Combining novel diverse population-based software with a clinically-demonstrated implant design is redefining total hip arthroplasty. This contemporary stem design utilized a large patient database of high-resolution CT bone scans in order to determine the appropriate femoral head centers and neck lengths to assist in the recreation of natural head offset, designed to restore biomechanics. There are limited studies evaluating how radiographic software utilizing reference template bone can reconstruct patient composition in a model. The purpose of this study was to examine whether the application of a modern analytics system utilizing 3D modeling technology in the development of a primary stem was successful in restoring patient biomechanics, specifically with regards to femoral offset (FO) and leg length discrepancy (LLD). Two hundred fifty six patients in a non-randomized, post-market multicenter study across 7 sites received a primary cementless fit and fill stem. Full anteroposterior pelvis and Lauenstein cross-table lateral x-rays were collected preoperatively and at 6-weeks postoperative. Radiographic parameters including contralateral and operative FO and LLD were measured. Preoperative and postoperative FO and LLD of the operative hip were compared to the normal, native hip. Clinical outcomes including the Harris Hip Score (HHS), Lower Extremity Activity Scale (LEAS), Short Form 12 (SF12), and EuroQol 5D Score (EQ-5D) were collected preoperatively, 6 weeks postoperatively, and at 1 year.INTRODUCTION
METHODS
A significant reduction in wear using Durasul highly cross-linked polyethylene (PE) versus Sulene polyethylene (sterilized with nitrogen) at 5 and 10 years have been reported previously. We ask if the improvement observed at the earlier follow-up continues at 15 years. Between 1999 and 2001, 90 hips underwent surgery using the same cementless cup and stem: 45 received Allofit cups with a Sulene-PE liner and 45 Allofit cups with a Durasul-PE liner, both associated with an Alloclassic stem (28 mm metallic femoral head). 66 hips of this prospective comparative study were available over a minimum follow-up of 15 years. Linear femoral head penetration was estimated digitally at 6 weeks, at 6 and 12 months and annually thereafter, using the Dorr method, given the nonspherical cup shape. All radiographs were evaluated by the same author, who was not involved in surgery.Background and aim
Methods
Instability and dislocation are some of the most important postoperative complications and potential causes of failure that dual mobility total hip arthroplasty (THA) systems continue to address. Studies have shown that increasing the relative head size provides patients implanted with smaller and larger cups increased stability, greater ROM and a lesser incidence of impingement, without compromising clinical results. The purpose of the current study was to review clinical outcomes in three groups of primary THA patients receiving a dual mobility acetabular shell. In two US based, post-market, multicenter studies, 450 patients received a primary cementless dual mobility THA. Patients were split into three groups based on cup size: ≤ 50mm, 52mm–56mm, and ≥ 58mm. Harris Hip Scores (HHS), Short Form 12 Physical Components (SF12 PCS), Lower Extremity Activity Scores (LEAS), and Euroqol 5D Score (EQ-5Ds) were collected preoperatively and through 2 years postoperative.Background
Methods
Acetabular bone structure is not the same in all patients and can be defined by the radiolucent triangle superior to the acetabulum. We ask if the acetabular anatomy determines the initial cup fixation and screws use. We have assessed 205 hips in which a Cerafit cementless cup was implanted. According to Dorr et al., acetabulae were classified as type A, in which the radiolucent triangle had an isosceles shape (86 hips), type B, in which the triangle extended into the teardrop (90 hips), and type C which had a right-angle triangle (29 hips). The use of screws was decided at the time of surgery and according to cup stability, not acetabular anatomy. Avascular necrosis and inflammatory arthritis were the most frequent diagnoses in type A hips, osteoarthritis in type B, and dysplasia in type C. Women were more frequent in types A and C (p<
0.001). The use of screws was more frequent in women (p<
0.001) and in type A (34.9%) and type C hips (62.1%) than in type B hips (20.0%) (p<
0.001). The multivariate logistic regression model showed the acetabular type (p=0.11) and gender (p=0.003) as independent factors. Acetabular types A (OR=1.98, 95% CI: 0.922–4.208, p=0.075) and C (OR=5.09, 95% CI: 1.74–14.9, p=0.003) increase the risk for screw use. Men have a lower risk for screw use (OR=0.329, 95% CI: 0.16–0.68, p=0.003). Acetabular anatomy and gender determine the use of screws in cementless cups. Continued follow-up is necessary to determine if screws results in less loosening and osteolysis.