Industries such as agriculture, construction and military have stringent rules about hearing protection due to the risk of noise induced hearing loss (NIHL). Due to the use of power tools, orthopaedic staff may be at risk of the same condition. The UK Health and Safety Executive (HSE) have clear standards as to what is deemed acceptable occupational noise levels on an A-weighted and C weighted scale. This review is aimed to assess evidence on noise exposure testing within Orthopaedic theatres to see if it exceeds the HSE regulations. A targeted search of online databases PUBMED and EMBASE was conducted using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) principles. This review was registered prospectively in PROSPERO. An eligibility criterion identifying clinical studies which assessed noise exposure for Orthopaedic staff in theatres were included. Noise exposure data was extracted from these studies and a comparison was made with A weighted and C weighted acceptable exposure levels as quoted in the HSE regulations. Fourteen papers were deemed eligible, which reviewed 133 Orthopaedic operations and 64 Orthopaedic instruments. In total, 61% (81 of 132) of Orthopaedic operations and 70% (45 of 64) of instruments exceeded the noise regulations on an A weighted scale. 22% (10 of 46) of operations exceeded the maximum C weighted peak acceptable noise level. Orthopaedic instruments and operations can exceed safe occupational noise levels. NHS Trusts have clear policies about noise exposure in the workplace but have yet to identify Orthopaedic theatres as a potential at risk area. Orthopaedic staff need education, monitoring and protection whereas Employers and Occupational Health should consider assessments to identify at risk staff in Orthopaedic theatres and offer preventative methods from NIHL.
Traditionally, sports Injuries have been sub-optimally managed through Emergency Departments (ED) in the public health system due to a lack of adequate referral processes. Fractures are ruled out through plain radiographs followed by a reactive process involving patient initiated further follow up and investigation. Consequently, significant soft tissue and chondral injuries can go undiagnosed during periods in which early intervention can significantly affect natural progression. The purpose of this quality improvement project was to assess the efficacy of an innovative Sports Injury Pathway introduced to detect and treat significant soft tissue injuries. A Sports Injury Pathway was introduced at Fiona Stanley Hospital (WA, Australia) in April 2019 as a collaboration between the ED, Physiotherapy and Orthopaedic Departments. ED practitioners were advised to have a low threshold for referral, especially in the presence of a history of a twisting knee injury, shoulder dislocation or any suggestion of a hip tendon injury. All referrals were triaged by the Perth Sports Surgery Fellow with early follow-up in our Sports Trauma Clinics with additional investigations if required. A detailed database of all referrals was maintained, and relevant data was extracted for analysis over the first 3 years of this pathway. 570 patients were included in the final analysis. 54% of injuries occurred while playing sport, with AFL injuries constituting the most common contact-sports injury (13%). Advanced Scope Physiotherapists were the largest source of referrals (60%). A total of 460 MRI scans were eventually ordered comprising 81% of total referrals. Regarding Knee MRIs, 86% identified a significant structural injury with ACL injuries being the most common (33%) followed by isolated meniscal tears (16%) and multi-ligament knee injuries (11%). 95% of Shoulder MRI scans showed significant pathology. 39% of patients required surgical management, and of these 50% were performed within 3 months from injury. The Fiona Stanley Hospital Sports Injury Pathway has demonstrated its clear value in successfully diagnosing and treating an important cohort of patients who present to our Emergency Department. This low threshold/streamlined referral pathway has found that the vast majority of these patients suffer significant structural injuries that may have been otherwise missed, while providing referring practitioners and patients access to prompt imaging and high-quality Orthopaedic sports trauma services. We recommend the implementation of a similar Sports Injury Pathway at all secondary and tertiary Orthopaedic Centres.
Avulsion of the proximal hamstring tendon from the ischial tuberosity is an uncommon but significant injury. Recent literature has highlighted that functional results are superior with surgical repair over non-surgical treatment. Limited data exists regarding the optimal rehabilitation regime in post-operative patients. The aim of this study was to investigate the early interim patient outcomes following repair of proximal hamstring tendon avulsions between a traditionally conservative versus an accelerated rehabilitation regimen. In this prospective randomised controlled trial (RCT) 50 patients underwent proximal hamstring tendon avulsion repair, and were randomised to either a braced, partial weight-bearing (PWB) rehabilitation regime (CR = 25) or an accelerated, unbraced, immediate full weight-bearing (FWB) regime (AR group; n = 25). Patients were evaluated preoperatively and at 3 months after surgery, using the Lower Extremity Functional Scale (LEFS), Perth Hamstring Assessment Tool (PHAT), visual analog pain scale (VASP), Tegner score, and 12-item Short Survey Form (SF-12). Patients also filled in a diary questioning postoperative pain at rest from Day 2, until week 6 after surgery. Primary analysis was by per protocol and based on linear mixed models. Both groups, with respect to patient and characteristics were matched at baseline. Over three months, five complications were reported (AR = 3, CR = 2). At 3 months post-surgery, significant improvements (p<0.001) were observed in both groups for all outcomes except the SF-12 MCS (P = 0.623) and the Tegner (P = 0.119). There were no significant between-group differences from baseline to 3 months for any outcomes, except for the SF-12 PCS, which showed significant effects favouring the AR regime (effect size [ES], 0.76; 95% CI, 1.2-13.2; P = .02). Early outcomes in an accelerated rehabilitation regimen following surgical repair of proximal hamstring tendon avulsions, was comparable to a traditionally conservative rehabilitation pathway, and resulted in better physical health-related quality of life scores at 3 months post-surgery. Further long term follow up and functional assessment planned as part of this study.
Hamstring grafts have been associated with reduced strength, donor site pain and muscle strains following Anterior Cruciate Ligament Reconstruction (ACLR). Traditional graft fixation methods required both semitendinosus and gracilis tendons to achieve a graft of sufficient length and diameter, but newer techniques allow for shorter, broad single tendon grafts. This study seeks to compare the outcomes between Single Tendon (ST) and Dual Tendon (DT) ACLR, given there is no prospective randomised controlled trial (RCT) in the literature comparing outcomes between these options. In this ongoing RCT: (ANZ Clinical Trials Registry ACTRN126200000927921) patients were recruited and randomised into either ST or DT groups. All anaesthetic and surgical techniques were uniform aside from graft technique and tibial fixation. 13 patients were excluded at surgery as their ST graft did not achieve a minimum 8mm diameter. 70 patients (34 ST, 36DT) have been assessed at 6 months, using PROMS including IKDC2000, Lysholm and Modified Cincinnati Knee, visual analog scale for pain frequency (VAS-F) and severity (VAS-S), dedicated donor site morbidity score, KT-1000 assessment, and isokinetic strength. Graft diameters were significantly lesser in the ST group compared to the DT group (8.44mm/9.11mm mean difference [MD],-0.67mm; P<0.001). There was a significant and moderate effect in lower donor site morbidity in the ST group compared to the DT group (effect size [ES], 0.649; P = .01). No differences between groups were observed for knee laxity in the ACLR limb (P=0.362) or any of the patient-reported outcome measures (P>0.05). Between-group differences were observed for hamstrings strength LSI favouring the ST group, though these were small-to-moderate and non-significant (ES, 0.351; P = .147). ST (versus DT) harvest results in significantly less donor site morbidity and this is the first prospective RCT to determine this. There were no differences between ST and DT hamstring ACLR were observed in PROMs, knee laxity and hamstring strength. Younger female patients tend to have inadequate single tendon size to produce a graft of sufficient diameter, and alternative techniques should be considered. Further endpoints include radiological analysis, longer term donor site morbidity, revision rates and return to sport and will continue to be presented in the future.
Meniscal repair is an accepted surgical option for meniscal tears. However, there remains trepidation with regard to offering such surgery to older patients. We aim to evaluate the outcomes in these such patients. A single surgeons log was used to identify patients who underwent meniscal repair and were over the age of 40. Patients having concurrent anterior cruciate ligament reconstructions were excluded. Demographic data, surgical data and outcomes (pain visual analogue score (VAS); single assessment numerical evaluation (SANE) and knee injury and osteoarthritis outcome joint replacement (KOOS Jr) score) were collected prospectively. Final outcomes were collected between 6–12 months following surgery.Abstract
Introduction
Methodology
Anterior cruciate ligament reconstruction (ACLR) can be performed with a number of different autografts including all soft tissue quadriceps autograft. (QT). QT has several advantages including decreased donor site morbidity, reduced anterior knee pain and comparable revision rates compared to other autografts. The primary aim of this review was to assess all complications of QT in adult population. A systematic review of the literature was conducted on in accordance with the PRISMA guidelines using the online databases Medline and EMBASE. Clinical studies or reporting on soft tissue QT were included and appraised using the Methodological Index for Non-Randomized Studies (MINORS) tool.Abstract
Introduction
Methodology
The incidence of significant acute chondral injuries with patella dislocation is around 10–15%. It is accepted that chondral procedures should only be performed in the presence of joint stability. Patients were identified from surgeon/hospital logs. Patient demographics, lesion size and location, surgical procedure, patient reported outcome measures, post-operative MR imaging and complications were recorded. PROMs and patient satisfaction was obtained.Abstract
Introduction
Methodology
Conservative treatment of acute AT ruptures with functional rehabilitation has demonstrated superior results with equal reported re-rupture rates but without the added complications of surgical treatment. There is no consensus on the duration and method of treatment using functional rehabilitation regimes. The purpose of this paper is to define our treatment regime, the Leicester Achilles Management Protocol (LAMP), supported with patient reported outcomes and objective measures of assessment. All patients with an acute achilles tendon rupture were treated with the same non-operative LAMP functional rehabilitation regime in a VACOped boot for 8 weeks. 12 months post rupture ATRS scores and objective measures of calf muscle girth and heel raise height were obtained and analysed. Venous thromboembolic rates and rates of re-rupture were recorded.Background
Methods
Acute Achilles tendon (AT) rupture management remains debatable but non-operative functional regimes are beginning to dominate current treatment algorithms. The aim of this study was to identify predictors of functional outcome in patients with AT ruptures treated non-operatively with an immediate weight bearing functional regime in an orthosis. Analysis of prospectively gathered data from a local database of all patients treated non-operativelyat our institution with anAT rupture was performed. Inclusion criteria required a completed Achilles Tendon Rupture Score (ATRS) at a minimum of 8 months post rupture. The ATRS score was correlated against age, gender, time following rupture, duration of treatment in a functional orthoses (8- and 11-week regimes) and complications. 236 patients of average age 49.5 years were included. The mean ATRS on completion of rehabilitation was 74 points. The mean ATRS was significantly lower in the 37 females as compared to the 199 males, 65.8 vs 75.6 (p = 0.013). Age inversely affected ATRS with a Pearsons correlation of −0.2. There was no significant difference in the ATRS score when comparing the two different treatment regime durations. There were 12 episodes of VTE and 4 episodes of re-rupture. The ATRS does not change significantly after 8 months of rupture. Patients with AT ruptures treated non-operatively with a functional rehabilitation regime demonstrate good function with low re-rupture rates. Increasing age and female gender demonstrate inferior functional outcomes.
The proportion of younger patients undergoing total knee arthroplasty (TKA) is increasing and predictions state that the 45–54 age group will be the fastest growing group by 2030. We aim to collate data across studies to assess functional outcomes following total knee replacement in patients under 55 years of age. Secondary outcomes include implant survival and complications will also be reviewed. The search identified 980 studies for title and abstract review. 43 full-texts were then assessed. 13 studies underwent quality assessment and data extraction from them. PRISMA guidelines were followed throughout. Outcomes extracted included pre- and post-operative functional scores, range of motion (ROM) and patient satisfaction. Clinical complications and survival were also recorded. Across 13 studies we were able to demonstrate 54-point improvement in clinical Knee Society Score and a 2.9° improvement in range of motion. Satisfaction rate was 85.5%. Revision rate was 5.4% across 1323 TKAs. Risk of revision for aseptic loosening was 0.37% per year. Total knee arthroplasty is an excellent treatment option for the young osteoarthritic knee with a >50% improvement in functional knee scores. Satisfaction is high and the revision rate remains under 1% per year.
Right-Handed Girls With Rt-Ais Measured Using Holtain Equipment Have Upper Arm Length Asymmetry (Right-Minus-Left) Which Is: 1) Relatively Longer On Scoliosis Curve Convexity; 2) Significantly Associated With Scoliosis Curve Severity (Cobb Angle And Apical Vertebral Rotation); And 3) Transient, Decreasing With Age And Years After Menarche [1,2]. The Aim Is To Test Whether The Right Upper Arm Length Relative Overgrowth And Spinal Deformity Severity Were Associated With Right Or Left Upper Arm Length Size-For-Age. 94 Right-Handed Girls With Rt-Ais, Age 11–18 Years, (Mean Cobb Angle 46 Degrees, Range 10–102 Degrees), Were Evaluated Using A Harpenden Anthropometer For Upper Arm Length Asymmetry, Plotted Against Right And Left Upper Arm Length Standard Deviation Scores (Sds), Calculated From 378 Normal Girls, Age 11–18 Years.Aim:
Method:
In patients with adolescent idiopathic scoliosis (AIS), anomalous extra-spinal left-right skeletal length asymmetries in upper limbs, periapical ribs, and ilia beg the question as to whether these bilateral asymmetries are connected in some way with pathogenesis. The upper arm and iliac length asymmetries correlate significantly with adjacent spinal curve severity respectively in thoracic and lower (thoracolumbar and lumbar) spine. In lower limbs, skeletal length asymmetries and proximo-distal disproportion are unrelated to spinal curve severity. Overall, these observations raise questions about mechanisms that determine skeletal bilateral symmetry of vertebrates in health and disorder, and whether such mechanisms are involved in the cause of this disease. We investigated upper arm length (UAL) asymmetries in two groups of right-handed girls aged 11–18 years, with right thoracic adolescent idiopathic scoliosis (RT-AIS, n=98) from preoperative and screening referrals (mean Cobb angle 45°) and healthy controls (n=240). Right and left UAL were measured with a Harpenden anthropometer of the Holtain equipment, by one of four observers (RGB, AAC, RKP, FJP). UAL asymmetry was calculated as UAL difference, right minus left, in mm. Repeatability of the measurements was assessed by technical error of the measurement (TEM) and coefficient of reliability (R).Introduction
Methods
The possibility that AIS aetiology involves undetected neuromuscular dysfunction is considered likely by several workers [1,2]. Yet in the extensive neuroscience research of idiopathic scoliosis certain neurodevelopmental concepts have been neglected. These include [3]:
a CNS body schema (“body in the brain”) for posture and movement control generated during development and growth by establishing a long-lasting memory, and pruning of cortical synapses at puberty. During normal development the CNS has to adapt to the rapidly growing skeleton of adolescence, and in AIS to developing spinal asymmetry from whatever cause. Examination of publications relating to the CNS body schema, parietal lobe and temporo-parietal junction [4,5] led us to a new concept: namely, that a delay in maturation of the CNS body schema during adolescence with an early AIS deformity at a time of rapid spinal growth results in the CNS attempting to balance the deformity in a trunk that is larger than the information on personal space (self) already established in the brain by that time of development. It is postulated that this CNS maturational delay allows scoliosis curve progression to occur – unless the delay is temporary when curve progression would cease. The maturational delay may be primary in the brain or secondary to impaired sensory input from end-organs [6], nerve fibre tracts [2,7,8] or central processing [9,10]. The motor component of the concept could be evaluated using transcranial magnetic stimulation [11].
In subjects with lumbar, thoracolumbar or pelvic tilt scoliosis no pattern of structural leg length inequality has been reported [1]. Forty-seven girls of 108 consecutive adolescent patients referred from routine scoliosis school screening during 1996–1999 had lower spinal scoliosis – lumbar (LS) 17, or thoracolumbar (TLS) 30 (mean Cobb angle 16 degrees, range 4–38 degrees, mean age 14.8 years, left curves 25). The controls were 280 normal girls (11–18 years, mean age 13.4 years). Anthropometric measurements were made of total leg lengths (LL), tibiae (TL) and feet (FL) by one observer (RGB) and asymmetries calculated for LL, TL and FL, as absolutes and percentage asymmetries of right/left lengths. There are no detectable changes of absolute asymmetries with age for LL, TL or FL in scoliotic or normal girls. Asymmetries are found in scoliotic girls compared with normals with relative lengthening on the right for each of LL (0.95%) and TL (0.99%) (each p<
0.001), but not FL (0.38%).
Patterns of extra-spinal skeletal length asymmetry have been reported for upper limbs [1] and ribcage [2] of patients with upper spine adolescent idiopathic scoliosis. This paper reports a third pattern in the ilia. Seventy of 108 consecutive adolescent patients referred from routine scoliosis school screening during 1996–1999 had lower spine scoliosis – lumbar (LS), thoracolumbar (TLS), or pelvic tilt scoliosis (PTS). Radiologic bi-iliac and hip tilt angles were both measurable in 60 subjects: LS 18, TLS 31, and PTS 11 (girls 44, boys 16, mean age 14.6 years). Cobb angle (CA), apical vertebral rotation (AVR) and apical vertebral translation from the T1-S1 line (AVT) were measured on standing full spine radiographs (mean Cobb angle 14 degrees, range 4–38 degrees, 33 left, 27 right curves). Bi-iliac tilt angle (BITA) and hip tilt angle (HTA) were measured trigonometrically and iliac height asymmetry calculated as BITA minus HTA (corrected BITA=CBITA) and directly as iliac height asymmetry. Iliac height is relatively taller on the concavity of these curves (p<
0.001). CBITA is associated with Cobb angle, AVR and AVT (each p<
0.001).
In schoolchildren screened for scoliosis about 40% have minor, non-progressive, lumbar scolioses secondary to pelvic tilt with leg-length and/or sacral inequality [1] not reported with preoperative thoracic curves [2]. Forty-nine of 108 consecutive adolescent patients referred from routine scoliosis school screening during 1996–1999 had lower spinal scoliosis with measurable radiological sacral alar and hip tilt angles – lumbar scoliosis 18, thoracolumbar scoliosis 31 (girls 41, boys 8, mean Cobb angle 16 degrees, range 4–38 degrees). In standing full spine antero-posterior radiographs measurements were made of Cobb angle and pelvic asymmetries as sacral alar and iliac heights (left minus right). From anthropometric measurements derivatives were calculated as ilio-femoral length (total leg length minus tibial length) and several length asymmetries, namely: ilio-femoral length asymmetry, total leg length inequality and tibial length asymmetry (all left minus right). Ilio-femoral length asymmetry correlates significantly with sacral alar height asymmetry (girls negatively r= − 0.456, p=0.002, boys positively r=0.726 p=0.041) but not iliac height asymmetry (girls p=0.201) from which three types are identified. Total leg length inequality but not tibial length asymmetry in the girls is associated with sacral alar height asymmetry (r= − 0.367 p=0.017 &
r=0.039 p=0.807 respectively). Interpretation is complicated by total leg lengths each including some ilium in which there is asymmetry [3]. But lack of association between ilio-femoral length asymmetry and iliac height asymmetry suggests that the femoral component is more important than iliac component in determining the associations between sacral alar height asymmetry and each of ilio-femoral length asymmetry and total leg length inequality.
Sacral alar height asymmetry and leg length asymmetries. The evidence suggests that sacral alar height asymmetry is not secondary to the leg length inequalities at least in most girls (negative correlations) and is more likely to result from primary skeletal changes in femur(s) and sacrum. Sacral alar height asymmetry and Cobb angle. Scoliosis progression and iliac height asymmetry [3] appear to need factors additional to those that determine ilio-femoral length asymmetry – for in the girls Cobb angle is associated with both sacral alar height asymmetry and iliac height asymmetry (each p<
0.001) but not with either ilio-femoral length asymmetry (p=0.249) or total leg length inequality (p=0.650). The additional factors may be biomechanical [4], and/or biological in the trunk [5] and central nervous system [6].
The side distribution of single spinal curves in our school screening referrals for 1988–99 (n=218) suggests that the mechanism(s) determining curve laterality for the upper spine differs from those for the lower spine. We address here the laterality of right thoracic AIS. In the search to understand the aetiology of AIS some workers focus on mechanisms initiated in embryonic life including a disturbance of bilateral symmetry. The
Most workers consider that ribcage changes in AIS are secondary to spinal deformity. Others claim that ribs are pathogenic in curve initiation or aggravation. In 117 consecutive patients referred from school screening in 1996–99 and routinely scanned by ultrasound, 24 had thoracic and 33 thoracolumbar scolioses (right 37, left 20; mean age 14.9 years, range 12–18 years, girls 44 postmenarcheal 37, boys 13). On anteroposterior standing radiographs, Cobb angle (CA), apical vertebral rotation (AVR, Perdriolle) and apical vertebral translation (AVT from the T1-S1 line) were measured (mean &
range: CA 19°, 6–42°; AVR 15°, 0–39°; AVT 17 mm, 0–38 mm). Real-time ultrasound in the prone position recorded laminal rotation (LR) and rib rotation (RR) segmentally and the spine-rib rotation difference (SRRD) as LR
Several workers consider that the aetiology of adolescent idiopathic scoliosis (AIS) involves undetected neu-romuscular dysfunction. During normal development the central nervous system (CNS) has to adapt to the rapidly growing skeleton of adolescence, and in AIS also to developing spinal asymmetry from whatever cause. A new etiologic concept is proposed after examining the following evidence:
anomalous extra-spinal left-right skeletal length asymmetries of upper arms, ribs, ilia and lower limbs suggesting that asymmetries may also involve vertebral body and costal growth plates; growth velocity and curve progression in relation to scoliosis curve expression; the CNS body schema, parietal lobe and temporoparietal junction in relation to postural mechanisms; and human upright posture and movements of spine and trunk. The central of four requirements is maturational delay of the CNS body schema relative to skeletal maturation during the adolescent growth spurt that disturbs the normal neuro-osseous timing of maturation. With the development of an early AIS deformity at a time of rapid spinal growth the association of CNS maturational delay results in postural mechanisms failing to balance a lateral spinal deformity in an upright moving trunk that is larger than the information on personal space (self) established in the brain by that time of development. It is postulated that CNS maturational delay allows scoliosis curve progression to occur – unless the delay is temporary when curve progression would cease. The concept brings together many findings relating AIS to the nervous and musculoskeletal systems and suggests brain morphometric studies in subjects with progressive AIS.