In our institution, we started to perform THA with SuperPATH approach, including preservation of soft tissue around the hip (James Chow et al. Musculoskelet Med 2011) since July 2014, aiming for fast recovery and prevention of hip dislocation. For minimally-invasive approaches, however, there have been a few reports on malalignment of the implants related to shortage of operative field. The purpose of this study is to examine the short-term results of THA using SuperPATH, especially implant alignment. We performed a study of 45 patients (45 hips) with osteoarthritis of the hip joint who had a THA with SuperPATH approach. There were 8 men and 37 women with an average age of 73 years, which were minimally 24 months followed. Dynasty Bioform cup and Profemur Z stem (Microport Orthopaedics) were used for all cases. Patients were clinically assessed with Merle d'Aubigne score and complications. Implant alignment and stability were radiologically evaluated by annual X-ray and CT acquired two months after surgery.Introduction
Materials and methods
Many minimally-invasive approaches have been described in an effort to improve short-term results of total hip arthroplasty (THA), aiming for fast recovery and prevention of dislocation. In our institution, we started to perform THA with SuperPATH approach, including preservation of soft tissue around the hip (James Chow et al. Musculoskelet Med 2011) since July 2014. The purpose of this study is to examine the short-term results of THA using SuperPATH, especially treatment progress of rehabilitation. We performed a study of 30 patients (30 hips) with osteoarthritis of the hip joint who had a THA with SuperPATH approach. There were 4 men and 26 women with an average age of 71 years, which were followed up for 24 months. Patients were clinically assessed with Merle d'Aubigne score, postoperative hip pain during walking by Numerical Rating Scale (NRS:0–10), complications and treatment progress of rehabilitation in regard to moving and activities of daily living. Implant alignment and stability were radiologically evaluated by annual X-ray and CT acquired two months after surgery.Introduction
Materials and methods
Short tapered wedge-shaped cementless (TW) stems have been widely used for several years. The concept of fixation of TW stem is wedge-fit fixation in the proximal metaphysis. Developmental dysplasia of the hip (DDH) has anatomical abnormality, such as excessive femoral anteversion, short femoral neck length, narrow femoral cavity, or proximal-distal mismatching of the femoral canal. Therefore, Mismatching between stem and bone might be occurred in DDH. We evaluated intramedullary matching of short TW stem for DDH by three dimensional (3D) digital template in order to clarify whether mismatching between stem and bone is seen in DDH implanted short TW stem. One hundred hips (92 patients) with DDH were performed preoperative simulation for total hip arthroplasty by 3D digital template system (ZedHip: Lexi, Tokyo, Japan). The average age was 63.5 years old. There were 12 males and 80 females. The average bone mass index was 21.5 kg/m2. Femoral canal shape was normal in 71, champagne-flute in 16 and stovepipe in 13 hips. Bone quality was classified into type A in 23, type B in 74 and type C in 3 hips. Preoperative computed tomography data were used for 3D digital template and reconstructed to 3D femoral model. Short TW stem (Taperloc Complete Microplasty: Biomet, Warsaw, IN) model constructed from computer-assisted design was matched to the reconstructed femoral model. Short TW stem model was in principle implanted according to the femoral neck anteversion with neutral alignment (varus and valgus < 2 degrees, flexion and extension < 2 degrees) at the coronal and sagittal plane of the femur. Stem size was determined in order to obtain the largest intramedullary matching at the coronal plane. Area of stem fitting with the cortical bone was investigated at 10 mm intervals above and below of mid minor trochanter. Intramedullary matching pattern was classified into proximal mediolateral metaphyseal fit, proximal flare fit and diaphyseal fit at multiple reconstructed planes of the 3D femoral model according to stem fitting area.[Introduction]
[Materials and Methods]