification of TD, and the authors report a fair-to-good interobserver agreement and good-to-excellent intraobserver agreement in the assessment of TD. The aim of this study was to compare the reliability and reproducibility of these two classifications.

Methods

In all, six assessors (four consultants and two registrars) independently evaluated 100 axial MRIs of the patellofemoral joint (PFJ) for TD and classified them according to OBC and DJC. These assessments were again repeated by all raters after four weeks. The inter- and intraobserver reliability scores were calculated using Cohen’s kappa and Cronbach’s α.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 119 - 119
1 Sep 2012
Al-Nammari S Al-Hadithy N
Full Access

Introduction

Isolated trochlea fractures are very rare and have only been described previously as case reports.

Aims

To report on a case of isolated trochlea fracture and to present a review of the literature.


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1235 - 1238
1 Dec 2023
Kader DF Jones S Haddad FS


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 75 - 75
17 Apr 2023
Tierney L Kuiper J Williams M Roberts S Harrison P Gallacher P Jermin P Snow M Wright K
Full Access

The objectives of the study were to investigate demographic, injury and surgery/treatment-associated factors that could influence clinical outcome, following Autologous Chondrocyte Implantation (ACI) in a large, “real-world”, 20 year longitudinally collected clinical data set. Multilevel modelling was conducted using R and 363 ACI procedures were suitable for model inclusion. All longitudinal post-operative Lysholm scores collected after ACI treatment and before a second procedure (such as knee arthroplasty but excluding minor procedures such as arthroscopy) were included. Any patients requiring a bone graft at the time of ACI were excluded. Potential predictors of ACI outcome explored were age at the time of ACI, gender, smoker status, pre-operative Lysholm score, time from surgery, defect location, number of defects, patch type, previous operations, undergoing parallel procedure(s) at the time of ACI, cell count prior to implantation and cell passage number. The best fit model demonstrated that for every yearly increase in age at the time of surgery, Lysholm scores decreased by 0.2 at 1-year post-surgery. Additionally, for every point increase in pre-operative Lysholm score, post-operative Lysholm score at 1 year increased by 0.5. The number of cells implanted also impacted on Lysholm score at 1-year post-op with every point increase in log cell number resulting in a 5.3 lower score. In addition, those patients with a defect on the lateral femoral condyle (LFC), had on average Lysholm scores that were 6.3 points higher one year after surgery compared to medial femoral condyle (MFC) defects. Defect grade and location was shown to affect long term Lysholm scores, those with grade 3 and patella defects having on average higher scores compared to patients with grade 4 or trochlea defects. Some of the predictors identified agree with previous reports, particularly that increased age, poorer pre-operative function and worse defect grades predicted poorer outcomes. Other findings were more novel, such as that a lower cell number implanted and that LFC defects were predicted to have higher Lysholm scores at 1 year and that patella lesions are associated with improved long-term outcomes cf. trochlea lesions


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 44 - 44
1 Jul 2022
Aujla R Scanlon J Raymond A Ebert J Lam L Gohill S D'Alessandro P
Full Access

Abstract. Introduction. The incidence of significant acute chondral injuries with patella dislocation is around 10–15%. It is accepted that chondral procedures should only be performed in the presence of joint stability. Methodology. Patients were identified from surgeon/hospital logs. Patient demographics, lesion size and location, surgical procedure, patient reported outcome measures, post-operative MR imaging and complications were recorded. PROMs and patient satisfaction was obtained. Results. 20 knees (18 patients) were included. Mean age was 18.6 years (range; 11–39) and the mean follow-up was 16.6 months (range; 2–70). The defect locations were the lateral femoral condyle (9/20; 45%), patella (9/20; 45%), medial femoral condyle (1/20; 5%) and the trochlea (1/20; 5%). The mean defect size was 2.6cm2. Twelve knees were treated with cartilage fixation, 5 with microfracture and 3 with OATS. At follow up, the overall mean Lysholm score was 77.4 (± 17.1) with no chondral regenerative procedure being statistically superior. There was no difference in Lysholm scores between those patients having acute medial patellofemoral ligament reconstruction versus medial soft tissue plication (p=0.59). Five (25%) knees required re-operation (one arthroscopic arthrolysis; one patella chondroplasty; two removal of loose bodies; one implant adjustment). Overall 90% responded as being satisfied with surgery. Conclusion. Our aggressive pathway to identify and treat acute cartilage defects with early operative intervention and patella stabilisation has shown high rates of satisfaction and Lysholm scores with no major revisions. The full range of chondral restoration options should be considered by surgeons managing these patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 95 - 95
1 Jan 2017
Rivière C Shah H Auvinet E Iranpour F Harris S Cobb J Howell S Aframian A
Full Access

Trochlear geometry of modern femoral implants is designed for mechanical alignment (MA) technique for TKA. The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique, this could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona. ®. implant (Zimmer, Warsaw, USA) is kinematically aligned. A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona. ®. prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics and Acrobot Modeller software, respectively. Persona. ®. implants were laser scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model. In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea. Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed. Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively. Kinematic alignment of Persona. ®. implants poorly restores native trochlear geometry. Its clinical impact remains to be defined


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 115 - 115
1 Mar 2017
Riviere C Shah H Howell S Aframian A Iranpour F Auvinet E Cobb J Harris S
Full Access

BACKGROUND. Trochlear geometry of modern femoral implants is designed for the mechanical alignment (MA) technique for Total Knee Arthroplasty (TKA). The biomechanical goal is to create a proximalised and more valgus trochlea to better capture the patella and optimize tracking. In contrast, Kinematic alignment (KA) technique for TKA respects the integrity of the soft tissue envelope and therefore aims to restore native articular surfaces, either femoro-tibial or femoro-patellar. Consequently, it is possible that current implant designs are not suitable for restoring patient specific trochlea anatomy when they are implanted using the kinematic technique. This could cause patellar complications, either anterior knee pain, instability or accelerated wear or loosening. The aim of our study is therefore to explore the extent to which native trochlear geometry is restored when the Persona. ®. implant (Zimmer, Warsaw, USA) is kinematically aligned. METHODS. A retrospective study of a cohort of 15 patients with KA-TKA was performed with the Persona. ®. prosthesis (Zimmer, Warsaw, USA). Preoperative knee MRIs and postoperative knee CTs were segmented to create 3D femoral models. MRI and CT segmentation used Materialise Mimics® and Acrobot Modeller® software, respectively. Persona. ®. implants were laser-scanned to generate 3D implant models. Those implant models have been overlaid on the 3D femoral implant model (generated via segmentation of postoperative CTs) to replicate, in silico, the alignment of the implant on the post-operative bone and to reproduce in the computer models the features of the implant lost due to CT metal artefacts. 3D models generated from post-operative CT and pre-operative MRI were registered to the same coordinate geometry. A custom written planner was used to align the implant, as located on the CT, onto the pre-operative MRI based model (figure 1). In house software enabled a comparison of trochlea parameters between the native trochlea and the performed prosthetic trochlea (figure 2). Parameters assessed included 3D trochlear axis and anteroposterior offset from medial facet, central groove, and lateral facet. Sulcus angle at 30% and 40% flexion was also measured. Inter and intra observer measurement variabilities have been assessed. RESULTS. Varus-valgus rotation between the native and prosthetic trochleae was significantly different (p<0.001), with the prosthetic trochlear groove being on average 7.9 degrees more valgus. Medial and lateral facets and trochlear groove were significantly understuffed (3 to 6mm) postoperatively in the proximal two thirds of the trochlear, with greatest understuffing for the lateral facet (p<0.05). The mean medio-lateral translation and internal-external rotation of the groove and the sulcus angle showed no statistical differences, pre and postoperatively (figure 3). CONCLUSION. Kinematic alignment of Persona. ®. implants poorly restores native trochlear geometry. The clinical impact of this finding remains to be defined. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 19 - 19
1 Jul 2022
Sweed T Boutefnouchet T Lim Z Amerasekera S Choudhary S Ashraf T
Full Access

Abstract. Introduction. There are several imaging-based measurements for patello-femoral height. Available methods rely predominantly on sagittal images. The latter can be misleading with sagittal oblique slices and when the patella is tilted and/or chronically subluxed. In this study we describe a simple method of patellar height measurement using axial MRI overlap. Materials and methods. A retrospective observational analysis of 97 knees from 251 patients was conducted. Cases were selected following the exclusion of scans with fractures, massive effusion, patello-femoral pathology. Axial patello-trochlear overlap (APTO) was measured on the axial MRI images as follows: (1) Patellar length (P): expressed as the number of axial images showing patellar articular surface (2) Trochlear overlap (T): the number of axial images showing overlap between patellar articular surface and articular surface of lateral trochlea. APTO is the ratio T/P. All measurements were carried out independently and on two separate occasions by 6 raters. As a control conventional patello-trochlear index were measured for all patients by a senior musculoskeletal radiologist. Results. The mean APTO value was 36.7 (range 14.2 to 66.6; SD 11.4). There was a positive correlation with patello-trochlear index (Pearson correlation coefficient: 0.76, P < 0.001). Intra-observer reliability was good (ICC: 0.66 95 CI 0.54, 0.76, P < 0.001). Inter-observer reliability was fair (ICC: 0.51, 95 CI 0.41, 0.6, P < 0.001). Conclusion. In the present proof of concept study APTO was a reliable measurement of patellar height and correlated with patella-trochlear indices. The method described can prove valuable in overcoming issues with sagittal image measurements


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 8 - 8
1 Aug 2013
Piriou P Peronne E
Full Access

Rotational positioning of the femoral component during the realisation of a total knee arthroplasty is an important part of the surgical technique and remains a topic of discussion in the literature. The challenge of this positioning is important because it determines the anatomical result and its effect on the flexion gap and clinical outcome mainly through its impact on patellofemoral alignment. The intraoperative identification of the axis transepicondylar visually or by navigation is not reliable or reproducible. The empirical setting to 3 ° of external rotation, the procedure used to cut or dependent or independent is not adapted to the individual variability of knee surgery. Indeed, the angle formed by the posterior condylar axis and trans-epicondylar axis is subject to large individual variations. The authors propose a novel technique, using the navigation of the trochlea to determine the rotation of the femoral component. The principle is to consider the rotation of the femoral implant as “ideal” when it makes a perfect superposition of the prosthetic trochlea with the native bony trochlea on patellofemoral view at 60° when planning the femur. The bottom of the prosthetic trochlea is well aligned with the trochlea groove, identified during the trochlear morphing, itself perpendicular to the trans-epicondylar axis. The authors hope to encourage centering patellofemoral joint prosthesis, thus favoring the original kinematics of the extensor apparatus. The purpose of this study is to demonstrate firstly, that the navigation of the trochlea is a reliable and reproducible method to adjust the rotation of the femoral component relative to the trans-epicondylar axis taken as reference and the other, the rotation control by this method is not done at the expense of the balance gap in flexion. It is a bi-centric study prospective, nonrandomised, including continuously recruited 145 patients in two French centers. All patients were included in the year 2010 and have all been revised three months and one year of surgery. The average age of patients was 71 years [53, 88]. It was made no selection of patients who have all been included consecutively in the study and in the two centres. In all cases, the rotation of the femoral component was determined by intraoperative navigation of the trochlea. The authors compared the alpha angle (angular divergence between the plane and the posterior bicondylar plane and trans-epicondylar axis) obtained by this method and that calculated on a pre-or postoperative scan. The authors also measured the space between femur and tibia internal and external side in flexion (90°) to assess the impact on the balance in flexion. There is excellent agreement between the results obtained by the method of CT scan and the trochlear navigation technique. In addition, this technique allows us to achieve a quadrilateral space gap in flexion. The authors found large individual variation in the distal femoral epiphyseal torsion (angle alpha). They demonstrate that the navigation of the trochlea is a reliable and reproducible method to adjust the rotation of the femoral component relative to the trans-epicondylar axis taken as reference and provides, concomitantly, a quadrilateral space gap in flexion


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 113 - 113
1 Aug 2013
Piriou P Peronne E
Full Access

Rotational positioning of the femoral component during the realisation of a total knee arthroplasty is an important part of the surgical technique and remains a topic of discussion in the literature. The challenge of this positioning is important because it determines the anatomical result and its effect on the flexion gap and clinical outcome mainly through its impact on patellofemoral alignment. The intraoperative identification of the axis transepicondylar visually or by navigation is not reliable or reproducible. The empirical setting to 3 ° of external rotation, the procedure used to cut or dependent or independent is not adapted to the individual variability of knee surgery. Indeed, the angle formed by the posterior condylar axis and trans-epicondylar axis is subject to large individual variations. The authors propose a novel technique, using the navigation of the trochlea to determine the rotation of the femoral component. The principle is to consider the rotation of the femoral implant as “ideal” when it makes a perfect superposition of the prosthetic trochlea with the native bony trochlea on patellofemoral view at 60 ° when planning the femur. The bottom of the prosthetic trochlea is well aligned with the trochlea groove, identified during the trochlear morphing, itself perpendicular to the trans-epicondylar axis. The authors hope to encourage centering patellofemoral joint prosthesis, thus favouring the original kinematics of the extensor apparatus. The purpose of this study is to demonstrate firstly, that the navigation of the trochlea is a reliable and reproducible method to adjust the rotation of the femoral component relative to the trans-epicondylar axis taken as reference and the other, the rotation control by this method is not done at the expense of the balance gap in flexion. It is a bi-centric study prospective, nonrandomised, including continuously recruited 145 patients in two French centres. All patients were included in the year 2010 and have all been revised three months and one year of surgery. The average age of patients was 71 years [53, 88]. It was made no selection of patients who have all been included consecutively in the study and in the two centres. In all cases, the rotation of the femoral component was determined by intraoperative navigation of the trochlea. The authors compared the alpha angle (angular divergence between the plane and the posterior bicondylar plane and trans-epicondylar axis) obtained by this method and that calculated on a pre-or postoperative scan. The authors also measured the space between femur and tibia internal and external side in flexion (90°) to assess the impact on the balance in flexion. There is excellent agreement between the results obtained by the method of CT scan and the trochlear navigation technique. In addition, this technique allows to achieve a quadrilateral space gap in flexion. The authors found large individual variation in the distal femoral epiphyseal torsion (angle alpha). They demonstrate that the navigation of the trochlea is a reliable and reproducible method to adjust the rotation of the femoral component relative to the trans-epicondylar axis taken as reference and provides, concomitantly, a quadrilateral space gap in flexion


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 49 - 49
1 Jan 2016
Monk A Mellon S Chen M Beard D Gill H Murray D
Full Access

Introduction. Knee arthroplasty is an effective intervention for painful arthritis when conservative measures have failed. Despite recent advances in component design and implantation techniques, a significant proportion of patients experience problems relating to the patella-femoral joint (PFJ). Detailed knowledge of the shape and orientation of the normal and replaced femoral trochlea groove is critical when considering potential causes of anterior knee pain. Furthermore, to date it has proved difficult to establish a diagnosis due to shortcomings in current imaging techniques for obtaining satisfactory coronal plane motion data of the patella in the replaced knee. The aim of this study was to correlate the trochlea shape of normal and replaced knees with corresponding coronal plane PFJ kinematic data. Method. Bony and cartilagenous trochlea geometries from 3T MRI scans of 20 normal healthy volunteers were compared with both anatomical and standard total knee replacements (TKR) and patellofemoral joint replacement (PFJR) geometries. Following segmentation and standardized alignment, the path of the apex of the trochlea groove was measured using customized Matlab software. (Fig1). Next, kinematic data of the 20 normal healthy volunteers (Normal) was compared with that of 20 TKR, and 20 PFJR patients using the validated MAUS. TM. system (Motion Analysis and UltraSound) comprising a 12-camera, motion capture system used to capture images of reflective markers mounted on subjects lower limbs and an ultrasound probe. A mapping between the ultrasound image and the motion capture system allows the ultrasound probe to be used to determine the locations of the patella relative to bony landmarks on the femur during a squat exercise. Results. In normal knees the arc of the trochlear groove apex was orientated progressively laterally for both cartilage and. Neither of these trends were reproduced by any of the knee prostheses. Indeed far from being a laterally directed trochlea groove, both the anatomic TKR and PFJR have a medially orientated trochlea, whilst the TKR showed a neutral straight path (Figure 2). The direction of displacement in the replaced knee is significantly different (opposite) to that of the native knee (p<0.05). The accuracy of the MAUS technique registering the ultrasound images within the motion capture system is 1.84 mm (2 × SD). The three groups showed very different patella tracking patterns which matched the orientation of the underlying trochlea (Figure 3). The sine wave pattern of coronal plane patella motion displayed by the Normal group was not recreated in the TKR or PFJR groups. Movements of the Normal group were significantly different from the TKR group (p=0.03) and the PFJR group (p<0.01), whilst there was no significant difference between the TKR and PFJR groups (p=0.27). Discussion. We present a new, accurate, reliable in vivo technique for measuring 3D patellofemoral kinematics in native and replaced knees. Our data suggest that many aspects of patellofemoral kinematics are absent following TKR and PFJR. This can be explained by the differences in shape of the underlying femoral component. Anterior knee pain problems might be addressed by alterations to the patellofemoral joint in future designs of knee arthroplasty


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 269 - 269
1 Jul 2011
Sabo M Fay K Ferreira LM McDonald CP Johnson JA King GJ
Full Access

Purpose: Coronal shear fractures of the humerus include the Kocher-Lorenz fracture, an osteochondral fracture of the capitellar articular surface, the Hahn-Steinthal fracture, a substantial shear fragment, extension into the trochlea, and complete involvement of the capitellum and trochlea. If the fracture proves irreparable, it is not known what the impact of fragment excision would have on the biomechanics of the elbow. The purpose of this study was to examine the effect of the sequential loss of the capitellum and trochlea on the kinematics and stability of the elbow. Method: Eight fresh-frozen cadaveric arms were mounted in an upper extremity joint testing system, with cables attaching the tendons of the major muscles to motors and pneumatic actuators. Electromagnetic receivers attached to the radius and ulna enabled quantification of the kinematics of both bones with respect to the humerus. The distal humeral articular surface was sequentially excised to replicate clinically relevant coronal shear fractures while leaving the collateral ligaments intact. Active flexion in both the vertical and valgus-loaded positions, and passive rotation in the vertical position was conducted for each excision. Results: Excision of the capitellum had no effect on ulnohumeral stability or kinematics in both the vertical or valgus positions (p=1.0). Excision of the entire capitellum and trochlea led to significant valgus instability with the arm in the valgus position (p=0.01), while excision of the lateral trochlea led to increased valgus instability with pronated flexion in the valgus position (p=0.049). Progressive loss of the articular surface led to posterior, inferior, and medial displacement of the radial head with respect to the capitellum and increased external rotation of the ulna with respect to the humerus in the vertical position (p< 0.05). Conclusion: Excision of the capitellum did not result in valgus or rotational instability, while excision of the trochlea resulted in multiplanar instability. The radial head displaced medially because it is constrained to the ulna by the annular ligament, and the ulna pivoted into valgus and external rotation on the residual trochlea and medial collateral ligament. In patients with coronal shear fractures, the trochlea must be reconstructed to prevent instability and the potential for secondary degenerative change


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 175 - 175
1 May 2012
Minas T Bryant T
Full Access

To assess the clinical outcomes of patients undergoing ACI in the patellofemoral joint. Level of evidence. Therapeutic study, Level II-1 (prospective cohort study). In a prospective study to determine the clinical effectiveness of autologous chondrocyte implantation 130 patients reached a minimum follow up of two years (range, 2–9 years, average 56.5 months) after treatment involving the patellofemoral articulation. There were 77 men (59%) and 53 women (41%) with an average age of 37.5 years (range, 15-57years). The treatment groups included I) isolated patella, n = 14; II) isolated trochlea, n = 15; III) patella plus trochlea, n = 5; IV) weight bearing condyle plus patella n = 19; V) weight bearing condyle plus trochlea, n = 52; VI) weight bearing condyle plus patella plus trochlea n = 25. The average surface area per patella, n = 63, was 4.72 cm2 and per trochlea, n = 98, was 5.8cm2. The average resurfacing per knee, n = 130, was 11.03cm2. This prospective outcome study demonstrated a significant postoperative improvement in quality of life as measured by the SF-36; WOMAC, Knee Society Score, modified Cincinnati Score and a patient satisfaction survey. There were 16 failures (12%) as a result of a patella or trochlea failure. Eighty percent of patients rated their outcomes as good or excellent, 18% rated outcome as fair, and 2% rated outcome as poor. ACI is effective in the patellofemoral joint and specifically is a complementary intervention for those patients that will predictably do poorly with an isolated Fulkerson Tibial Tubercle osteotomy