Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 128 - 128
1 Nov 2018
Stanco D Soldati G Ciardelli G
Full Access

Tendon injuries are common and current therapies often are unsuccessful. Cell-based therapy using mesenchymal stem cells (MSCs) seems to be the most promising approach to heal tendon. Moreover, providing safe and regulated cell therapy products to patients requires adherence to good manufacturing practices (GMP). Adipose-derived stem cells (n=4) were cultured in 6-well plates coated with type-I collagen in a chemically defined serum-free medium (SF) or a xenogenic-free human pooled platelet lysate medium (hPL). At passage 4, ASCs were induced to tendon lineage for 14 days using 100ng/ml CTGF, 10ng/ml TGFβ3, 50ng/ml BMP12 and 50µg/ml ascorbic acid in the SF (SF-TENO) or in the hPL (hPL-TENO) medium. Cells cultured without any supplements are used as control. Morphological appearance, cell viability and FACS were performed in undifferentiated cells to evaluate the xenogenic-free culture conditions; the gene and protein expression were performed by RT-PCR and immunofluorescence to evaluate to expression of stem cell- and tendon-related markers upon cell differentiation. SF-CTRL and hPL-CTRL showed similar viability and MSC's surface proteins and expressed the stemness markers NANOG, OCT4 and Ki67. Moreover, both SF-TENO and hPL-TENO expressed significant higher levels of SCX, COL1A1, COL3A1, COMP, MMP3 and MMP13 genes already at 3d (p<0.05) respect to CTRLs. Scleraxis and collagen were also detected in both SF-TENO and hPL-TENO at protein level in higher amount than CTRLs. In conclusion, ASCs exposed to CTGF, BMP12, TGFb3 and AA in both serum and xenogenic-free media possess similar tenogenic differentiation ability moving forward the GMP-compliant approaches for the clinical use of ASCs.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 275 - 275
1 May 2009
Nicolino S Audisio C Chiaravalloti A Rechichi A Gambarotta G Di Scipio F Fregnan F Raimondo S Geuna S Tos P Battiston B Ciardelli G Perroteau I
Full Access

Aims: Biosynthetic scaffolds made of degradable bio-materials enriched with cultured cells holds promise for peripheral nerve repair after complex traumatic injuries. In the perspective of future transplantation applications, the aim of this study was to investigate how cultures of olfactory ensheathing cells (OECs), in particular neonatal olfactory ensheathing cells (NOBECs), grow up in vitro on degradable polymeric films made with polycap-rolactone matrices and multi-block polyesterurethane respectively. In addition, since several transplantation studies use green fluorescent protein (GFP) positive cells so that they can be easily located in the receiving tissues, the cDNA encoding for GFP was cloned in expression vector and transfected in NOBECs.

Methods: To characterize NOBECs we employed electron microscopy, immunohistochemistry, RT-PCR and western blotting analyses. Moreover the proliferative ratio of NOBECs and the ability of the cells to migrate in a three dimensional environment were evaluated under basal and experimental culture conditions. Finally, the GFP-positive NOBEC were seeded on two types of synthetic films and their behaviour was analyzed to determine cell adhesion, survival and proliferation.

Results: We examined the expression of glial markers and NRG1/ErbB system in the NOBEC cell line at RNA and protein level. Results showed that NOBECs express both glial markers (GFAP and S-100), ErbB receptors (ErbB1, ErbB2 and ErB3) and different isoforms of NRG1. NOBECs exhibited a remarkable proliferation activity and a high basal migration activity. GFP positive NOBECs showed no significant difference in their behaviour as compared to untransfected parental cells. Finally, both normal and GFP-NOBECs showed good cell adhesion, survival and proliferation properties when seeded on both films employed in this study.

Conclusion: Taken together, results of our study showed that the glial cell line has similar biochemical properties as primary cultures of OECs. Moreover, we showed that NOBECs survive, proliferate and migrate on two different types of synthetic films that were prepared in the perspective of build up nerve scaffolds. Therefore, our results indicated that the NOBECs produce growth-promoting proteins and possess regeneration-promoting capabilities that make them a potentially good transplant material to enhance axonal regeneration inside synthetic tubes used to bridge nerve lesion with substance loss.