Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 2 - 2
17 Apr 2023
Miller B Hornestam J Carsen S Benoit D
Full Access

To investigate changes in quadriceps and hamstrings muscle groups during sustained isokinetic knee flexion and extension.

125 paediatric participants (45 males and 80 females, mean age 14.2 years) were divided into two groups: participants with a confirmed ACL tear (ACLi, n = 64), and puberty- and activity-level matched control participants with no prior history of knee injuries (CON, n = 61). Participants completed a series of 44 repetitions of isokinetic knee flexion and extension at 90 deg/ sec using a Biodex dynamometer (Biodex Medical Systems Inc, Shirley, New York). Surface EMG sensors (Delsys Incorporated, Natick, MA) simultaneously recorded the quadriceps and hamstring activations. Muscle function was assessed as the change in quadriceps activation and extension torque were calculated using the percent difference between the mean of the first five trials, and the mean of the last five trials.

ACLi participants had significantly higher percent change in quadriceps activation for both healthy and injured legs, in comparison to CON dominant leg. As such, the healthy leg of the ACLi participants is activating significantly more than their health matched controls, while also demonstrating reduced muscular endurance (less torque in later repetitions). Therefore, we conclude that the non-injured limb of the ACLi participant is not performing as a healthy limb. Since return to activity clearance following ACLi implies return to sport against age- and activity matched opponents, clearing young athletes based on the non-injured contralateral limb may put them at greater risk of reinjury.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 16 - 16
17 Apr 2023
Hornestam J Miller B Carsen S Benoit D
Full Access

To investigate differences in the drop vertical jump height in female adolescents with an ACL injury and healthy controls and the contribution of each limb in this task. Forty female adolescents with an ACL injury (ACLi, 15.2 ± 1.4 yrs, 164.6 ± 6.0 cm, 63.1 ± 10.0 kg) and thirty-nine uninjured (CON, 13.2 ± 1.7 yrs, 161.7 ± 8.0 cm, 50.6 ± 11.0 kg) were included in this study. A 10-camera infrared motion analysis system (Vicon, Nexus, Oxford, UK) tracked pelvis, thigh, shank, and foot kinematics at 200Hz, while the participants performed 3 trials of double-legged drop vertical jumps (DVJ) on two force plates (Bertec Corp., Columbus, USA) sampled at 2000Hz.The maximum jump height normalised by dominant leg length was compared between groups using independent samples t-test. The maximum vertical ground reaction force (GRFz) and sagittal ankle, knee and hip velocities before take-off were compared between limbs in both groups, using paired samples t-test. The normalised jump height was 11% lower in the ACLi than in the CON (MD=0.04 cm, p=0.020). In the ACLi, the maximum GRFz (MD=46.17N) and the maximum velocities of ankle plantar flexion (MD=79.83°/s), knee extension (MD=85.80°/s), and hip extension (MD=36.08°/s) were greater in the non-injured limb, compared to the injured limb. No differences between limbs were found in the CON.

ACL injured female adolescents jump lower than the healthy controls and have greater contribution of their non-injured limb, compared to their injured limb, in the DVJ task. Clinicians should investigate differences in the contribution between limbs during double-legged drop vertical jump when assessing patients with an ACL injury, as this could help identify asymmetries, and potentially improve treatment, criteria used to clear athletes to sport, and re-injury prevention.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 17 - 17
17 Apr 2023
Hornestam J Miller B Del Bel M Romanchuk N Carsen S Benoit D
Full Access

To investigate if the countermovement jump height differs between ACL injured and uninjured female adolescents and to explore kinematic differences between limbs. Additionally, the association between isometric knee extension strength and jump height was investigated.

Thirty-one ACL injured female adolescents (ACLi, 15.3 ± 1.4yrs, 163.9 ± 6.6cm, 63.0 ± 9.3kg) and thirty-eight uninjured (CON, 13.2±1.7yrs, 161.7 ± 8.1cm, 50.6 ± 11.1kg) participated in this study. All participants performed a countermovement jump task, with 3D kinematics collected using a motion analysis system (Vicon, Nexus, Oxford, UK) at 200Hz, and a maximum isometric knee extension task on an isokinetic dynamometer (Biodex Medical Systems, New York, USA) for three trials. The peak torque was extracted from the isometric trials. Independent samples t-test compared the maximum jump height normalised by the dominant leg length between groups, paired samples t-test compared the maximum hip and knee extension and ankle plantar flexion velocities before take-off between limbs in both groups, and a Pearson's correlation test investigated the association between the isometric knee extension strength and jump height.

The ACLi jumped 13% lower compared to the CON (p=0.022). In the ACLi, the maximum hip and knee extension and ankle plantar flexion velocities were greater in the non-injured limb, compared to the injured limb; however, no differences between limbs were found in the CON. The isometric knee extension strength of both limbs was positively correlated with jump height (limb 1: r=0.329; p=0.006, and limb 2: r=0.386; p=0.001; whereas limb 1 corresponds to the ACLi injured limb and CON non-dominant limb, and limb 2 to the ACLi non-injured limb and CON dominant limb).

ACL injured female adolescents present lower jump height than controls and greater contribution of their non-injured limb, compared to their injured limb, during a countermovement jump task. Also, current results indicate that jump height is positively related to isometric knee extension strength measure.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 64 - 64
1 Dec 2022
Orloff LE Carsen S Imbeault P Benoit D
Full Access

Anterior cruciate ligament (ACL) injuries have been increasing, especially amongst adolescents. These injuries can increase the risk for early-onset knee osteoarthritis (OA). The consequences of late-stage knee OA include structural joint change, functional limitations and persistent pain. Interleukin-6 (IL-6) is a pro-inflammatory biomarker reflecting knee joint healing, and increasing evidence suggests that IL-6 may play a critical role in the development of pathological pain. The purpose of this study was to determine the relationship between subjective knee joint pain and function, and synovial fluid concentrations of the pro-inflammatory cytokine IL-6, in adolescents undergoing anterior cruciate ligament reconstruction surgery.

Seven youth (12-17 yrs.) undergoing anterior cruciate ligament (ACL) reconstruction surgery participated in this study. They completed the Pedi International Knee Documentation Committee (Pedi-IKDC) questionnaire on knee joint pain and function. At the time of their ACL reconstruction surgery, synovial fluid samples were collected through aspiration to dryness with a syringe without saline flushing. IL-6 levels in synovial fluid (sf) were measured using enzyme linked immunosorbent assay. Spearman's rho correlation coefficient was used to determine the correlation between IL-6 levels and scores from the Pedi-IKDC questionnaire.

There was a statistically significant correlation between sfIL-6 levels and the Pedi-IKDC Symptoms score (-.929, p=0.003). The correlations between sfIL-6 and Pedi-IKDC activity score (.546, p = .234) and between sfIL-6 and total Pedi-IKDC score (-.536, p = .215) were not statistically significant.

This is the first study to evaluate IL-6 as a biomarker of knee joint healing in an adolescent population, reported a very strong correlation (-.929, p=0.003) between IL-6 in knee joint synovial fluid and a subjective questionnaire on knee joint pain. These findings provide preliminary scientific evidence regarding the relationship between knee joint pain, as determined by a validated questionnaire and the inflammatory and healing status of the patient's knee. This study provides a basis and justification for future longitudinal research on biomarkers of knee joint healing in patients throughout their recovery and rehabilitation process. Incorporating physiological and psychosocial variables to current return-to-activity (RTA) criteria has the potential to improve decision making for adolescents following ACL reconstruction to reduce premature RTA thereby reducing the risk of re-injury and risk of early-onset knee OA in adolescents.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 16 - 16
1 Dec 2022
Hornestam JF Abraham A Girard C Del Bel M Romanchuk N Carsen S Benoit D
Full Access

Background: Anterior cruciate ligament (ACL) injury and re-injury rates are high and continue to rise in adolescents. After surgical reconstruction, less than 50% of patients return to their pre-injury level of physical activity. Clearance for return-to-play and rehabilitation progression typically requires assessment of performance during functional tests. Pain may impact this performance. However, the patient's level of pain is often overlooked during these assessments.

Purpose: To investigate the level of pain during functional tests in adolescents with ACL injury.

Fifty-nine adolescents with ACL injury (ACLi; female n=43; 15 ± 1 yrs; 167.6 ± 8.4 cm; 67.8 ± 19.9 kg) and sixty-nine uninjured (CON; female n=38; 14 ± 2 yrs; 165.0 ± 10.8 cm; 54.2 ± 11.5 kg) performed a series of functional tests. These tests included: maximum voluntary isometric contraction (MVIC) and isokinetic knee flexion-extension strength tests, single-limb hop tests, double-limb squats, countermovement jumps (CMJ), lunges, drop-vertical jumps (DVJ), and side-cuts. Pain was reported on a 5-point Likert scale, with 1 indicating no pain and 5 indicating extreme pain for the injured limb of the ACLi group and non-dominant limb for the CON group, after completion of each test. Chi-Square test was used to compare groups for the level of pain in each test. Analysis of the level of pain within and between groups was performed using descriptive statistics.

The distribution of the level of pain was different between groups for all functional tests (p≤0.008), except for ankle plantar flexion and hip abduction MVICs (Table 1). The percentage of participants reporting pain was higher in the ACLi group in all tests compared to the CON group (Figure 1). Participants most often reported pain during the strength tests involving the knee joint, followed by the hop tests and dynamic tasks, respectively. More specifically, the knee extension MVIC was the test most frequently reported as painful (70% of the ACLi group), followed by the isokinetic knee flexion-extension test, with 65% of ACLi group. In addition, among all hop tests, pain was most often reported during the timed 6m hop (53% of ACLi), and, among all dynamic tasks, during the side-cut (40% of ACLi) test (Figure 1). Furthermore, the tests that led to the higher levels of pain (severe or extreme) were the cross-hop (9.8% of ACLi), CMJ (7.1% of ACLi), and the isokinetic knee flexion-extension test (11.5% of ACLi) (Table 1).

Adolescents with and without ACL injury reported different levels of pain for all functional tasks, except for ankle and hip MVICs. The isokinetic knee flexion-extension test resulted in greater rates of severe or extreme pain and was also the test most frequently reported as painful. Functional tests that frequently cause pain or severe level of pain (e.g., timed 6m and cross hops, side-cut, knee flexion/extension MVICs and isokinetic tests) might not be the first test choices to assess function in patients after ACL injury/reconstruction. Reported pain during functional tests should be considered by clinicians and rehabilitation team members when evaluating a patient's readiness to return-to-play.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 94 - 94
1 Jul 2014
Gauthier P Benoit D
Full Access

Summary

This study describes the use of a quasi-static, 6DOF knee loading simulator using cadaveric specimens. Muscle force profiles yield repeatable results. Intra-articular pressure and contact area are dependent on loading condition and ACL integrity.

Introduction

Abnormal contact mechanics of the tibiofemoral joint is believed to influence the development and progression of joint derangements. As such, understanding the factors that regulate joint stability may provide insight into the underlying injury mechanisms. Muscle action is believed to be the most important factor since it is the only dynamic regulator of joint stability. Furthermore, abnormal muscle control has been experimentally linked to the development of OA [Herzog, 2007] and in vivo ACL strain [Fleming, 2001]. However, the individual contributions to knee joint contact mechanics remain unclear. Thus, the purpose of this study was to examine the effects of individual muscle contributions on the tibiofemoral contact mechanics using an in-vitro experimental protocol.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 166 - 166
1 Jul 2014
Flaxman T Smith A Benoit D
Full Access

Summary Statement

Using a weight-bearing force control task, age-related changes in muscle action were observed in osteoarthritic subjects, however, greater activation of rectus femoris and medial hamstring muscles in the OA group compared to control indicates greater cocontraction and varied stabilisation strategies.

Introduction

Osteoarthritis (OA) is the most debilitating condition among older adults. OA is thought to be mechanically driven by altering the stabilising integrity of the joint. The main contributor to knee joint stability is that of muscular contraction. In cases where the history of a traumatic knee joint injury is not a causal factor, a change in muscle function, resulting in reduced strength and force control in believed to induce OA development and progression. Since age is also a determining factor of OA, the purpose of this study was to investigate the muscle activation patterns of young healthy adults (YC), older healthy adults (OC), and adults with OA during a standing isometric force control task.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 560 - 560
1 Nov 2011
Varin D Speirs A Benoit D Beaulieu M Lamontagne M Beaulé PE
Full Access

Purpose: A functional centre of rotation (CoR) is often required in biomechanical analysis of the hip or as a landmark in computer guided surgery. It was previously shown that circumduction motions predict a CoR that is inferior and lateral to the geometric centre of the hip bearing surfaces. It is therefore necessary to establish the best method for determining the CoR to improve surgical planning. The objective of this study was to compare the predicted CoR from circumduction and star motions, and to compare these to the geometric centre of the joint.

Method: Eight cadaveric hips from four cadavers were tested. Prior to testing, CT scans of the cadavers were made from the iliac crest to the tibial plateau; the alpha angle for all hips was less than 50° so all hips were considered ‘normal’. Reflective marker arrays were rigidly mounted on the femoral diaphysis and iliac spine using 4mm Steinman pins. A five-camera Vicon system (Oxford, UK) was used to track the motions of the arrays during manipulation of the lower limb. To determine the functional hip centre, trials consisting of five cycles each of circumduction, flexion-extension and abduction-adduction were performed on each lower limb; three trials of each motion were performed. The range of motion was approximately 45° in the coronal and sagittal planes. For the ‘star’ motion, the flexion-extension and abduction-adduction trial data were combined. Following the trials the hip was dissected to expose the articular surfaces of the femoral head and acetabulum. These surfaces were traced using a pointer equipped with reflective markers to determine the geometric centre. To calculate the functional centre, the 3D coordinates of the markers were used to construct a local-to-global 3D transform for each frame throughout the trial. The geometric centre was calculated using a least-squares sphere fit (Gauss-Newton) of the trace data, calculated in the respective local coordinate systems. The coordinates of the functional centres were then transformed to an anatomic coordinate system, using the geometric centre as the origin. All calculations were performed using Matlab (Mathworks, Inc, MA, USA). A t-test was performed in each anatomic direction to detect differences in CoR predicted by the two motions.

Results: Both the circumduction and star motions resulted in a similar CoR. Differences were 0.41±2.25mm in the anterior-posterior direction; 0.09±0.72mm in the superior-inferior direction; and 0.21±0.82mm in the medial-lateral direction, none of which were significant (p> 0.5). The overall mean distance between the CoR predicted by the two motions was 2.0±1.3mm. The functional centre was also found to be lateral and inferior to the geometric centre, and was consistent for each motion. Results for the acetabulum showed similar trends.

Conclusion: This study has shown that circumduction and star motions are equivalent in predicting the hip functional CoR; differences were small compared to the dimensions involved in studies such as gait analyses. However, both motions predicted a CoR that was inferior and lateral to the spherical centre of the femoral head, suggesting that the hip does not act as a true ball-and-socket joint with congruent spherical bearing surfaces. This may have important consequences in studies at the scale of the hip joint, especially for pathological conditions such as femoroacetabular impingement.