Advertisement for orthosearch.org.uk
Results 1 - 20 of 39
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 43 - 43
2 Jan 2024
Lipreri M Cortini M Baldini N Avnet S
Full Access

Osteosarcoma is a highly malignant primary tumor of bone tissue. The 5-year survival rate of patients with metastasis is below 20% and this scenario is unchanged in the last two decades, despite great efforts in pre-clinical and clinical research. Traditional preclinical models of osteosarcoma do not consider the whole complexity of its microenvironment, leading to poor correlation between in vitro/in vivo results and clinical outcomes. Spheroids are a promising in vitro model to mimic osteosarcoma and perform drug-screening tests, as they (i) reproduce the microarchitecture of the tumor, (ii) are characterized by hypoxic regions and necrotic core as the in vivo tumor, (iii) and recapitulate the chemo-resistance phenomena. However, to date, the spheroid model is scarcely used in osteosarcoma research.

Our aim is to develop a customized culture dish to grow and characterize spheroids and to perform advanced drug-screening tests. The resulting platform must be adapted to automated image acquisition systems, to overcome the drawbacks of commercial spheroids platforms.

To this purpose, we designed and developed a micro-patterned culture dish by casting agarose on a 3D printed mold from a CAD design. We successfully obtained viable and reproducible homotypic osteosarcoma spheroids, with two different cells lines from osteosarcoma (i.e., 143b and MG-63). Using the platform, we performed viability assays and live fluorescent stainings (e.g., Calcein AM) with low reagent consumption. Moreover, the culture dish was validated as drug screening platform, administrating Doxorubicin at different doses, and evaluating its effect on OS spheroids, in terms of morphology and viability. This platform can be considered an attractive alternative to the highly expensive commercial spheroid platforms to obtain homogeneous and reproducible spheroids in a high-throughput and cost effective mode.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 134 - 134
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 73 - 73
2 Jan 2024
Montesissa M Graziani G Borciani G Boi M Rubini K Valle F Boanini E Baldini N
Full Access

Calcium phosphates-based (CaPs) nanocoatings on metallic prosthesis are widely studied in orthopedics and dentistry because they mimic the mineral component of native human bone and favor the osseointegration process. Despite the fact that different calcium phosphates have different properties (composition, crystallinity, and ion release), only stoichiometric hydroxyapatite (HA) films have been analyzed in deep. Here, we have realized films of different CaPs (HA, beta-tricalcium phosphate (β-TCP) and brushite (DCPD)) onto Ti6Al4V microrough substrates by Ionized Jet Deposition (IJD). We have implemented the heating of substrates at 400°C during deposition to see the effect on coating properties.

Different film features are evaluated: morphology and topography (FEG-SEM, AFM), physical-chemical composition (FT-IR and EDS), dissolution profile and adhesion to substrate (scratch test), with a focus on how the different CaPs and temperature changed the coating features. After coating optimization, we have studied the in vitro BM-MSC behavior, in term of viability and early adhesion.

We have obtained good transfer of fidelity in composition from target to coating for all CaPs, with nanostructured films formed by globular aggregates (~300 nm diameter), with homogeneous and uniform coverage of the substrate surface, without cracks. The heating during deposition has increased the adhesion of the films to the substrate, with higher stability in medium immersion and wettability, features that can improve the biological behavior of cells. All CaP coatings have showed excellent biocompatibility, with DCPD coating that promote higher cells viability at 14 days respect to HA and β- TCP films. About the early cell adhesion, the BM-MSC have showed switch from a globular to an elongated morphology at 6 hours in all coatings respect to the uncoated titanium, sign of better adhesion.

From these results, the fabrication of different CaP nanocoatings with IJD can be a promising for applications in orthopedics and dentistry.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 16 - 16
2 Jan 2024
Lipreri M Pasquarelli A Scelfo D Baldini N Avnet S
Full Access

Osteoporosis is a progressive, chronic disease of bone metabolism, characterized by decreased bone mass and mineral density, predisposing individuals to an increased risk of fractures. The use of animal models, which is the gold standard for the screening of anti-osteoporosis drugs, raises numerous ethical concerns and is highly debated because the composition and structure of animal bones is very different from human bones. In addition, there is currently a poor translation of pre-clinical efficacy in animal models to human trials, meaning that there is a need for an alternative method of screening and evaluating new therapeutics for metabolic bone disorders, in vitro.

The aim of this project is to develop a 3D Bone-On-A-Chip that summarizes the spatial orientation and mutual influences of the key cellular components of bone tissue, in a citrate and hydroxyapatite-enriched 3D matrix, acting as a 3D model of osteoporosis. To this purpose, a polydimethylsiloxane microfluidic device was developed by CAD modelling, stereolithography and replica molding. The device is composed by two layers: (i) a bottom layer for a 3D culture of osteocytes embedded in an osteomimetic collagen-enriched matrigel matrix with citrate-doped hydroxyapatite nanocrystals, and (ii) a upper layer for a 2D perfused co-culture of osteoblasts and osteoclasts seeded on a microporous PET membrane.

Cell vitality was evaluated via live/dead assay. Bone deposition and bone resorption was analysed respectively with ALP, Alizarin RED and TRACP staining. Osteocytes dendrite expression was evaluated via immunofluorescence. Subsequently, the model was validated as drug screening platform inducing osteocytes apoptosis and administrating standard anti-osteoporotic drugs.

This device has the potential to substitute or minimize animal models in pre-clinical studies of osteoporosis, contributing to pave the way for a more precise and punctual personalized treatment.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 18 - 18
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 40 - 40
1 Dec 2022
Lipreri M Vecchione R Corrado B Avnet S Perut F Baldini N Graziani G
Full Access

Vertebral metastases are the most common type of malignant lesions of the spine. Although this tumour is still considered incurable and standard treatments are mainly palliative, the standard approach consists in surgical resection, which results in the formation of bone gaps. Hence, scaffolds, cements and/or implants are needed to fill the bone lacunae.

Here, we propose a novel approach to address spinal metastases recurrence, based on the use of anti-tumour metallic-based nanostructured coatings. Moreover, for the first time, a gradient microfluidic approach is proposed for the screening of nanostructured coatings having anti-tumoral effect, to determine the optimal concentration of the metallic compound that permits selective toxicity towards tumoral cells.

Coatings are based on Zinc as anti-tumour agent, which had been never explored before for treatment of bone metastases.

The customized gradient generating microfluidic chip was designed by Autodesk Inventor and fabricated from a microstructured mould by using replica moulding technique. Microstructured mould were obtained by micro-milling technique. The chip is composed of a system of microfluidic channels generating a gradient of 6 concentrations of drug and a compartment with multiple arrays of cell culture chambers, one for each drug concentration. The device is suitable for dynamic cultures and in-chip biological assays. The formation of a gradient was validated using a methylene blue solution and the cell loading was successful.

Preliminary biological data on 3D dynamic cultures of stromal cells (bone-marrow mesenchymal stem cells) and breast carcinoma cells (MDA-MB-231) were performed in a commercial microfluidic device.

Results showed that Zn eluates had a selective cytotoxic effect for tumoral cells. Indeed, cell migration and cell replication of treated tumoral cells was inhibited. Moreover, the three-dimensionality of the model strongly affected the efficacy of Zn eluates, as 2D preliminary experiments showed a high cytotoxic effect of Zn also for stromal cells, thus confirming that traditional screening tests on 2D cultured cells usually lead to an overestimation of drug efficacy and toxicity.

Based on preliminary data, the customized platform could be considered a major advancement in cancer drug screenings as it also allows the rapid and efficient screening of biomaterials having antitumor effect.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 14 - 14
1 Dec 2022
Ghezzi D Baldini N Graziani G Cappelletti M
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices. Bacterial biofilm is one of the main issues causing infections from contaminated orthopaedic prostheses. Biofilm is a structured community of microbial cells that are firmly attached to a surface and have unique metabolic and physiological attributes that induce improved resistance to environmental stresses including toxic compounds like antimicrobial molecules (e.g. antibiotics). Therefore, there is increasing need to develop methods/treatments exerting antibacterial activities not only against planktonic (suspended) cells but also against adherent cells of pathogenic microorganisms forming biofilms. In this context, metal-based coatings with antibacterial activities have been widely investigated and used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing the biofilm formation prevention efficacy. Additionally, standardized and systematic approaches to test antibacterial activity of newly developed coatings are still missing, while standard microbiological tests (e.g. soft-agar assays) are typically used that are limited in terms of simultaneous conditions that can be tested, potentially leading to scarce reproducibility and reliability of the results.

In this work, we combined the Calgary Biofilm Device (CBD) as a device for high-throughput screening, together with a novel plasma-assisted technique named Ionized Jet Deposition (IJD), to generate and test new generation of nanostructured silver- and zinc-based films as coatings for biomedical devices with antibacterial and antibiofilm properties. During the experiments we tested both planktonic and biofilm growth of four bacterial strains, two gram-positive and two gram-negative bacterial strains, i.e. Staphylococcus aureus ATCC 6538P, Enterococcus faecalis DP1122 and Escherichia coli ATCC 8739 and Pseudomonas aeruginosa PAO1, respectively. The use of CBD that had the only wells covered with the metal coatings while the biofilm supports (pegs) were not sheltered allowed to selectively define the toxic effect of the metal release (from the coating) against biofilm development in addition to the toxic activity exerted by contact killing mechanism (on biofilms formed on the coating). The results indicated that the antibacterial and antibiofilm effects of the metal coatings was at least partly gram staining dependent. Indeed, Gram negative bacterial strains showed high sensitivity toward silver in both planktonic growth and biofilm formation, whereas zinc coatings provided a significant inhibitory activity against Gram positive bacterial strains. Furthermore, the coatings showed the maximal activity against biofilms directly forming on them, although, Zn coating showed a strong effect against biofilms of gram-positive bacteria also formed on uncoated pegs.

We conclude that the metal-based coatings newly developed and screened in this work are efficient against bacterial growth and adherence opening possible future applications for orthopedic protheses manufacturing.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 15 - 15
1 Dec 2022
Graziani G Ghezzi D Sartori M Fini M Perut F Montesissa M Boi M Cappelletti M Sassoni E Di Pompo G Giusto E Avnet S Monopoli D Baldini N
Full Access

Infection in orthopedics is a challenge, since it has high incidence (rates can be up to 15-20%, also depending on the surgical procedure and on comorbidities), interferes with osseointegration and brings severe complications to the patients and high societal burden. In particular, infection rates are high in oncologic surgery, when biomedical devices are used to fill bone gaps created to remove tumors. To increase osseointegration, calcium phosphates coatings are used. To prevent infection, metal- and mainly silver-based coatings are the most diffused option. However, traditional techniques present some drawbacks, including scarce adhesion to the substrate, detachments, and/or poor control over metal ions release, all leading to cytotoxicity and/or interfering with osteointegration. Since important cross-relations exist among infection, osseointegration and tumors, solutions capable of addressing all would be a breakthrough innovation in the field and could improve clinical practice.

Here, for the first time, we propose the use antimicrobial silver-based nanostructured thin films to simultaneously discourage infection and bone metastases. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture. These characteristics, in turn, allow tuning silver release and avoid delamination, thus preventing toxicity. In addition, to mitigate interference with osseointegration, here silver composites with bone apatite are explored. Indeed, capability of bone apatite coatings to promote osseointegration had been previously demonstrated in vitro and in vivo. Here, antibacterial efficacy and biocompatibility of silver-based films are tested in vitro and in vivo. Finally, for the first time, a proof-of-concept of antitumor efficacy of the silver-based films is shown in vitro.

Coatings are obtained by silver and silver-bone apatite composite targets. Both standard and custom-made (porous) vertebral titanium alloy prostheses are used as substrates.

Films composition and morphology depending on the deposition parameters are investigated and optimized. Antibacterial efficacy of silver films is tested in vitro against gram+ and gram- species (E. coli, P. aeruginosa, S. aureus, E. faecalis), to determine the optimal coatings characteristics, by assessing reduction of bacterial viability, adhesion to substrate and biofilm formation. Biocompatibility is tested in vitro on fibroblasts and MSCs and, in vivo on rat models. Efficacy is also tested in an in vivo rabbit model, using a multidrug resistant strain of S. aureus (MRSA, S. aureus USA 300). Absence of nanotoxicity is assessed in vivo by measuring possible presence of Ag in the blood or in target organs (ICP-MS). Then, possible antitumor effect of the films is preliminary assessed in vitro using MDA-MB-231 cells, live/dead assay and scanning electron microscopy (FEG-SEM). Statistical analysis is performed and data are reported as Mean ± standard Deviation at a significance level of p <0.05. Silver and silver-bone apatite films show high efficacy in vitro against all the tested strains (complete inhibition of planktonic growth, reduction of biofilm formation > 50%), without causing cytotoxicity. Biocompatibility is also confirmed in vivo.

In vivo, Ag and Ag-bone apatite films can inhibit the MRSA strain (>99% and >86% reduction against ctr, respectively). Residual antibacterial activity is retained after explant (at 1 month). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 21 - 21
1 Dec 2022
Montesissa M Farè S Draghi L Rau J Gualandi C Focarete M Boi M Baldini N Graziani G
Full Access

Favoring osseointegration and avoiding bacterial contamination are the key challenges in the design of implantable devices for orthopedic applications. To meet these goals, a promising route is to tune the biointerface of the devices, that can regulate interactions with the host cells and bacteria, by using nanostructured antibacterial and bioactive coatings. Indeed, the selection of adequate metal-based coatings permits to discourage infection while avoiding the development of bacterial resistance and nanostructuring permits to tune the release of the antimicrobial compounds, allowing high efficacy and decreasing possible cytotoxic effects. In addition, metal-doped calcium phosphates-based nanostructured coatings permit to tune both composition and morphology of the biointerfaces, allowing to regulate host cells and bacteria response. To tune the biointerfaces of implantable devices, nanostructured coatings can be used, but their use is challenging when the substrate is heat-sensitive and/or porous.

Here, we propose the use of Ionized Jet Deposition (IJD) to deposit metallic and ion-doped calcium phosphates materials onto different polymeric substrates, without heating and damaging the substrate morphology. 3D printed scaffolds in polylactic acid (PLA) and polyurethane (PU), and electrospun matrices in polycaprolactone (PCL) and PLA were used as substrates. Biogenic apatite (HA), ion doped (zinc, copper and iron) tricalcium phosphate (TCP) and silver (Ag) coatings were obtained on porous and custom-made polymeric substrates.

Chemical analyses confirmed that coatings composition matches that of the target materials, both in terms of main phase (HA or TCP) and ion doping (presence of Cu, Zn or Fe ion). Deposition parameters, and especially its duration time, influence the coating features (morphology and thickness) and substrate damage. Indeed, SEM/EDS observations show the presence of nanostructured agglomerates on substrates surface. The dimensions of the aggregates and the thickness of the coating films increase increasing the deposition time, without affecting the substrate morphology (no porosity alteration or fibers damaging). The possible substrate damage is influenced by target and substrate material, but it can be avoided modulating deposition time.

Once the parameters are optimized, the models show suitable in vitro biological efficacy for applications in bone models, regenerative medicine and infection. Indeed, HA-based coatings favor cells adhesion on printed and electrospun fibers. For antibacterial applications, the ion doped TCP coatings can reduce the bacterial growth and adhesion (E.coli and S.aureus) on electrospun matrices.

To conclude, it is possible achieve different properties applying nanostructured coatings with IJD technique on polymeric substrates, modulating deposition conditions to avoid substrate damage.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 17 - 17
1 Dec 2022
Ciapetti G Granchi D Perut F Spinnato P Spazzoli B Cevolani L Donati DM Baldini N
Full Access

Fracture nonunion is a severe clinical problem for the patient, as well as for the clinician. About 5-20% of fractures does not heal properly after more than six months, with a 19% nonunion rate for tibia, 12% for femur and 13% for humerus, leading to patient morbidity, prolonged hospitalization, and high costs.

The standard treatment with iliac crest-derived autologous bone filling the nonunion site may cause pain or hematoma to the patient, as well as major complications such as infection.

The application of mesenchymal autologous cells (MSC) to improve bone formation calls for randomized, open, two-arm clinical studies to verify safety and efficacy.

The ORTHOUNION * project (ORTHOpedic randomized clinical trial with expanded bone marrow MSC and bioceramics versus autograft in long bone nonUNIONs) is a multicentric, open, randomized, comparative phase II clinical trial, approved in the framework of the H2020 funding programme, under the coordination of Enrique Gòmez Barrena of the Hospital La Paz (Madrid, Spain).

Starting from January 2017, patients with nonunion of femur, tibia or humerus have been actively enrolled in Spain, France, Germany, and Italy.

The study protocol encompasses two experimental arms, i.e., autologous bone marrow-derived mesenchymal cells after expansion (‘high dose’ or ‘low dose’ MSC) combined to ceramic granules (MBCP™, Biomatlante), and iliac crest-derived autologous trabecular bone (ICAG) as active comparator arm, with a 2-year follow-up after surgery.

Despite the COVID 19 pandemic with several lockdown periods in the four countries, the trial was continued, leading to 42 patients treated out of 51 included, with 11 receiving the bone graft (G1 arm), 15 the ‘high dose’ MSC (200x106, G2a arm) and 16 the ‘low dose’ MSC (100x106, G2b arm).

The Rizzoli Orthopaedic Institute has functioned as coordinator of the Italian clinical centres (Bologna, Milano, Brescia) and the Biomedical Science and Technologies and Nanobiotechnology Lab of the RIT Dept. has enrolled six patients with the collaboration of the Rizzoli’ 3rd Orthopaedic and Traumatological Clinic prevalently Oncologic.

Moreover, the IOR Lab has collected and analysed the blood samples from all the patients treated to monitor the changes of the bone turnover markers following the surgical treatment with G1, G2a or G2b protocols.

The clinical and biochemical results of the study, still under evaluation, are presented.

* ORTHOUNION Horizon 2020 GA 733288


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 23 - 23
1 Dec 2022
Borciani G Montalbano G Melo P Baldini N Ciapetti G Brovarone CV
Full Access

Osteoporosis is a worldwide disease resulting in the increase of bone fragility and enhanced fracture risk in adults. In the context of osteoporotic fractures, bone tissue engineering (BTE), i.e., the use of bone substitutes combining biomaterials, cells, and bone inducers, is a potential alternative to conventional treatments. Pre-clinical testing of innovative scaffolds relies on in vitro systems where the simultaneous presence of osteoblasts (OBs) and osteoclasts (OCs) is required to mimic their crosstalk and molecular cooperation for bone remodelling. To this aim, two composite materials based on type I collagen were developed, containing either strontium-enriched mesoporous bioactive glasses or rod-like hydroxyapatite nanoparticles. Following chemical crosslinking with genipin, the nanostructured materials were tested for 2–3 weeks with an indirect co-culture of human trabecular bone-derived OBs and buffy coat-derived OC precursors. The favourable structural and biological properties of the materials proved to successfully support the viability, adhesion, and differentiation of bone cells, encouraging a further investigation of the two bioactive systems as biomaterial inks for the 3D printing of more complex scaffolds for BTE.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 92 - 92
1 Nov 2021
Baldini N
Full Access

In the past decades, a huge amount of effort has been devoted to translate evidence based on standard preclinical models of bone tumours to effective tools for clinical applications. Although cancer is a genetic disease, hence the emphasis on -omics approaches, the complexity of cancer tissue, a mix of competing clones of transformed elements that react differently to microenvironmental stimuli, may hardly be reproduced by standard approaches. Cost, biological differences and ethical concerns are increasingly recognized as weaknessess of animal models. To overcome these limitations and provide reliable, reproducible, and affordable tools for predicting the effectiveness of treatments, environmental-controlled 3D cultures and co-cultures (spheroids, organoids) coupled with microfluidics and advanced imaging have recently being considered as effective instrument to increase knowledge on the pathophysiology of bone tumours and define effective therapeutic solutions.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 28 - 28
1 Nov 2021
Avnet S Lipreri MV Pompo GD Graziani G Boanini E Baldini N
Full Access

Introduction and Objective

The osteocyte, recognized as a major orchestrator of osteoblast and osteoclast activity, is the most important key player during bone remodeling processes. Imbalances that occur during bone remodeling, caused by hormone perturbations or alterations in mechanical loading, can induce bone disease as osteoporosis. Due to limited understanding of the underlying mechanisms, current therapies for osteoporosis cannot adequately address this imbalance because current studies of osteocytes rely on conventional cell culture that cannot recapitulate local in vivo microenvironments for the lack of control of the spatial/temporal distribution of cells and biomolecules. Microfluidics is the science and technology of microscale fluid manipulating and sensing and can help fill this gap.

Materials and Methods

We used a microfluidic device to enable the culture of osteocyte-like cells (MLO-Y4 and MLO-A5) in a 3D fashion. Osteocytes were cultured in a perfused and 160 μm high channel and embedded in a bone-like extracellular matrix: osteocytes were embedded in a matrigel- and collagen-based hydrogel enriched with nanostructured hydroxypatite crystals (HA-NP) to mimic bone. To set up the best combination of matrigel enriched with Type I collagen we used fluorescent microspheres and confocal analysis. To evaluate the viability and the expression of osteocytic markers, we used live-dead assay amd immunofluorescent staining and confocal analysis combined with automated quantification. For mineralization, we performed alizarin red staining.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 80 - 80
1 Nov 2021
Graziani G Sartori M Fini M Sassoni E Boi M Farè S Baldini N
Full Access

Introduction and Objective

The choice of appropriate characteristics is crucial to favor a firm bonding between orthopedic implants and the host bone and to permit bone regeneration. In particular, the morphology and composition of the biointerface plays a crucial role in orchestrating precise cellular responses. Here, to modulate the biointerface, we propose new biomimetic coatings, having multi-scale nano- to micro- morphological cues and a composition mimicking the mineral phase of bone.

Materials and Methods

Films on various substrates are obtained by Ionized Jet Deposition (IJD), by ablation of biogenic apatite and annealing at 400°C for 1 hour. Films are proposed for functionalization of metallic implants, but application to heat sensitive porous (3D printed) substrates is also shown, as it permits to further boost biomimicry (by addition of collagen/gelatin), thus reproducing the architecture of cancellous bone. In IJD, coatings thickness can be selected by tuning deposition duration. Here, a 450 nm thickness is selected based on preliminary results. Micro-rough titanium alloy (Ti6Al4V) disks (roughness 5 μm) are used as a substrate for the deposition and as a control. The coatings are characterized in terms of composition (GI-XRD, EDS, FT-IR microscopy), morphology (FEG-SEM, AFM, data processing by ImageJ), mechanical properties (micro-scratch test) and dissolution profile in medium (pH 7.4, FEG-SEM). Then, their behavior is characterized in vitro (human bone marrow-derived mesenchymal stromal cells - hMSCs), by studying cells early adhesion (focal adhesion by vinculin staining), viability (Alamar Blue), morphology (SEM) and differentiation (expression of RUNX2, ALPL, SPARC and COL1A1, BMP2, BGLAP, osteocalcin, alkaline phosphatase, collagen type I) at 3, 7 and 14 days.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 32 - 32
1 Mar 2021
Graziani G Cappelletti M Ghezzi D Costantini P Fedi S De Carolis M Maltarello M Baldini N
Full Access

Infections are among the main complications connected to implantation of biomedical devices, having high incidence rate and severe outcome. Since their treatment is challenging, prevention must be preferred. For this reason, solutions capable of exerting suitable efficacy while not causing toxicity and/or development of resistant bacterial strains are needed. To address infection, inorganic antibacterial coatings, and in particular silver coatings, have been extensively studied and used in the clinical practice, but some drawbacks have been evidenced, such as scarce adhesion to the substrate, delamination, or scarce control over silver release.

Here, antibacterial nanostructured silver-based thin films are proposed, obtained by a novel plasma-assisted technique, Ionized Jet Deposition (IJD). Coatings are obtained by deposition of metallic silver targets. Films thickness is selected based on previous results aimed at measuring extent and duration of silver release and at evaluating toxicity to host cells (fibroblasts). Here, composition (grazing incidence XRD) and morphology (SEM) of the obtained coatings are characterized for deposition onto different substrates, both metallic and polymeric. For heat sensitive substrates, possible alterations caused by coatings deposition in terms of morphology (SEM) and composition (FT-IR) is assessed. Then, a proof-of-concept study of the capability of these films to inhibit microbial biofilm formation is performed by using two different supports i.e., the Calgary Biofilm Device and the microplates. To the best of the Authors knowledge, this is the first study describing the application of specific anti-biofilm analyses to nanostructured coatings. In particular, anti-biofilm activities are tested against the following pathogenic strains: Escherichia (E.) coli NCTC12923, Staphylococcus (S.) aureus ATCC29213 and S. aureus 86. Among these, the strain 86 is not only pathogen but it also possesses several antibiotic resistance genes, allowing the evaluation of the utilization of nanostructured coatings as an alternative anti-microbial system to face the global threat of antibiotic resistance.

Results indicate that films deposited from silver targets are composed of nanosized aggregates of metallic silver, indicating a perfect transfer of composition from the deposition target to the coatings.

Results obtained here indicate that the films have significant antibacterial and antibiofilm activity. In addition, they prove that the system can be successfully applied for evaluation of coatings antibacterial efficacy for biomedical applications.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 33 - 33
1 Mar 2021
Graziani G Farè S De Carolis M Negrini N Bianchi M Sassoni E Maltarello M Boi M Berni M Baldini N
Full Access

Calcium phosphates-based coatings have been widely studied to favour a firm bonding between orthopaedic implants and the host bone. To this aim, thin films (thickness below 1 μm) having high adhesion to the substrate and a nanostructured surface texture are desired, capable of boosting platelet, proteins and cells adhesion. In addition, a tunable composition is required to resemble as closely as possible the composition of mineralized tissues and/or to intentionally substitute ions having possible therapeutic functions. The authors demonstrated nanostructured films having high surface roughness and a composition perfectly resembling the deposition target one can be achieved by Ionized Jet Deposition (IJD). Highly adhesive nanostructured coatings were obtained by depositing bone-apatite like thin films by ablation of deproteinized bovine bone, capable of promoting host cells attachment, proliferation and differentiation. Here, biomimetic films are deposited by IJD, using biogenic and synthetic apatite targets. Since IJD deposition can be carried out without heating the substrate, application on heat sensitive polymeric substrate, i.e. 3D printed porous scaffolds, is investigated.

Biogenic apatite coatings are obtained by deposition of deproteinized bone (bovine, ovine, equine, porcine) and compared to ones of stoichiometry hydroxyapatite (HAp). Coatings composition (FT-IR-ATR, FT-IR microscopy, XRD, EDS) and morphology (SEM, AFM) are tested for deposition onto metallic and 3D-printed polymeric substrates (polyurethane (PU)). Different post-treatment annealing procedures for metallic substrates are compared (350–425°C), to optimize crystallinity. Then, uniformity of substrate coverage and possible damage caused to the polymeric substrate are studied by SEM, DSC and FT-IR microscopy.

Biogenic coatings are composed by carbonated HAp (XRD, FT-IR). Trace ions Na+ and Mg2+ are transferred from deposition target to coating. All coatings are nanostructured, composed by nano-sized globular aggregates, of which morphology and dimensions depend on the target characteristics. As-deposited coatings are amorphous, but crystallinity can be tuned by post-treatment annealing. A bone-like crystallinity can be achieved for heating at ≥400°C, also depending on duration. When deposited on 3D-printed PU scaffolds, coatings, owing to sub-micrometric thickness, coat them entirely, without altering their fibre shape and porosity.

Obtained biomimetic bone apatite coatings can be deposited onto a variety of metallic and polymeric biomedical devices, thus finding several perspective applications in biomedical field.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 44 - 44
1 Nov 2018
Baldini N
Full Access

The initiation and progression of malignant tumors are supported by their microenvironment: cancer cells per se cannot explain growth and formation of the primary or metastasis, and a combination of proliferating tumor cells, cancer stem cells, immune cells, mesenchymal stromal cells and/or cancer-associated fibroblasts all contribute to the tumor bulk. The interaction between these multiple players, under different microenvironmental conditions of biochemical and physical stimuli (i.e. oxygen tension, pH, matrix mechanics), regulates the production and biological activity of several soluble factors, extracellular matrix components, and extracellular vesicles that are needed for growth, maintenance, chemoresistance and metastatization of cancer. Both in osteosarcoma and bone metastases from carcinomas this aspect has been only recently explored. In this lecture, I will discuss the role of tumor microenvironment, with a particular focus on the mesenchymal stroma, contributing to bone tumor progression through inherent. The most recent advances in the molecular cues triggered by cytokines, soluble factors, and metabolites that are partially beginning to unravel the axis between stromal elements of mesenchymal origin and bone cancer cells, under different microenvironmental conditions, will be reviewed providing insights likely to be used for novel therapeutic approaches.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 35 - 35
1 Apr 2017
Ciapetti G Fotia C Granchi D Rojewski M Rosset P Gómez-Barrena E Baldini N
Full Access

Background

Delayed bone healing and nonunion are complications of long bone fractures, with prolonged pain and disability. Regenerative therapies employing mesenchymal stromal cells (MSC) and/or bone substitutes are increasingly applied to enhance bone consolidation. Within the REBORNE project, a multi-center orthopaedic clinical trial was focused on the evaluation of efficacy of expanded autologous bone marrow (BM) derived MSC combined with a CaP-biomaterial to enhance bone healing in patients with nonunion of diaphyseal fractures. To complement the clinical and radiological examination of patients, bone turnover markers (BTM) were assayed as potential predictors of bone healing or non-union.

Methods

Bone-specific alkaline phosphatase (BAP), C-terminal-propeptide type I-procollagen (PICP), osteocalcin (OC), β-Cross-Laps Collagen (CTX), soluble receptor activator of NFkB (RANKL), osteoprotegerin (OPG) were measured by ELISA assays in blood samples of 22 patients at BM collection and at follow-ups (6, 12 and 24 weeks post-surgery).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 39 - 39
1 Apr 2017
Gomez-Barrena E Rosset P Hernigou P Gebhard F Ehrnthaller C Baldini N Layrolle P
Full Access

Background

Definitive proof is lacking on mesenchymal stem cell (MSCs) cellular therapy to regenerate bone if biological potential is insufficient. High number of MSCs after GMP expansion may solve the progenitor insufficiency at the injury but clinical trials are pending.

Methods

A prospective, multicenter, multinational Phase I/IIa interventional clinical trial was designed under the EU-FP7 REBORNE Project to evaluate safety and early efficacy of autologous expanded MSCs loaded on biomaterial at the fracture site in diaphyseal and/or metaphysodiaphyseal fractures (femur, tibia, humerus) nonunions. The trial included 30 recruited patients among 5 European centres in France, Spain, Germany, and Italy. Safety endpoints (local and general complication rate) and secondary endpoints for early efficacy (number of patients with clinically and radiologically proven bone healing at 12 and 24 weeks) were established. Cultured MSCs from autologous bone marrow, expanded under GMP protocol was the Investigational Medicinal Product, standardised in the participating countries confirming equivalent cell production in all the contributing GMP facilities. Cells were mixed with CE-marked biphasic calcium phosphate biomaterial in the surgical setting, at an implanted dose of 20−106 cells per cc of biomaterial (total 10cc per case) in a single administration, after debridement of the nonunion.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 83 - 83
1 Jan 2017
Massa A Perut F Avnet S Mitsiadis T Baldini N
Full Access

Maintenance of acid-base homeostasis in extracellular fluids and in the cytoplasm is essential for the physiological activities of cells and tissues [1]. However, changes in extracellular pH (pHe) occurs in a variety of physiological and pathological conditions, including hypoxia and inflammation associated with trauma and cancer. Concerning bone tissue, if abnormal acidification occurs, mineral deposition and osteoblast differentiation are inhibited, whereas osteoclast formation and activity are enhanced [2]. Indeed, acidification, that usually occurs in the early phases of fracture repair, has been suggested as a driving force for regeneration via release of growth factors that act on the stem cell fraction of repair bone [3]. However, the effect of low pHe on stemness has been insufficiently explored so far. Thus, in this study, we investigated the role of short term exposure to low pHe (6.5–6.8) on MSC stemness.

MSC derived from dental pulps (DPSC) and bone marrow (BM-MSC) were used. To perform the specific assays, culture medium at specific pH (6.5, 6.8, 7.1 and 7.4) was maintained by using different concentrations of sodium bicarbonate according to the Henderson-Hasselbach equation.

Changes in osteoblast-related gene expression (COL1A1 and ALPL), and mineral nodule formation were measured by qRT-PCR and Alizarin red staining, respectively.

The stem phenotype was analysed by measuring changes in stemness-related genes (SOX2, OCT4, KLF4, c-MYC) expression and spheres forming ability. Additionally, cell number, Ki67 index and cell cycle were analysed to monitor cell proliferation and quiescence.

We confirmed that acidic pHe inhibits the osteogenic differentiation of DPSC. Low pHe significantly but transitorily decreased the expression of osteoblast-related genes (COL1A1 and ALPL) and decreased the mineral nodule formation in vitro.

Acidic pHe conditions significantly increased the ability of DPSC and BM-MSC to form floating spheres. At acidic pHe spheres were higher but smaller when compared to spheres formed at alkaline pHe conditions. Moreover, acidic pHe increased significantly the expression of stemness-related genes. Finally, low pHe induced a significant decrease of DPSC cell number. Reduction of cell proliferation correlated with a lower number of cycling cells, as revealed by the Ki67 index that significantly decreased in a pH-dependent manner. Cell cycle analysis revealed an accumulation of cells in the G0 phase, when cultured at low pH.

In this study, we demonstrated a close relationship between acidic pHe and the regulation of MSC stemness. We therefore suggest that pHe modulation of MSC stemness is a major determinant of skeletal homeostasis and regeneration, and this finding should be considered in bone healing strategies based on cell therapy.